%\VignetteIndexEntry{HiC Data Human Fibroblast Dixon et al. 2012}
%\VignetteDepends{}
%\VignetteKeywords{next-generation sequencing}
%\VignettePackage{HiCDataHumanIMR90} % name of package

%%%% HEAD SECTION: START EDITING BELOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\documentclass[11pt, a4paper, fleqn]{article}

<<style, eval=TRUE, echo=FALSE, results=tex>>=
BiocStyle::latex(use.unsrturl=FALSE)
@ 

\usepackage{geometry}
%\usepackage{color}
%\definecolor{darkblue}{rgb}{0.0,0.0,0.75}
\definecolor{mygray}{gray}{0.90}
%\usepackage[%
%baseurl={http://www.bioconductor.org},%
%pdftitle={HiTC - High Throughput analysis of 'C' experiments},%
%pdfauthor={Nicolas Servant},%
%pdfsubject={HiTC Vignette},%
%pdfkeywords={Bioconductor},%
%pagebackref,bookmarks,colorlinks,linkcolor=darkblue,citecolor=darkblue,%
%filecolor=darkblue,urlcolor=darkblue,pagecolor=darkblue,%
%raiselinks,plainpages,pdftex]{hyperref}

%\usepackage[utf8]{inputenc} 
%\usepackage{verbatim} % for multi-line comments
%\usepackage{amsmath,a4,t1enc, graphicx}
\usepackage{natbib}
%\bibpunct{(}{)}{;}{a}{,}{,}

%\parindent0mm
%\parskip2ex plus0.5ex minus0.3ex

%\newcommand{\Robject}[1]{{\texttt{#1}}}
%\newcommand{\Rfunction}[1]{{\texttt{#1}}}
%\newcommand{\Rpackage}[1]{{\textit{#1}}}
%\newcommand{\Rclass}[1]{{\textit{#1}}}
\newcommand{\Rmethod}[1]{{\texttt{#1}}}
%\newcommand{\Rfunarg}[1]{{\texttt{#1}}}
%\newcommand{\phead}[1]{{\flushleft \sf \small \textbf{#1} \quad}}
% \newcommand{\myincfig}[3]{%
%   \begin{figure}[h!tb]
%     \begin{center}
%       \includegraphics[width=#2]{#1}
%       \caption{\label{#1}\textit{#3}}
%     \end{center}
%   \end{figure}
% }
%\addtolength{\textwidth}{2cm}
%\addtolength{\oddsidemargin}{-1cm}
%\addtolength{\evensidemargin}{-1cm}
%\addtolength{\textheight}{2cm}
%\addtolength{\topmargin}{-1cm}
%\addtolength{\skip\footins}{1cm}


%%%%%%% START EDITING HERE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}

\SweaveOpts{prefix.string = ./HiTC, eps=false, keep.source=TRUE, eval=TRUE, echo=TRUE} % produce no 'eps' figures
%\setkeys{Gin}{width=0.5\textwidth}

\title{\textbf{Human Fibroblast IMR90 Hi-C Data (Dixon et al.)}}
\author{
\href{mailto:nicolas.servant@curie.fr}{Nicolas Servant}
}
\maketitle

%\tableofcontents
%\newpage

\section{Introduction}
The Hi-C technic was first introduced by \cite{Lieberman-Aiden2009}. In the continuity with 3C, 4C and 5C technics, the goal of the Hi-C is to simultaneoulsy detect all chromosomal contacts in a single experiment. All this technics aim at measuring the population-averaged frequency at which two genomic loci physically interact in three-dimensional space. In Hi-C, after a first crosslink and digestion, all genomic fragments are labeled with a biotinylated nucleotide before ligation. These junctions can then be purified efficiently by streptavidin-coated magnetic beads, and finaly sequenced using a standard Illumina paired-end protocol.\\
The data available in this package were published by \cite{Dixon2012} and downloaded from the GEO website (GSE35156, sample GSM862724). This publication is one of the key paper in the field for two main reasons: i) it was the first time than Hi-C data were generated at such resolution (up to 20kb), ii) this resolution highlighted a new short range structure defined as topological domains (TADs), with high frequencies of intra-domain chromatin interactions but infrequent inter-domain chromatin interactions (\cite{Nora2012a}).

If you use \Rpackage{HiCDataHumanIMR90}, please cite:
\begin{itemize}
  \item Servant N (2014). HiCDataHumanIMR90: Human Fibroblast IMR90 HiC data from Dixon et al. 2012. R package version 1.1.0. 
  \item Dixon JR, Selvaraj S, Yue F, Kim A et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376-80. 
\end{itemize}

\section{Hi-C Data}
The \Robject{hic\_imr90\_40} object is a \Rclass{HTClist} object (see the \Rpackage{HiTC} package for more information (\cite{Servant2012})). It contains the complete genome-wide HiC data, with all inter and intrachromosomic contact maps at a resolution of 40kb.

<<describe>>=
require(HiCDataHumanIMR90)
require(HiTC)
data(Dixon2012_IMR90)
## Show data
show(hic_imr90_40)
## Is my data complete (i.e. composed of intra + inter chromosomal maps)
isComplete(hic_imr90_40)
## Note that a complete object is not necessarily pairwise 
## (is both chr1-chr2 and chr2-chr1 stored ?)
isPairwise(hic_imr90_40)
## Which chromosomes ?
seqlevels(hic_imr90_40)
## Details about a given map
detail(hic_imr90_40$chrXchrX)
## Descriptive statistics
head(summary(hic_imr90_40))
@ 

\section{Topological Domains}
The \Robject{tads\_imr90} object is a \Rclass{GRanges} object with a all TADs detected from this Hi-C data. 
<<tads>>=
show(tads_imr90)
@ 
<<tads_plot, fig=TRUE, width=7, heigh=7>>=
## Extract region
regx <- extractRegion(hic_imr90_40$chrXchrX, 
                      chr="chrX", from=95000000, to=105000000)
## Plot Hi-C data with TADs
plot(regx, tracks=list(tads_imr90), maxrange=20)
@ 


\small
\section*{Package versions}
This vignette was generated using the following package versions:
<<sessionInfo, echo=FALSE, results=tex>>=
toLatex(sessionInfo(), locale=FALSE)
@

\newpage
\small
%%% BIBLIOGRAPHY STARTS HERE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\bibliographystyle{abbrvnat}
\bibliography{HiTC}

%\begin{thebibliography}{}
%\end{thebibliography}

\end{document}