Package ‘scrapper’

September 24, 2025

Version 1.3.9
Date 2025-09-20
Title Bindings to C++ Libraries for Single-Cell Analysis

Description Implements R bindings to C++ code for analyzing single-
cell (expression) data, mostly from various libscran libraries.
Each function performs an individual step in the single-
cell analysis workflow, ranging from quality control to clustering and marker detection.
It is mostly intended for other Bioconductor package developers to build more user-friendly end-
to-end workflows.

License MIT + file LICENSE

Imports methods, Repp, beachmat (>= 2.25.1), DelayedArray,
BiocNeighbors (>= 1.99.0), Rigraphlib, parallel

Suggests testthat, knitr, rmarkdown, BiocStyle, MatrixGenerics,
sparseMatrixStats, Matrix, S4 Vectors, SummarizedExperiment,
SingleCellExperiment, scRNAseq, igraph

LinkingTo Rcpp, assorthead (>= 1.3.10), beachmat, BiocNeighbors

biocViews Normalization, RNASeq, Software, GeneExpression,
Transcriptomics, SingleCell, BatchEffect, QualityControl,
DifferentialExpression, FeatureExtraction, PrincipalComponent,
Clustering

SystemRequirements C++17, GNU make
VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/scrapper
git_branch devel

git_last commit eb95069
git_last_commit_date 2025-09-20
Repository Bioconductor 3.22
Date/Publication 2025-09-23

Author Aaron Lun [cre, aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1



2 adt_quality_control

Contents
adt_quality_control . . . . . . ... 2
aggregateAcrossCells . . . . . . ... 5
aggregate ACrosSGeNeS . . . . . ... ..o e e e 6
analyze . . ... e 7
buildSnnGraph . . . . . . ... 12
centerSizeFactors . . . . . . . . ... e e e 14
chooseHighlyVariableGenes . . . . . . .. . ... ... ... .. . 15
choosePseudoCount . . . . . . . . . . . ... e e 16
clusterGraph . . . . . . . . . . 17
clusterKmeans . . . . . . . . . . . . .. e 19
combineFactors . . . . . . . .. e 22
computeBlockWeights . . . . . . . ... L 23
computeClrmlFactors . . . . . . . . . . . . .. 24
convertAnalyzeResults . . . . . . . . . ... 25
CorrectMNN . . . . . .. e e e e e e e e e e e 26
crispr_quality_control . . . . . . .. L. L e 28
fitVarianceTrend . . . . . . . . . . . ... e e 30
modelGeneVariances . . . . . . . . . ... . e e e e e e e e 32
normalizeCounts . . . . . . . . . .. e e e e e e e e 34
reportGroupMarkerStatistics . . . . . . .. ... 35
rna_quality_control . . . . . . . L. e e e 37
runAlINeighborSteps . . . . . . . . . . e 39
runPca . . . .. 40
runTsne . . . . . . L e 42
runUmap . . . . . . e e e e e e e e e 45
sanitizeSizeFactors . . . . . . . . ... e 48
scaleByNeighbors . . . . . . . . . . L 49
scoreGeneSet . . . . ... L e e e e e 51
scoreMarkers . . . ... . L e e e e 52
subsampleByNeighbors . . . . . . . . ... L 56
summarizeEffects . . . . . . .. 58
testEnrichment . . . . . . . . . . ... e 59

Index 61

adt_quality_control Quality control for ADT count data

Description

Compute per-cell QC metrics from an initialized matrix of ADT counts, and use the metrics to
suggest filter thresholds to retain high-quality cells.

Usage

computeAdtQcMetrics(x, subsets, num.threads = 1)

suggestAdtQcThresholds(

metrics,
block = NULL,



adt_quality_control 3

)

min.detected.drop = 0.1,
num.mads = 3

filterAdtQcMetrics(thresholds, metrics, block = NULL)

Arguments

X A matrix-like object where rows are ADTs and columns are cells. Values are
expected to be counts.

subsets List of vectors specifying tag subsets of interest, typically control tags like IgGs.
Each vector may be logical (whether to keep each row), integer (row indices) or
character (row names).

num. threads Integer scalar specifying the number of threads to use.

metrics List with the same structure as produced by computeAdtQcMetrics.

block Factor specifying the block of origin (e.g., batch, sample) for each cell in metrics.

Alternatively NULL if all cells are from the same block.

For filterAdtQcMetrics, a blocking factor should be provided if block was
used to construct thresholds.

min.detected.drop

Minimum drop in the number of detected features from the median, in order to
consider a cell to be of low quality.

num.mads Number of median from the median, to define the threshold for outliers in each
metric.
thresholds List with the same structure as produced by suggestAdtQcThresholds.
Value

For computeAdtQcMetrics, a list is returned containing:

* sum, a numeric vector containing the total ADT count for each cell. In theory, this represents

the efficiency of library preparation and sequencing. Compared to RNA, the sum is less use-
ful as a QC metric for ADT data as it is strongly influenced by biological variation in the
abundance of the targeted features. Nonetheless, we compute it for diagnostic purposes.

detected, an integer vector containing the number of detected tags per cell. Even though
ADTs are typically used in situations where few features are highly abundant (e.g., cell type-
specific markers), we still expect detectable coverage of most features due to ambient contam-
ination, non-specific binding or some background expression. Low numbers of detected tags
indicates that library preparation or sequencing depth was suboptimal.

subsets, a list of numeric vectors containing the total count of each control subset. The
exact interpretation depends on the nature of the feature subset but the most common use case
involves isotype control (IgG) features. IgG antibodies should not bind to anything so a high
subset sum suggests that non-specific binding is a problem, e.g., due to antibody conjugates.
(Unlike RNA quality control, we do not use proportions here as it is entirely possible for a
cell to have low counts for other tags due to the absence of their targeted features; this would
result in a high proportion even if the cell has a "normal" level of non-specific binding.)

Each vector is of length equal to the number of cells.

For suggestAdtQcThresholds, a named list is returned:

e If block=NULL, the list contains:



4 adt_quality_control

— detected, a numeric scalar containing the lower bound on the number of detected tags.
This is defined as the lower of (i) num.mads MADs below the median for the log-transformed
values across all cells, and (ii) the product of 1 - min.detected.drop and the median
across all cells. The latter avoids overly aggressive filtering when the MAD is zero.

— subsets, a numeric vector containing the upper bound on the sum of counts in each con-
trol subset. This is defined as num.mads MADs above the median of the log-transformed
metrics across all cells.

» Otherwise, if block is supplied, the list contains:

— detected, a numeric vector containing the lower bound on the number of detected tags
for each blocking level. Here, the threshold is computed independently for each block,
using the same method as the unblocked case.

— subsets, a list of numeric vectors containing the upper bound on the sum of counts in
each control subset for each blocking level. Here, the threshold is computed indepen-
dently for each block, using the same method as the unblocked case.

Each vector is of length equal to the number of levels in block and is named accordingly.

For filterAdtQcMetrics, alogical vector of length ncol (x) is returned indicating which cells are
of high quality. High-quality cells are defined as those with numbers of detected tags above the
detected threshold and control subset sums below the subsets threshold.

Author(s)

Aaron Lun

See Also

The compute_adt_qgc_metrics, compute_adt_qc_filtersand compute_adt_qc_filters_blocked
functions in https://libscran.github.io/scran_qc/.

Examples

# Mocking a matrix:
library(Matrix)
x <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))

# Mocking up a control set.
sub <- list(IgG=rbinom(nrow(x), 1, @.1) > @)

gc <- computeAdtQcMetrics(x, sub)
str(qc)

filt <- suggestAdtQcThresholds(qc)
str(filt)

keep <- filterAdtQcMetrics(filt, qc)
summary (keep)


https://libscran.github.io/scran_qc/

aggregateAcrossCells 5

aggregateAcrossCells  Aggregate expression across cells

Description

Aggregate expression values across cells based on one or more grouping factors. This is usually
applied to a count matrix to create pseudo-bulk profiles for each cluster/sample combination. These
profiles can then be used as if they were counts from bulk data, e.g., for differential analyses with
edgeR.

Usage

aggregateAcrossCells(x, factors, num.threads = 1)

Arguments
X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Values are typically expected to be counts.
factors A list or data frame containing one or more grouping factors, see combineFactors.
num. threads Integer specifying the number of threads to be used for aggregation.
Value

A list containing:

sums, a numeric matrix where each row corresponds to a gene and each column corresponds
to a unique combination of levels from factors. Each entry contains the summed expression
across all cells with that combination.

detected, an integer matrix where each row corresponds to a gene and each column corre-
sponds to a unique combination of levels from factors. Each entry contains the number of
cells with detected expression in that combination.

combinations, a data frame containing the unique combination of levels from factors.
Rows of this data frame correspond to columns of sums and detected, while columns corre-
spond to the factors in factors.

counts, the number of cells associated with each combination. Each entry corresponds to a
row of combinations.

index, an integer vector of length equal to the number of cells in x. This specifies the combi-
nation in combinations to which each cell was assigned.

Author(s)

Aaron Lun

See Also

The aggregate_across_cells function in https://libscran.github.io/scran_aggregate/.

aggregateAcrossGenes, to aggregate expression values across gene sets.


https://libscran.github.io/scran_aggregate/

6 aggregateAcrossGenes

Examples

# Mocking a matrix:
library(Matrix)
X <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))

# Simple aggregation:

clusters <- sample(LETTERS, 100, replace=TRUE)

agg <- aggregateAcrossCells(x, list(cluster=clusters))
str(agg)

# Multi-factor aggregation

samples <- sample(1:5, 100, replace=TRUE)

agg?2 <- aggregateAcrossCells(x, list(cluster=clusters, sample=samples))
str(agg2)

aggregateAcrossGenes  Aggregate expression across genes

Description

Aggregate expression values across genes, potentially with weights. This is typically used to sum-
marize expression values for gene sets into a single per-cell score.

Usage

aggregateAcrossGenes(x, sets, average = FALSE, num.threads = 1)

Arguments
X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Values are usually normalized expression values,
possibly log-transformed depending on the application.
sets A list of integer vectors containing the row indices of genes in each set. Alter-
natively, each entry may be a list of length 2, containing an integer vector (row
indices) and a numeric vector (weights).
average Logical scalar indicating whether to compute the average rather than the sum.
num. threads Integer specifying the number of threads to be used for aggregation.
Value

A list of length equal to that of sets. Each entry is a numeric vector of length equal to the number
of columns in x, containing the (weighted) sum/mean of expression values for the corresponding
set across all cells.

Author(s)

Aaron Lun



analyze 7

See Also

The aggregate_across_genes function in https://libscran.github.io/scran_aggregate/.

aggregateAcrossCells, to aggregate expression values across groups of cells.

Examples

# Mocking a matrix:
library(Matrix)
x <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))

# Unweighted aggregation:
sets <- list(
foo = sample(nrow(x), 20),
bar = sample(nrow(x), 10)

)
agg <- aggregateAcrossGenes(x, sets)
str(agg)

# Weighted aggregation:

sets <- list(
foo = list(sample(nrow(x), 20), runif(20)),
bar = list(sample(nrow(x), 10), runif(10))

)
agg2 <- aggregateAcrossGenes(x, sets, average = TRUE)
str(agg2)
analyze Analyze single-cell data
Description

Execute a simple single-cell analysis pipeline, starting from a count matrix and ending with clusters,
visualizations and markers. This also supports integration of multiple modalities and correction of
batch effects.

Usage
analyze(
rna.x,
adt.x = NULL,
crispr.x = NULL,
block = NULL,

rna.subsets = list(),

adt.subsets = list(),
suggestRnaQcThresholds.args = list(),
suggestAdtQcThresholds.args = list(),
suggestCrisprQcThresholds.args = list(),
filter.cells = TRUE,
centerSizeFactors.args = list(),
computeClrmiFactors.args = list(),
normalizeCounts.args = list(),


https://libscran.github.io/scran_aggregate/

modelGeneVari
chooseHighlyV
runPca.args =
use.rna.pcs =
use.adt.pcs =
use.crispr.pc
scaleByNeighb
correctMnn.ar
runUmap.args

runTsne.args

buildSnnGraph
clusterGraph.
runAllNeighbo
kmeans.cluste
clusterKmeans
clusters.for.
scoreMarkers.
BNPARAM = Ann
rna.assay = 1
adt.assay = 1
crispr.assay

num. threads =

Arguments

rna.x

adt.x

crispr.x

block

rna.subsets

adt.subsets

analyze

ances.args = list(),
ariableGenes.args = list(),
list(Q),

TRUE,

TRUE,

s = TRUE,
ors.args = list(),
gs = list(),
= list(),
list(),

.args = list(),

args = list(),
rSteps.args = list(),
rs = NULL,

.args = list(),
markers = c("graph”, "kmeans"),
args = list(),
oyParam(),

L,

L,
=1L,

3L

Matrix-like object containing RNA counts. This should have the same number
of columns as the other *. x arguments.

Alternatively, a SummarizedExperiment instance containing such a matrix in its
rna.assay.

Alternatively NULL, if no RNA counts are available.
Matrix-like object containing ADT counts. This should have the same number
of columns as the other *. x arguments.

Alternatively, a SummarizedExperiment instance containing such a matrix in its
adt.assay.

Alternatively NULL, if no ADT counts are available.
Matrix-like object containing ADT counts. This should have the same number
of columns as the other *. x arguments.

Alternatively, a SummarizedExperiment instance containing such a matrix in its
crispr.assay.

Alternatively NULL, if no ADT counts are available.

Factor specifying the block of origin (e.g., batch, sample) for each cell in the
*_x matrices. Alternatively NULL, if all cells are from the same block.

Gene subsets for quality control, typically used for mitochondrial genes. See the
subsets arguments in computeRnaQcMetrics for details.

ADT subsets for quality control, typically used for IgG controls. See the subsets
arguments in computeAdtQcMetrics for details.

suggestRnaQcThresholds.args

Named list of arguments to pass to suggestRnaQcThresholds.



analyze 9

suggestAdtQcThresholds.args

Named list of arguments to pass to suggestAdtQcThresholds.
suggestCrisprQcThresholds.args

Named list of arguments to pass to suggestCrisprQcThresholds.
filter.cells  Logical scalar indicating whether to filter the count matrices to only retain high-

quality cells in all modalities. If FALSE, QC metrics and thresholds are still
computed but are not used to filter the count matrices.

centerSizeFactors.args
Named list of arguments to pass to centerSizeFactors.
computeClrmiFactors.args
Named list of arguments to pass to computeClrmiFactors. Only used if adt. x
is provided.
normalizeCounts.args
Named list of arguments to pass to normalizeCounts.
modelGeneVariances.args
Named list of arguments to pass to modelGeneVariances. Only used if rna.x
is provided.
chooseHighlyVariableGenes. args
Named list of arguments to pass to chooseHighlyVariableGenes. Only used
if rna. x is provided.
runPca.args Named list of arguments to pass to runPca.

use.rna.pcs Logical scalar indicating whether to use the RNA-derived PCs for downstream
steps (i.e., clustering, visualization). Only used if rna. x is provided.
use.adt.pcs Logical scalar indicating whether to use the ADT-derived PCs for downstream
steps (i.e., clustering, visualization). Only used if adt. x is provided.
use.crispr.pcs Logical scalar indicating whether to use the CRISPR-derived PCs for down-
stream steps (i.e., clustering, visualization). Only used if crispr.x is provided.
scaleByNeighbors.args
Named list of arguments to pass to scaleByNeighbors. Only used if multiple
modalities are available and their corresponding use. *. pcs arguments are TRUE.
correctMnn.args
Named list of arguments to pass to correctMnn. Only used if block is supplied.

runUmap.args  Named list of arguments to pass to runUmap. If NULL, UMAP is not performed.

runTsne.args  Named list of arguments to pass to runTsne. If NULL, t-SNE is not performed.
buildSnnGraph.args
Named list of arguments to pass to buildSnnGraph. Ignored if clusterGraph.args
= NULL.
clusterGraph.args
Named list of arguments to pass to clusterGraph. If NULL, graph-based clus-
tering is not performed.
runAllNeighborSteps.args
Named list of arguments to pass to runAl1NeighborSteps.
kmeans.clusters
Integer scalar specifying the number of clusters to use in k-means clustering. If
NULL, k-means clustering is not performed.
clusterKmeans.args

Named list of arguments to pass to clusterKmeans. Ignored if kmeans.clusters
= NULL.



10 analyze

clusters.for.markers
Character vector of clustering algorithms (either "graph” or "kmeans"”, specify-
ing the clustering to be used for marker detection. The first available clustering
will be chosen.

scoreMarkers.args
Named list of arguments to pass to scoreMarkers. Ignored if no suitable clus-
terings are available.

BNPARAM A BiocNeighborParam instance specifying the nearest-neighbor search algo-
rithm to use.

rna.assay Integer scalar or string specifying the assay to use if rna. x is a SummarizedEx-
periment.

adt.assay Integer scalar or string specifying the assay to use if adt. x is a SummarizedEx-
periment.

crispr.assay Integer scalar or string specifying the assay to use if crispr.x is a Summarized-
Experiment.

num. threads Integer scalar specifying the number of threads to use in each step.

Value

List containing the results of the entire analysis:
rna.qc.metrics: Results of computeRnaQcMetrics. If RNA data is not available, this is set to
NULL instead.

rna.qc.thresholds: Results of suggestRnaQcThresholds. If RNA data is not available, this is
set to NULL instead.

rna.qc.filter: Results of filterRnaQcMetrics. If RNA data is not available, this is set to NULL
instead.

adt.qc.metrics: Results of computeAdtQcMetrics. If ADT data is not available, this is set to
NULL instead.

adt.qc.thresholds: Results of suggestAdtQcThresholds. If ADT data is not available, this is
set to NULL instead.

adt.qgc.filter: Results of filterAdtQcMetrics. If ADT data is not available, this is set to NULL
instead.

crispr.qc.metrics: Results of computeCrisprQcMetrics. If CRISPR data is not available, this
is set to NULL instead.

crispr.qc.thresholds: Results of suggestCrisprQcThresholds. If CRISPR data is not avail-
able, this is set to NULL instead.

crispr.qc.filter: Results of filterCrisprQcMetrics. If CRISPR data is not available, this is
set to NULL instead.

combined.qc.filter: Logical vector indicating which cells are of high quality and should be
retained for downstream analyses.

rna.filtered: Matrix of RNA counts that has been filtered to only contain the high-quality cells
in combined.qc.filter. If RNA data is not available, this is set to NULL instead.

adt.filtered: Matrix of ADT counts that has been filtered to only contain the high-quality cells
in combined.qc.filter. If ADT data is not available, this is set to NULL instead.

crispr.filtered: Matrix of CRISPR counts that has been filtered to only contain the high-quality
cells in combined.qc.filter. If CRISPR data is not available, this is set to NULL instead.



analyze 11

rna.size.factors: Size factors for the RNA count matrix, derived from the sum of counts for
each cell and centered with centerSizeFactors. If RNA data is not available, this is set to
NULL instead.

rna.normalized: Matrix of (log-)normalized expression values derived from RNA counts, as
computed by normalizeCounts using rna.size.factors. If RNA data is not available,
this is set to NULL instead.

adt.size.factors: Size factors for the ADT count matrix, computed by computeClrmiFactors
and centered with centerSizeFactors. If ADT data is not available, this is set to NULL
instead.

adt.normalized: Matrix of (log-)normalized expression values derived from ADT counts, as
computed by normalizeCounts using adt.size.factors. If ADT data is not available, this
is set to NULL instead.

crispr.size.factors: Size factors for the CRISPR count matrix, derived from the sum of counts
for each cell and centered with centerSizeFactors. If CRISPR data is not available, this is
set to NULL instead.

crispr.normalized: Matrix of (log-)normalized expression values derived from CRISPR counts,
as computed by normalizeCounts using crispr.size.factors. If CRISPR data is not
available, this is set to NULL instead.

rna.gene.variances: Results of modelGeneVariances. If RNA data is not available, this is set
to NULL instead.

rna.highly.variable.genes: Results of chooseHighlyVariableGenes. If RNA data is not
available, this is set to NULL instead.

rna.pca: Results of calling runPca on rna.normalized with the rna.highly.variable.genes
subset. If RNA data is not available, this is set to NULL instead.

adt.pca: Results of calling runPca on adt.normalized. If ADT data is not available, this is set
to NULL instead.

crispr.pca: Results of calling runPca on crispr.normalized. If CRISPR data is not available,
this is set to NULL instead.

combined.pca: If only one modality is used for the downstream analysis, this is a string specifying
the list element containing the components to be used, e.g., "rna.pca”. If multiple modalities
are to be combined for downstream analysis, this contains the results of scaleByNeighbors
on the PCs of those modalities.

block: Vector or factor containing the blocking factor for all cells (after filtering, if filter.cells
= TRUE). This is set to NULL if no blocking factor was supplied.

mnn.corrected: Results of correctMnn on the PCs in or referenced by combined.pca. If no
blocking factor is supplied, this is set to NULL instead.

tsne: Results of runTsne. This is NULL if t-SNE was not performed.
umap: Results of runUmap. This is NULL if UMAP was not performed.

snn.graph: Results of buildSnnGraph. This is NULL if graph-based clustering was not performed,
or if return.graph=FALSE in runAl1NeighborSteps.

graph.clusters: Results of clusterGraph. This is NULL if graph-based clustering was not per-
formed.

kmeans.clusters: Results of clusterKmeans. This is NULL if k-means clustering was not per-
formed.

clusters: Integer vector containing the cluster assignment for each cell (after filtering, if filter.cells
=TRUE). This may be derived from graph.clusters or kmeans.clusters depending on
the choice of clusters.for.markers. If no suitable clusterings are available, this is set
to NULL.



12 buildSnnGraph

rna.markers: Results of calling scoreMarkers on rna.normalized. This is NULL if RNA data is
not available or no suitable clusterings are available.

adt.markers: Results of calling scoreMarkers on adt.normalized. This is NULL if ADT data is
not available or no suitable clusterings are available.

crispr.markers: Results of calling scoreMarkers on crispr.normalized. This is NULL if
CRISPR data is not available or no suitable clusterings are available.
Author(s)

Aaron Lun

See Also

convertAnalyzeResults, to convert the results into a SingleCellExperiment.

Examples

library(scRNAseq)

sce <- fetchDataset("zeisel-brain-2015", "2023-12-14", realize.assays=TRUE)
sce <- sce[,1:500] # smaller dataset for a faster runtime for R CMD check.
res <- analyze(

sce,
rna.subsets=list(mito=grep(”*mt-", rownames(sce))),
num. threads=2 # keep R CMD check happy

)

str(res)

convertAnalyzeResults(res)

buildSnnGraph Build a shared nearest neighbor graph

Description

Build a shared nearest neighbor (SNN) graph where each node is a cell. Edges are formed between
cells that share one or more nearest neighbors, weighted by the number or ranking of those shared
neighbors. If two cells are close together but have distinct sets of neighbors, the corresponding edge
is downweighted as the two cells are unlikely to be part of the same neighborhood. In this manner,
strongly weighted edges will only form within highly interconnected neighborhoods where many
cells share the same neighbors. This provides a more sophisticated definition of similarity between
cells compared to a simpler (unweighted) nearest neighbor graph that just focuses on immediate

proximity.
Usage
buildSnnGraph(
X’
num.neighbors = 10,
weight.scheme = "ranked”,

num.threads = 1,
BNPARAM = AnnoyParam(),
as.pointer = FALSE



buildSnnGraph

Arguments

X

num.neighbors

weight.scheme

num. threads

BNPARAM

as.pointer

Value

13

For buildSnnGraph, a numeric matrix where rows are dimensions and columns
are cells, typically containing a low-dimensional representation from, e.g., runPca.

Alternatively, a named list of nearest-neighbor search results. This should con-
tain index, an integer matrix where rows are neighbors and columns are cells.
Each column contains 1-based indices for the nearest neighbors of the corre-
sponding cell, ordered by increasing distance. The number of neighbors for
each cell should be equal to num.neighbors, otherwise a warning is raised.

Alternatively, an index constructed by buildIndex.

Integer scalar specifying the number of neighbors to use to construct the graph.
Larger values increase the connectivity of the graph and reduce the granularity
of subsequent community detection steps, at the cost of speed.

String specifying the weighting scheme to use for constructing the SNN graph.
This can be one of:

* "ranked"”, where the weight of the edge is defined by the smallest sum
of ranks across all shared neighbors. More shared neighbors, or shared
neighbors that are close to both observations, will generally yield larger
weights.

* "number”, where the weight of the edge is the number of shared nearest
neighbors between them. This is a simpler scheme that is also slightly
faster but does not account for the ranking of neighbors within each set.

* "jaccard"”, where the weight of the edge is the Jaccard index of their
neighbor sets, This is a monotonic transformation of the weight used in
"number"”.

Integer scalar specifying the number of threads to use. Only used if x is not a
list of existing nearest-neighbor search results.

A BiocNeighborParam object specifying the algorithm to use. Only used if x is
not a list of existing nearest-neighbor search results.

Logical scalar indicating whether to return an external pointer for direct use
in clusterGraph. This avoids the extra memory usage caused by conversion
to/from an R list.

If as.pointer=FALSE, a list is returned containing:

* vertices, an integer scalar specifying the number of vertices in the graph (i.e., cells in x).

* edges, an integer vector of 1-based indices for graph edges. Pairs of values represent the
endpoints of an (undirected) edge, i.e., edges[1:2] form the first edge, edges[3:4] form the
second edge and so on.

* weights, a numeric vector of weights for each edge. This has length equal to half the length

of edges.

If as.pointer=TRUE, an external pointer to the graph is returned that can be directly used in

clusterGraph.

Author(s)

Aaron Lun



14 centerSizeFactors

See Also

The build_snn_graph function in https://libscran.github.io/scran_graph_cluster/.

clusterGraph, to define clusters (i.e., communities) from the graph.

Examples

data <- matrix(rnorm(10000), ncol=1000)
out <- buildSnnGraph(data)
str(out)

# We can use this to make an igraph::graph.
g <- igraph::make_undirected_graph(out$edges, n = out$vertices)
igraph::E(g)$weight <- out$weight

centerSizeFactors Center size factors

Description

Scale the size factors so they are centered at unity. This ensures that the original scale of the counts

is preserved in the normalized values from normalizeCounts, which simplifies interpretation and

ensures that any pseudo-count added prior to log-transformation has a predictable shrinkage effect.
Usage

centerSizeFactors(size.factors, block = NULL, mode = c("lowest"”, "per-block"))

Arguments

size.factors Numeric vector of size factors across cells. Invalid size factors (e.g., non-
positive, non-finite) will be ignored.

block Vector or factor of length equal to size. factors, specifying the block of origin
for each cell. Alternatively NULL, in which case all cells are assumed to be in the
same block.

mode String specifying how to scale size factors across blocks. This can be either

"lowest"” or "per-block”, see Details. Only used if block is provided.

Details

"lowest” will compute the average size factor in each block, identify the lowest average across all
blocks, and then scale all size factors by that value. Here, our normalization strategy involves down-
scaling all blocks to match the coverage of the lowest-coverage block. This is useful for datasets
with big differences in coverage between blocks as it avoids egregious upscaling of low-coverage
blocks. Specifically, strong upscaling allows the log-transformation to ignore any shrinkage from
the pseudo-count. This is problematic as it inflates differences between cells at log-values derived
from low counts, increasing noise and overstating log-fold changes. Downscaling is safer as it
allows the pseudo-count to shrink the log-differences between cells towards zero at low counts, ef-
fectively sacrificing some information in the higher-coverage batches so that they can be compared
to the low-coverage batches (which is preferable to exaggerating the informativeness of the latter
for comparison to the former).


https://libscran.github.io/scran_graph_cluster/

chooseHighly VariableGenes 15

"per-block” will compute the average size factor in each block, and then scale each size factor
by the average of block to which it belongs. The scaled size factors are identical to those obtained
by separate invocations of ‘center_size_factors()‘ on the size factors for each block. This can be
desirable to ensure consistency with independent analyses of each block - otherwise, the centering
would depend on the size factors in other blocks. However, any systematic differences in the size
factors between blocks are lost, i.e., systematic changes in coverage between blocks will not be
normalized.

Value

Numeric vector of length equal to size.factors, containing the centered size factors.

Author(s)

Aaron Lun

See Also
The center_size_factorsand center_size_factors_blocked functionsin https://libscran.

github.io/scran_norm/.

Examples

centerSizeFactors(runif(100))

centerSizeFactors(runif(100), block=sample(3, 100, replace=TRUE))

chooseHighlyVariableGenes
Choose highly variable genes

Description

Choose highly variable genes (HVGs) based on a variance-related statistic. This is typically used to
subset the gene-cell matrix prior to calling runPca.

Usage

chooseHighlyVariableGenes(
stats,
top = 4000,
larger = TRUE,
keep.ties = TRUE,
bound = @


https://libscran.github.io/scran_norm/
https://libscran.github.io/scran_norm/

16 choosePseudoCount

Arguments
stats Numeric vector of variances (or a related statistic) across all genes. Typically,
the residuals from modelGeneVariances are used here.
top Integer specifying the number of top genes to retain. Note that the actual number
of retained genes may not be equal to top, depending on the other options.
larger Logical scalar indicating whether larger values of stats correspond to more
variable genes. If TRUE, HVGs are defined as those with the largest values of
stats. This is typically the case for variances or related statistics, e.g., residuals.
keep.ties Logical scalar indicating whether to keep tied values of stats, even if top may
be exceeded.
bound Numeric scalar specifying the lower bound (if larger=TRUE) or upper bound
(otherwise) to be applied to stats. Genes are not considered to be HVGs if they
do not satisfy this bound, even if they are within the top genes. For example,
residuals from the fitted trend should be positive, which can be enforced by
setting bound to zero. Ignored if NULL.
Value

Integer vector containing the indices of genes in stats that are considered to be highly variable.

Author(s)

Aaron Lun

See Also

The choose_highly_variable_genes functionin https://libscran.github.io/scran_variances/.

Examples

resids <- rexp(10000)
str(chooseHighlyVariableGenes(resids))

choosePseudoCount Choose a suitable pseudo-count

Description

Choose a suitable pseudo-count to control the bias introduced by log-transformation of normal-
ized counts from normalizeCounts. Larger pseudo-counts shrink log-expression values towards
the zero-expression baseline, reducing the impact of the transformation bias at the cost of some
sensitivity.

Usage

choosePseudoCount (size.factors, quantile = .05, max.bias = 1, min.value = 1)


https://libscran.github.io/scran_variances/

clusterGraph

Arguments

size.factors

quantile

max.bias

min.value

Value

17

Numeric vector of size factors for all cells. It is expected that these have already
been centered, e.g., with centerSizeFactors. Invalid size factors (e.g., non-
positive, non-finite) will be ignored.

Numeric scalar specifying the quantile to use for finding the smallest/largest
size factors. Setting this to zero will use the observed minimum and maximum,
though in practice, this is usually too sensitive to outliers. The default is to take
the 5th and 95th percentile to obtain a range that captures most of the distribu-
tion.

Numeric scalar specifying the maximum allowed bias. This is the maximum ab-
solute value of any spurious log2-fold change between the cells with the smallest
and largest size factors.

Numeric scalar specifying the minimum value for the pseudo-count. Defaults to
1 to stabilize near-zero normalized expression values, otherwise these manifest
as avoid large negative values.

A choice of pseudo-count for normalizeCounts.

Author(s)

Aaron Lun

See Also

choose_pseudo_count in https://libscran.github.io/scran_norm/.

Lun ATL (2018). Overcoming systematic errors caused by log-transformation of normalized single-
cell RNA sequencing data. biorXiv doi:10.1101/404962

Examples

sf <- centerSizeFactors(runif(100))
choosePseudoCount (sf)

choosePseudoCount(sf, quantile=0.01)
choosePseudoCount(sf, max.bias=0.5)

clusterGraph

Graph-based clustering of cells

Description

Identify clusters by applying community detection algorithms to a graph. This assumes that that the
nodes on the graph represent cells and weighted edges are formed between related cells.


https://libscran.github.io/scran_norm/

18 clusterGraph

Usage

clusterGraph(
X,
method = c("multilevel”, "leiden”, "walktrap"”),
multilevel.resolution = 1,
leiden.resolution = 1,
leiden.objective = c("modularity”, "cpm"),
walktrap.steps = 4,
seed = 42

Arguments

X List containing graph information or an external pointer to a graph, as returned
by buildSnnGraph. Alternatively, an igraph object with edge weights.

method String specifying the algorithm to use.

* "multilevel” uses multi-level modularity optimization, also known as the
Louvain algorithm, see https://igraph.org/c/doc/igraph-Community.
html#igraph_community_multilevel for details.

* "walktrap" uses the Walktrap community finding algorithm, see https://
igraph.org/c/doc/igraph-Community.html#igraph_community_walktrap
for details.

* "leiden” uses the Leiden algorithm, see https://igraph.org/c/doc/
igraph-Community.html#igraph_community_leiden for details.

multilevel.resolution
Numeric scalar specifying the resolution when method="multilevel”. Lower
values favor fewer, larger communities; higher values favor more, smaller com-
munities.

leiden.resolution
Numeric scalar specifying the resolution when method="1eiden"”. Lower val-
ues favor fewer, larger communities; higher values favor more, smaller commu-
nities.

leiden.objective
String specifying the objective function when method="1leiden"”. "cpm” uses
the Constant Potts Model, which typically yields more fine-grained clusters at
the same leiden.resolution.

walktrap.steps Integer scalar specifying the number of steps to use when method="walktrap".
This determines the ability of the Walktrap algorithm to distinguish highly in-
terconnected communities from the rest of the graph.

seed Integer scalar specifying the random seed to use for method="multilevel"” or
"leiden”.

Value

A list containing membership, a factor containing the cluster assignment for each cell; and status,
an integer scalar indicating whether the algorithm completed successfully (0) or not (non-zero).
Additional fields may be present depending on the method:

* For method="multilevel”, the levels list contains the clustering result at each level of
the algorithm. A modularity numeric vector also contains the modularity at each level, the
highest of which corresponds to the reported membership.


https://igraph.org/c/doc/igraph-Community.html#igraph_community_multilevel
https://igraph.org/c/doc/igraph-Community.html#igraph_community_multilevel
https://igraph.org/c/doc/igraph-Community.html#igraph_community_walktrap
https://igraph.org/c/doc/igraph-Community.html#igraph_community_walktrap
https://igraph.org/c/doc/igraph-Community.html#igraph_community_leiden
https://igraph.org/c/doc/igraph-Community.html#igraph_community_leiden

clusterKmeans 19

» For method="1eiden", a quality numeric scalar containg the quality of the partitioning.

» For method="walktrap”, a merges matrix specifies the pair of cells or clusters that were
merged at each step of the algorithm. A modularity numeric scalar also contains the modu-
larity of the final partitioning.

Author(s)

Aaron Lun

See Also

The various cluster_x functions in https://libscran.github.io/scran_graph_cluster/.

Examples

data <- matrix(rnorm(10000), ncol=1000)
gout <- buildSnnGraph(data)
str(gout)

str(clusterGraph(gout))
str(clusterGraph(gout, method="leiden"))
str(clusterGraph(gout, method="walktrap"))

clusterKmeans K-means clustering

Description

Perform k-means clustering with a variety of different initialization and refinement algorithms.

Usage

clusterKmeans(
X,
K,
init.method = c("var-part”, "kmeans++", "random"),
refine.method = c("hartigan-wong”, "lloyd"),
var.part.optimize.partition = TRUE,
var.part.size.adjustment = 1,
lloyd.iterations = 100,
hartigan.wong.iterations = 10,
hartigan.wong.quick.transfer.iterations = 50,
hartigan.wong.quit.quick.transfer.failure = FALSE,
seed = 5489L,
num. threads = 1


https://libscran.github.io/scran_graph_cluster/

20 clusterKmeans
Arguments
X Numeric matrix where rows are dimensions and columns are cells. This typi-
cally contains a low-dimensional representation from, e.g., runPca.
k Integer scalar specifying the number of clusters.
init.method String specifying the initialization method for the centers:

e "var-part” uses variance partitioning as described by Su and Dy (2007).
The dataset is repeatedly split along the dimension of greatest variance until
k partitions are formed, the centroids of which form the initial clusters. This
approach is slower than the others but fully deterministic.

* "kmeans++" uses the weighted sampling method described by Arthur and
Vassilvitskii (2007). k points are sampled with probability based on the
smallest distance to any previously sampled point. This improves the like-
lihood of choosing initial centroids that are far apart from each other.

* "random” initialization involves choosing k random points as the initial
centers. This is the simplest and fastest method but may not yield good
starting points.

refine.method  String specifying the refinement method.

e "1loyd” uses Lloyd’s algorithm, which performs a batch update in each
iteration. This is simple and amenable to parallelization but may not con-
verge.

* "hartigan-wong" uses the Hartigan-Wong algorithm, which transfers points
between clusters to optimize the drop in the within-cluster sum of squares.
This is slower but has a greater chance of convergence.

var.part.optimize.partition
Logical scalar indicating whether each partition boundary should be optimized
to reduce the sum of squares in the child partitions. This is slower but improves
the quality of the partition. Only used if init.method = "var.part”.
var.part.size.adjustment
Numeric scalar between 0 and 1, specifying the adjustment to the cluster size
when selecting the next cluster to partition. Setting this to 0 or 1 will select the
cluster with the highest variance or sum of squares, respectively, for partitioning.
In other words, a value of 0 will ignore the cluster size while setting a value of
1 will generally cause larger clusters to be selected. Only used if init.method
="var.part".
lloyd.iterations
Integer scalar specifying the maximum number of iterations for the Lloyd algo-
rithm. Larger values increase the chance of convergence at the cost of increasing
compute time. Only used if refine.method = "11loyd".
hartigan.wong.iterations
Integer scalar specifying the maximum number of iterations for the Hartigan-
Wong algorithm. Larger values increase the chance of convergence at the cost
of increasing compute time. Only used if refine.method = "hartigan-wong".
hartigan.wong.quick.transfer.iterations
Integer scalar specifying the maximum number of quick transfer iterations for
the Hartigan-Wong algorithm. Larger values increase the chance of conver-
gence at the cost of increasing compute time. Only used if refine.method =
"hartigan-wong".
hartigan.wong.quit.quick.transfer.failure
Logical scalar indicating whether to quit the Hartigan-Wong algorithm upon
convergence failure during quick transfer iterations. Setting this to FALSE gives



clusterKmeans 21

the algorithm another chance to converge by attempting another optimal trans-
fer iteration, at the cost of more compute time. If TRUE, the function follows the
same behavior as R’s kmeans. Only used if refine.method = "hartigan-wong".

seed Integer scalar specifying the seed for random number generation. Only used if
init.method = "random” or "kmeans++".
num. threads Integer scalar specifying the number of threads to use.
Value

By default, a list is returned containing:
» clusters, a factor containing the cluster assignment for each cell. The number of levels is no
greater than k, where each level is an integer that refer to a column of centers.

e centers, a numeric matrix with the coordinates of the cluster centroids (dimensions in rows,
centers in columns).

* iterations, an integer scalar specifying the number of refinement iterations that were per-
formed.

* status, an integer scalar specifying the completion status of the algorithm. A value of
zero indicates success while the meaning of any non-zero value depends on the choice of
refine.method:

— For Lloyd, a value of 2 indicates convergence failure.

— For Hartigan-Wong, a value of 2 indicates convergence failure in the optimal transfer
iterations. A value of 4 indicates convergence failure in the quick transfer iterations when
hartigan.wong.quit.quick.transfer.failure = TRUE.

Author(s)

Aaron Lun

References

Hartigan JA. and Wong MA (1979). Algorithm AS 136: A K-means clustering algorithm. Applied
Statistics 28, 100-108.

Arthur D and Vassilvitskii S (2007). k-means++: the advantages of careful seeding. Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms 1027-1035.

Su T and Dy JG (2007). In Search of Deterministic Methods for Initializing K-Means and Gaussian
Mixture Clustering. Intelligent Data Analysis 11, 319-338.

See Also
https://1tla.github.io/CppKmeans/, which describes the various initialization and refinement
algorithms in more detail.

Examples

x <- t(as.matrix(iris[,1:41))
clustering <- clusterKmeans(x, k=3)
table(clustering$clusters, iris[,"Species”])


https://ltla.github.io/CppKmeans/

22 combineFactors

combineFactors Combine multiple factors

Description
Combine multiple factors into a single factor where each level of the latter is a unique combination
of levels from the former.

Usage

combineFactors(factors, keep.unused = FALSE)

Arguments
factors List of vectors or factors of the same length. Corresponding elements across
all vectors/factors represent the combination of levels for a single observation.
For factors, any existing levels are respected. For other vectors, the sorted and
unique values are used as levels.
Alternatively, a data frame where each column is a vector or factor and each row
corresponds to an observation.
keep.unused Logical scalar indicating whether to report unused combinations of levels.
Value

List containing levels, a data frame containing the sorted and unique combinations of levels
from factors; and index, an integer vector specifying the index into levels for each obser-
vation. In other words, for observation i and factor j, levels[[[j1]1[index[i]] will recover
factors[[j11[il].

Author(s)

Aaron Lun

See Also

The combine_to_factor function in https://1tla.github.io/factorize/.

Examples

combineFactors(list(
sample(LETTERS[1:5], 100, replace=TRUE),
sample(3, 100, replace=TRUE)

)

combineFactors(list(
factor(sample(LETTERS[1:5], 10, replace=TRUE), LETTERS[1:5]),
factor(sample(5, 10, replace=TRUE), 1:5)

), keep.unused=TRUE)


https://ltla.github.io/factorize/

computeBlockWeights 23

computeBlockWeights Compute block weights

Description

Compute a weight for each block based on the number of cells in each block. This is typically used
to aggregate statistics across blocks, e.g., with weighted sums/averages.

Usage
computeBlockWeights(
sizes,
block.weight.policy = c("variable"”, "equal”, "size", "none"),
variable.block.weight = c(@, 1000)
)
Arguments
sizes Numeric vector containing the size of (i.e., number of cells in) each block.

block.weight.policy
String specifying the policy to use for weighting different blocks. This should
be one of:

* "size": the contribution of each block is proportional to its size. "none”
is also a deprecated alias for "size".

* "equal”: blocks are equally weighted regardless of their size. The excep-
tion is that of empty blocks with no cells, which receive zero weight.

e "variable": blocks are equally weighted past a certain threshold size. Be-
low that size, the contribution of each block is proportional to its size. This
avoids outsized contributions from very large blocks.

variable.block.weight
Numeric vector of length 2, specifying the parameters for variable block weight-
ing. The first and second values are used as the lower and upper bounds, respec-
tively, for the variable weight calculation. Only used if block.weight.policy
="variable".

Value

Numeric vector containing the relative block weights.

Author(s)

Aaron Lun

See Also

The compute_weights function from https://libscran.github.io/scran_blocks/.


https://libscran.github.io/scran_blocks/

24 computeCIlrm1Factors

Examples

computeBlockWeights(c(1, 10, 100, 1000, 10000))
computeBlockWeights(c(1, 10, 100, 1000, 10000), block.weight.policy="equal")
computeBlockWeights(c(1, 10, 100, 1000, 10000), variable.block.weight=c(50, 5000))

computeClrmiFactors Compute size factors for ADT counts

Description

Compute size factors from an ADT count matrix using the CLRm1 method. This is a variant of the
centered log-ratio (CLR) method, where the size factors are defined from the geometric mean of
counts within each cell.

Usage

computeClrmiFactors(x, num.threads = 1)

Arguments
X A matrix-like object containing ADT count data. Rows correspond to tags and
columns correspond to cells.
num. threads Number of threads to use.
Value

Numeric vector containing the CLRm1 size factor for each cell. Note that these size factors are not
centered and should be passed through, e.g., centerSizeFactors before normalization.
Author(s)

Aaron Lun

See Also

https://github.com/libscran/clrmil, for a description of the CLRm1 method.

Examples

library(Matrix)
x <- abs(rsparsematrix(1000, 100, 0.1) * 10)
head(computeClrm1Factors(x))


https://github.com/libscran/clrm1

convertAnalyzeResults 25

convertAnalyzeResults Convert analysis results into a SingleCellExperiment

Description

Convert results from analyze into a SingleCellExperiment for further analysis with Bioconductor
packages.

Usage

convertAnalyzeResults(
results,
main.modality = NULL,
flatten.qc.subsets = TRUE,
include.per.block.variances = FALSE

Arguments

results List of results produced by analyze.

main.modality String specifying the modality to use as the main experiment of a SingleCellEx-
periment.

flatten.qgc.subsets
Logical scalar indicating whether QC metrics for subsets should be flattened in
the column data. If FALSE, subset metrics are reported as a nested DataFrame.

include.per.block.variances
Logical scalar indicating whether the per-block variances should be reported as
a nested DataFrame in the row data.

Value

A SingleCellExperiment containing most of the analysis results. Filtered and normalized matrices
are stored in the assays. QC metrics, size factors and clusterings are stored in the column data.
Gene variances are stored in the row data. PCA, t-SNE and UMAP results are stored in the reduced
dimensions. Further modalities are stored as alternative experiments.

Author(s)

Aaron Lun

See Also

analyze, to generate results.



26

correctMnn

correctMnn

Batch correction with mutual nearest neighbors

Description

Apply mutual nearest neighbor (MNN) correction to remove batch effects from a low-dimensional

embedding.

Usage

correctMnn(
X,
block,
num.neighbors

=15,

num.steps = 1,

merge.policy = c("rss”, "size", "variance", "input"),
num.mads = NULL,

robust.iterations = NULL,

robust.trim =

NULL,

mass.cap = NULL,

order = NULL,

reference.policy = NULL,
BNPARAM = AnnoyParam(),

num.threads =

Arguments

X

block

num.neighbors

num. steps

merge.policy

1

Numeric matrix where rows are dimensions and columns are cells, typically
containing coordinates in a low-dimensional embedding (e.g., from runPca).

Factor specifying the block of origin (e.g., batch, sample) for each cell in x.

Integer scalar specifying the number of neighbors in the various search steps.
Larger values improve the stability of the correction by increasing the number
of MNN pairs and including more observations in each center of mass. How-
ever, this comes at the cost of reduced resolution when matching subpopulations
across batches.

Integer scalar specifying the number of steps for the recursive neighbor search
to compute the center of mass. Larger values mitigate the kissing effect but
increase the risk of including inappropriately distant subpopulations into the
center of mass.

String specifying the policy to use to choose the order of batches to merge.

* "input” will use the input order of the batches. Observations in the last
batch are corrected first, and then the second-last batch, and so on. This
allows users to control the merge order by simply changing the inputs.

* "size" will merge batches in order of increasing size (i.e., the number of
observations). So, the smallest batch is corrected first while the largest
batch is unchanged. The aim is to lower compute time by reducing the
number of observations that need to be reprocessed in later merge steps.



correctMnn 27

* "variance” will merge batches in order of increasing variance between ob-
servations. So, the batch with the lowest variance is corrected first while the
batch with the highest variance is unchanged. The aim is to lower compute
time by encouraging more observations to be corrected to the most variable
batch, thus avoid reprocessing in later merge steps.

* "rss” will merge batches in order of increasing residual sum of squares
(RSS). This is effectively a compromise between "variance” and "size".

num.mads Deprecated and ignored.
robust.iterations
Deprecated and ignored.

robust.trim Deprecated and ignored.

mass.cap Deprecated and ignored.

order Deprecated and ignored, the merge order is now always automatically deter-
mined.

reference.policy
Deprecated, use merge.policy instead.

BNPARAM A BiocNeighborParam object specifying the nearest-neighbor algorithm to use.
num. threads Integer scalar specifying the number of threads to use.
Value

List containing corrected, a numeric matrix of the same dimensions as x, containing the corrected
values.

Author(s)

Aaron Lun

References

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421-427

See Also

The compute function in https://libscran.github.io/mnncorrect/.

Examples

# Mocking up a dataset with multiple batches.

X <= matrix(rnorm(10000), nrow=10)

b <- sample(3, ncol(x), replace=TRUE)

x[,b==2] <- x[,b==2] + 3

x[,b==3] <- x[,b==3] + 5

lapply(split(colMeans(x), b), mean) # indeed the means differ...

corrected <- correctMnn(x, b)
str(corrected)
lapply(split(colMeans(corrected$corrected), b), mean) # now merged.


https://libscran.github.io/mnncorrect/

28 crispr_quality_control

crispr_quality_control
Quality control for CRISPR count data

Description

Compute per-cell QC metrics from an initialized matrix of CRISPR counts, and use the metrics to
suggest filter thresholds to retain high-quality cells.

Usage

computeCrisprQcMetrics(x, num.threads = 1)
suggestCrisprQcThresholds(metrics, block = NULL, num.mads = 3)

filterCrisprQcMetrics(thresholds, metrics, block = NULL)

Arguments
X A matrix-like object where rows are CRISPRs and columns are cells. Values are
expected to be counts.
num. threads Integer scalar specifying the number of threads to use.
metrics List with the same structure as produced by computeCrisprQcMetrics.
block Factor specifying the block of origin (e.g., batch, sample) for each cell inmetrics.
Alternatively NULL if all cells are from the same block.
For filterCrisprQcMetrics, a blocking factor should be provided if block
was used to construct thresholds.
num.mads Number of median from the median, to define the threshold for outliers in each
metric.
thresholds List with the same structure as produced by suggestCrisprQcThresholds.
Details

In CRISPR data, a cell is considered to be of low quality if it has a low count for its most abun-
dant guide. However, directly defining a MAD-based outlier threshold on the maximum count is
somewhat tricky as unsuccessful transfection can be common. This often results in a large subpop-
ulation with low maximum counts, inflating the MAD and compromising the threshold calculation.
Instead, we use the following approach:

* Compute the proportion of counts in the most abundant guide (i.e., the maximum proportion)
in each cell. Cells that were successfully transfected should have high maximum proportions.
In contrast, unsuccessfully transfected cells will be dominated by ambient contamination and
have low proportions.

* Subset the dataset to only retain those cells with maximum proportions above the median.
This assumes that at least 50 Thus, we remove all of the unsucessful transfections and enrich
for mostly-high-quality cells.

* Define a MAD-based threshold for low outliers on the log-transformed maximum count within
the subset (see ‘choose_filter_thresholds()‘ for details). This is now possible as we can assume
that most of the remaining cells are of high quality.



crispr_quality_control 29

Note that the maximum proportion is only used to define the subset for threshold calculation. Once
the maximum count threshold is computed, it is applied to all cells regardless of their maximum
proportions. This ensures that we correctly remove cells with low coverage, even if the proportion
is high. It also allows us to retain cells transfected with multiple guides, as long as the maximum is
high enough - such cells are not necessarily uninteresting, e.g., for examining interaction effects, so
we will err on the side of caution and leave them in.

Value

For computeCrisprQcMetrics, alist is returned containing:

* sum, a numeric vector containing the total CRISPR count for each cell. Low counts indicate
that the cell was not successfully transfected with a construct or that library preparation and
sequencing failed.

* detected, an integer vector containing the number of detected guides per cell. In theory, this
should be 1, as each cell should express no more than one guide construct. However, ambient
contamination may introduce non-zero counts for multiple guides, without necessarily inter-
fering with downstream analyses. As such, this metric is less useful for guide data, though we
compute it anyway.

* max.value, a numeric vector containing the count for the most abundant guide in cell. Low
values indicate that the cell was not successfully transfected or that library preparation and
sequencing failed.

* max.index, an integer vector containing the row index of the most abundant guide in cell.

Each vector is of length equal to the number of cells.

For suggestCrisprQcThresholds, a named list is returned.

e If block=NULL, the list contains:

— max.value, a numeric scalar containing the lower bound on the maximum count. This
is defined as num.mads MADs below the median of the log-transformed metrics across
cells with high maximum proportions (see Details).

» Otherwise, if block is supplied, the list contains:

— max.value, a numeric vector containing the lower bound on the maximum counts for
each blocking level. Here, the threshold is computed independently for each block, using
the same method as the unblocked case.

Each vector is of length equal to the number of levels in block and is named accordingly.

For filterCrisprQcMetrics, a logical vector of length ncol(x) is returned indicating which
cells are of high quality. High-quality cells are defined as those with maximum counts above the
max . value threshold.

Author(s)

Aaron Lun

See Also

The compute_crispr_qc_metrics, compute_crispr_qc_filtersand compute_crispr_qc_filters_blocked
functions in https://libscran.github.io/scran_qc/.


https://libscran.github.io/scran_qc/

30 fitVarianceTrend

Examples

# Mocking a matrix:
library(Matrix)
x <- round(abs(rsparsematrix(100, 100, 0.1) * 100))

gc <- computeCrisprQcMetrics(x)
str(qc)

filt <- suggestCrisprQcThresholds(qc)
str(filt)

keep <- filterCrisprQcMetrics(filt, qc)
summary (keep)

fitVarianceTrend Fit a mean-variance trend

Description

Fit a trend to the per-gene variances with respect to their means, typically from normalized and
log-transformed expression values.

Usage

fitVarianceTrend(
means,
variances,
mean.filter = TRUE,
min.mean = 0.1,
transform = TRUE,
span = 0.3,
use.min.width = FALSE,
min.width = 1,
min.window.count = 200,
num. threads = 1

)
Arguments

means Numeric vector containing the mean (log-)expression for each gene.

variances Numeric vector containing the variance in the (log-)expression for each gene.

mean.filter Logical scalar indicating whether to filter on the means before trend fitting. The
assumption is that there is a bulk of low-abundance genes that are uninterest-
ing and should be removed to avoid skewing the windows of the LOWESS
smoother.

min.mean Numeric scalar specifying the minimum mean of genes to use in trend fitting.

Genes with lower means do not participate in the LOWESS fit, to ensure that
windows are not skewed towards the majority of low-abundance genes. Instead,
the fitted values for these genes are defined by extrapolating the left edge of the
fitted trend is extrapolated to the origin. The default value is chosen based on



fitVarianceTrend

transform

span

use.min.width

min.width

31

the typical distribution of means of log-expression values across genes. Only
used if mean. filter=TRUE.

Logical scalar indicating whether a quarter-root transformation should be ap-
plied before trend fitting. This transformation is copied from limma: : voom and
shrinks all values towards 1, flattening any sharp gradients in the trend for an
easier fit. The default of TRUE assumes that the variances are computed from
log-expression values, in which case there is typically a strong “hump” in the
mean-variance relationship.

Numeric scalar specifying the span of the LOWESS smoother, as a proportion
of the total number of points. Larger values improve stability at the cost of
sensitivity to changes in low-density regions. Ignored if use.min.width=TRUE.

Logical scalar indicating whether a minimum width constraint should be applied
to the LOWESS smoother. This replaces the proportion-based span for defining
each window. Instead, the window for each point must be of a minimum width
and is extended until it contains a minimum number of points. Setting this to
‘TRUE" ensures that sensitivity is maintained in the trend fit at low-density re-
gions for the distribution of means, e.g., at high abundances. It also avoids
overfitting from very small windows in high-density intervals.

Minimum width of the window to use when use.min.width=TRUE. The default
value is chosen based on the typical range of means in single-cell RNA-seq data.

min.window.count

num. threads

Value

Minimum number of observations in each window. This ensures that each win-
dow contains at least a given number of observations for a stable fit. If the
minimum width window contains fewer observations, it is extended using the
standard LOWESS logic until the minimum number is achieved. Only used if
use.min.width=TRUE.

Number of threads to use.

List containing fitted, a numeric vector containing the fitted values of the trend for each gene; and
residuals, a numeric vector containing the residuals from the trend.

Author(s)

Aaron Lun

See Also

modelGeneVariances, to compute the means and variances.

The fit_variance_trend function in https://libscran.github.io/scran_variances/.

Examples

X <= runif(1000)

y <= 2*rnorm(1000)
out <- fitVarianceTrend(x, y)

plot(x, y)
o <- order(x)

lines(x[o], out$fitted[o], col="red")


https://libscran.github.io/scran_variances/

32 modelGene Variances
modelGeneVariances Model per-gene variances in expression
Description
Model the per-gene variances as a function of the mean in single-cell expression data. Highly
variable genes can then be selected for downstream analyses.
Usage
modelGeneVariances(
X y
block = NULL,
block.weight.policy = c("variable”, "equal”, "none"),
variable.block.weight = c(@, 1000),
mean.filter = TRUE,
min.mean = 0.1,
transform = TRUE,
span = 0.3,
use.min.width = FALSE,
min.width = 1,
min.window.count = 200,
num. threads = 1
)
Arguments
X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. It is typically expected to contain log-expression
values, e.g., from normalizeCounts.
block Factor specifying the block of origin (e.g., batch, sample) for each cell in x. If

provided, calculation of means/variances and trend fitting are performed within
each block to ensure that block effects do not confound the estimates. The
weighted average of each statistic across all blocks is reported for each gene.
Alternatively NULL, if all cells are from the same block.

block.weight.policy

String specifying the policy to use for weighting different blocks when com-
puting the average for each statistic. See the argument of the same name in
computeBlockWeights for more detail. Only used if block is not NULL.

variable.block.weight

mean.filter

min.mean

Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable”.

Logical scalar indicating whether to filter on the means before trend fitting. The
assumption is that there is a bulk of low-abundance genes that are uninterest-
ing and should be removed to avoid skewing the windows of the LOWESS
smoother.

Numeric scalar specifying the minimum mean of genes to use in trend fitting.
Genes with lower means do not participate in the LOWESS fit, to ensure that
windows are not skewed towards the majority of low-abundance genes. Instead,



modelGene Variances 33

the fitted values for these genes are defined by extrapolating the left edge of the
fitted trend is extrapolated to the origin. The default value is chosen based on
the typical distribution of means of log-expression values across genes. Only
used if mean. filter=TRUE.

transform Logical scalar indicating whether a quarter-root transformation should be ap-
plied before trend fitting. This transformation is copied from limma: : voom and
shrinks all values towards 1, flattening any sharp gradients in the trend for an
easier fit. The default of TRUE assumes that the variances are computed from
log-expression values, in which case there is typically a strong “hump” in the
mean-variance relationship.

span Numeric scalar specifying the span of the LOWESS smoother, as a proportion
of the total number of points. Larger values improve stability at the cost of
sensitivity to changes in low-density regions. Ignored if use.min.width=TRUE.

use.min.width Logical scalar indicating whether a minimum width constraint should be applied
to the LOWESS smoother. This replaces the proportion-based span for defining
each window. Instead, the window for each point must be of a minimum width
and is extended until it contains a minimum number of points. Setting this to
‘TRUE" ensures that sensitivity is maintained in the trend fit at low-density re-
gions for the distribution of means, e.g., at high abundances. It also avoids
overfitting from very small windows in high-density intervals.

min.width Minimum width of the window to use when use.min.width=TRUE. The default
value is chosen based on the typical range of means in single-cell RNA-seq data.

min.window.count
Minimum number of observations in each window. This ensures that each win-
dow contains at least a given number of observations for a stable fit. If the
minimum width window contains fewer observations, it is extended using the
standard LOWESS logic until the minimum number is achieved. Only used if
use.min.width=TRUE.

num. threads Integer scalar specifying the number of threads to use.

Details

We compute the mean and variance for each gene and fit a trend to the variances with respect to the
means using fitVarianceTrend. We assume that most genes at any given abundance are not highly
variable, such that the fitted value of the trend is interpreted as the “uninteresting” variance - this
is mostly attributed to technical variation like sequencing noise, but can also represent constitutive
biological noise like transcriptional bursting. Under this assumption, the residual can be treated as
a measure of biologically interesting variation. Genes with large residuals can then be selected for
downstream analyses, e.g., with chooseHighlyVariableGenes.

Value

A list containing statistics, a data frame with number of rows equal to the number of genes.
This contains the columns means, variances, fitted and residuals, each of which is a numeric
vector containing the statistic of the same name across all genes.

If block is supplied, each of the column vectors described above contains the average across all
blocks. The list will also contain per.block, a list of data frames containing the equivalent statistics
for each block.

Author(s)

Aaron Lun



34 normalizeCounts

See Also

The model_gene_variances function in https://libscran.github.io/scran_variances/.

Examples

library(Matrix)

x <- abs(rsparsematrix(1000, 100, 0.1) * 10)
out <- modelGeneVariances(x)

str(out)

# Throwing in some blocking.

block <- sample(letters[1:4], ncol(x), replace=TRUE)
out <- modelGeneVariances(x, block=block)

str(out)

normalizeCounts Normalize the count matrix

Description

Apply scaling normalization and log-transformation to a count matrix. This yields normalized
expression values that can be used in downstream procedures like PCA.

Usage

normalizeCounts(
X,
size.factors,
log = TRUE,
pseudo.count = 1,
log.base = 2,
preserve.sparsity = FALSE,
delayed = TRUE

Arguments

X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Values are expected to be non-negative counts.
Alternatively, an external pointer created by initializeCpp.

size.factors A numeric vector of length equal to the number of cells in x, containing positive
size factors for all cells. Any invalid values should be replaced with sanitizeSizeFactors.
For most applications, these size factors should also be centered with centerSizeFactors.

log Logical scalar indicating whether log-transformation should be performed. This
ensures that downstream analyses like t-tests and distance calculations focus on
relative fold-changes rather than absolute differences. The log-transformation
also provides some measure of variance stabilization so that the downstream
analyses are not dominated by sampling noise at large counts.


https://libscran.github.io/scran_variances/

reportGroupMarkerStatistics 35

pseudo.count  Numeric scalar specifying the positive pseudo-count to add before any log-
transformation. Larger values shrink the differences between cells towards zero,
reducing spurious differences (but also signal) at low counts - see choosePseudoCount
for comments. Ignored if 1og=FALSE.

log.base Numeric scalar specifying the base of the log-transformation. Ignored if log=FALSE.

preserve.sparsity
Logical scalar indicating whether to preserve sparsity for pseudo.count !=1.
If TRUE, users should manually add log(pseudo.count, log.base) to the re-
turned matrix to obtain the desired log-transformed expression values. Ignored
if log = FALSE or pseudo.count = 1.

delayed Logical scalar indicating whether operations on a matrix-like x should be de-
layed. This improves memory efficiency at the cost of some speed in down-
stream operations.

Value

If x is a matrix-like object and delayed=TRUE, a DelayedArray is returned containing the (log-
transformed) normalized expression matrix. If delayed=FALSE, the type of the (log-)normalized
matrix will depend on the operations applied to x.

If x is an external pointer produced by initializeCpp, a new external pointer is returned containing
the normalized expression matrix.

Author(s)

Aaron Lun

See Also

The normalize_counts function in https://libscran.github.io/scran_norm/.

Examples

# Mocking a matrix:

library(Matrix)

x <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))
sf <- centerSizeFactors(colSums(x))

normed <- normalizeCounts(x, size.factors=sf)

normed

# Passing a pointer.

ptr <- beachmat::initializeCpp(x)
optr <- normalizeCounts(ptr, sf)
optr

reportGroupMarkerStatistics
Report marker statistics for a single group



https://libscran.github.io/scran_norm/

36 reportGroupMarkerStatistics

Description

Combine all marker statistics for a single group into a data frame for easy inspection. Users can
pick one of the columns for sorting potential marker genes.

Usage

reportGroupMarkerStatistics(
results,
group,
effect.sizes = NULL,
summaries = NULL,
include.mean = TRUE,
include.detected = TRUE

)

Arguments
results Named list of marker statistics, typically generated by scoreMarkers with all.pairwise=FALSE.
group String or integer scalar specifying the group of interest.

effect.sizes  Character vector specifying the effect sizes of interest. If NULL, all effect sizes
are reported in the returned data frame.

summaries Character vector specifying the summary statistics of interest. If NULL, all sum-
maries are reported in the returned data frame.

include.mean Logical scalar indicating whether the mean expression should be reported in the
returned data frame.

include.detected
Logical scalar indicating whether the proportion of detected cells should be re-

ported in the returned data frame.
Value
Data frame where each row corresponds to a gene. Each column contains the requested statistics
for group. Effect size summary columns are named as <EFFECT>. <SUMMARY>.

Author(s)

Aaron Lun

See Also

scoreMarkers, to generate results.

summarizeEffects, for the trade-offs between effect size summaries.



rna_quality_control 37

rna_quality_control Quality control for RNA count data

Description

Compute per-cell QC metrics from an initialized matrix of RNA counts, and use the metrics to
suggest filter thresholds to retain high-quality cells.

Usage

computeRnaQcMetrics(x, subsets, num.threads = 1)
suggestRnaQcThresholds(metrics, block = NULL, num.mads = 3)

filterRnaQcMetrics(thresholds, metrics, block = NULL)

Arguments
X A matrix-like object where rows are genes and columns are cells. Values are
expected to be counts.
subsets List of vectors specifying gene subsets of interest, typically for control-like fea-
tures like mitochondrial genes or spike-in transcripts. Each vector may be logi-
cal (whether to keep each row), integer (row indices) or character (row names).
num. threads Integer scalar specifying the number of threads to use.
metrics List with the same structure as produced by computeRnaQcMetrics.
block Factor specifying the block of origin (e.g., batch, sample) for each cell inmetrics.
Alternatively NULL if all cells are from the same block.
For filterRnaQcMetrics, a blocking factor should be provided if block was
used to construct thresholds.
num.mads Number of median from the median, to define the threshold for outliers in each
metric.
thresholds List with the same structure as produced by suggestRnaQcThresholds.
Value

For computeRnaQcMetrics, a list is returned containing:

e sum, a numeric vector containing the total RNA count for each cell. This represents the ef-
ficiency of library preparation and sequencing. Low totals indicate that the library was not
successfully captured.

* detected, an integer vector containing the number of detected genes per cell. This also
quantifies library preparation efficiency but with greater focus on capturing transcriptional
complexity.

* subsets, a list of numeric vectors containing the proportion of counts in each feature sub-
set. The exact interpretation of which depends on the nature of the subset. For example, if
one subset contains all genes on the mitochondrial chromosome, higher proportions are rep-
resentative of cell damage; the assumption is that cytoplasmic transcripts leak through tears in
the cell membrane while the mitochondria are still trapped inside. The proportion of spike-in
transcripts can be interpreted in a similar manner, where the loss of endogenous transcripts
results in higher spike-in proportions.



38 rna_quality_control

Each vector is of length equal to the number of cells.

For suggestRnaQcThresholds, a named list is returned.

e If block=NULL, the list contains:

— sum, a numeric scalar containing the lower bound on the sum. This is defined as num.mads
MADs below the median of the log-transformed metrics across all cells.

— detected, a numeric scalar containing the lower bound on the number of detected genes.
This is defined as num.mads MADs below the median of the log-transformed metrics
across all cells.

— subsets, a numeric vector containing the upper bound on the sum of counts in each
feature subset. This is defined as num.mads MADs above the median across all cells.

» Otherwise, if block is supplied, the list contains:

— sum, a numeric vector containing the lower bound on the sum for each blocking level.
Here, the threshold is computed independently for each block, using the same method as
the unblocked case.

— detected, a numeric vector containing the lower bound on the number of detected genes
for each blocking level. Here, the threshold is computed independently for each block,
using the same method as the unblocked case.

— subsets, a list of numeric vectors containing the upper bound on the sum of counts in
each feature subset for each blocking level. Here, the threshold is computed indepen-
dently for each block, using the same method as the unblocked case.

Each vector is of length equal to the number of levels in block and is named accordingly.

For filterRnaQcMetrics, a logical vector of length ncol (x) is returned indicating which cells are
of high quality. High-quality cells are defined as those with sums and detected genes above their
respective thresholds and subset proportions below the subsets threshold.

Author(s)

Aaron Lun

See Also

The compute_rna_qgc_metrics, compute_rna_qgc_filtersand compute_rna_qc_filters_blocked
functions in https://libscran.github.io/scran_qc/.

Examples

# Mocking a matrix:
library(Matrix)
X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))

# Mocking up a control set.
sub <- list(mito=rbinom(nrow(x), 1, 0.1) > @)

gc <- computeRnaQcMetrics(x, sub)
str(qc)

filt <- suggestRnaQcThresholds(qc)
str(filt)

keep <- filterRnaQcMetrics(filt, qc)
summary (keep)


https://libscran.github.io/scran_qc/

runAllNeighborSteps 39

runAllNeighborSteps Run all neighbor-related steps

Description

Run all steps that require a nearest-neighbor search. This includs runUmap, runTsne and buildSnnGraph
with clusterGraph. The idea is to build the index once, perform the neighbor search, and run each
task in parallel to save time.

Usage

runAllNeighborSteps(
X,
runUmap.args = list(),
runTsne.args = list(),
buildSnnGraph.args = list(),
clusterGraph.args = list(),
BNPARAM = AnnoyParam(),
return.graph = FALSE,
collapse.search = FALSE,
num. threads = 3

Arguments

X Numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.

Alternatively, an index constructed by buildIndex.

runUmap.args  Named list of further arguments to pass to runUmap. This can be set to NULL to
omit the UMAP.

runTsne.args  Named list of further arguments to pass to runTsne. This can be set to NULL to

omit the t-SNE.
buildSnnGraph.args

Named list of further arguments to pass to buildSnnGraph. Ignored if clusterGraph.args=NULL.
clusterGraph.args

Named list of further arguments to pass to clusterGraph. This can be set to

NULL to omit the clustering.

BNPARAM A BiocNeighborParam instance specifying the nearest-neighbor search algo-
rithm to use.

return.graph  Logical scalar indicating whether to return the output of buildSnnGraph. By
default, only the output of clusterGraph is returned.

collapse.search
Logical scalar indicating whether to collapse the nearest-neighbor search for
each step into a single search. Steps that need fewer neighbors will take a subset
of the neighbors from the collapsed search. This is faster but may not give
the same results as separate searches for some algorithms (e.g., approximate
searches).

num. threads Integer scalar specifying the number of threads to use. At least one thread should
be available for each step.



40

Value

runPca

A named list containing the results of each step. See each individual function for the format of the
results.

Author(s)

Aaron Lun

Examples

x <- t(as.matrix(iris[,1:4]))

# (Turning down the number of threads so that R CMD check is happy.)

res <- runAllNeighborSteps(x, num.threads=2)
str(res)

runPca Principal components analysis

Description

Run a PCA on the gene-by-cell log-expression matrix and extract the top principal components
(PCs). This yields a low-dimensional representation that reduces noise and compute time in down-

stream analyses. For efficiency, the PCA itself is approximated using IRLBA.

Usage

runPca(

X}

number = 25,
scale = FALSE,
block = NULL,

block.weight.policy = c("variable"”, "equal”, "none"),

variable.block.weight = c(0, 1000),
components. from.residuals = FALSE,
extra.work = 7,

iterations = 1000,

seed = 5489,

realized = TRUE,

num.threads = 1

Arguments

X

number

A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Typically, the matrix is expected to contain log-

expression values (see normalizeCounts) for “interesting” genes (see chooseHighlyVariableGene:

Integer scalar specifying the number of top PCs to retain. More PCs will capture

more biological signal at the cost of increasing noise and compute time. If this
is greater than the maximum number of PCs (i.e., the smaller dimension of x),

only the maximum number of PCs will be reported in the results.



runPca 41

scale Logical scalar indicating whether to scale all genes to have the same variance.
This ensures that each gene contributes equally to the PCA, favoring consis-
tent variation across many genes rather than large variation in a few genes. If
block is specified, each gene’s variance is calculated as a weighted sum of the
variances from each block. Genes with zero variance are ignored.

block Factor specifying the block of origin (e.g., batch, sample) for each cell in x. The
PCA will be performed on the residuals after regressing out the block effect,
ensuring that differences between block do not dominate the variation in the
dataset. Alternatively NULL if all cells are from the same block.

block.weight.policy
String specifying the policy to use for weighting the contribution of different
blocks to the PCA. See the argument of the same name in computeBlockWeights
for more detail. Only used if block is not NULL.

variable.block.weight
Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable”.

components. from.residuals
Logical scalar indicating whether to compute the PC scores from the residuals
in the presence of a blocking factor. By default, the residuals are only used to
compute the rotation matrix, and the original expression values of the cells are
projected onto this new space (see Details). Only used if block is not NULL.

extra.work Integer scalar specifying the extra dimensions for the IRLBA workspace. Larger
values improve accuracy at the cost of compute time.

iterations Integer scalar specifying the maximum number of restart iterations for IRLBA.
Larger values improve accuracy at the cost of compute time.

seed Integer scalar specifying the seed for the initial random vector in IRLBA.
realized Logical scalar indicating whether to realize x into an optimal memory layout for
IRLBA. This speeds up computation at the cost of increased memory usage.
num. threads Number of threads to use.
Details

When block is specified, the nature of the reported PC scores depends on the choice of components. from.residuals:

* If TRUE, the PC scores are computed from the matrix of residuals. This yields a low-dimensional
space where inter-block differences have been removed, assuming that all blocks have the
same subpopulation composition and the inter-block differences are consistent for all cell
subpopulations. Under these assumptions, we could use these components for downstream
analysis without any concern for block-wise effects.

o If FALSE, the rotation vectors are first computed from the matrix of residuals. To obtain PC
scores, each cell is then projected onto the associated subspace using its original expression
values. This approach ensures that inter-block differences do not contribute to the PCA but
does not attempt to explicitly remove them.

In complex datasets, the assumptions mentioned for TRUE not hold and more sophisticated batch
correction methods like MNN correction are required. Functions like correctMnn will accept a
low-dimensional embedding of cells that can be created as described above with FALSE.



42

Value

runTsne

List containing:

components, a matrix of PC scores. Rows are dimensions (i.e., PCs) and columns are cells.
rotation, the rotation matrix. Rows are genes and columns are dimensions.
variance.explained, the vector of variances explained by each PC.

total.variance, the total variance in the dataset. This can be used to divide variance.explained
to obtain the proportion of variance explained by each PC.

center, a numeric vector containing the mean for each gene. If block is provided, this is
instead a matrix containing the mean for each gene (column) in each block (row).

scale, a numeric vector containing the scaling for each gene. Only reported if scale=TRUE.

Author(s)

Aaron Lun

See Also

The simple_pca and blocked_pca functions for https://libscran.github.io/scran_pca/.

Examples

library(Matrix)

X <-

abs(rsparsematrix (1000, 100, 0.1) x 10)

y <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))

# A simple PCA:
out <- runPca(y)
str(out)

# Blocking on uninteresting factors:

block <- sample(LETTERS[1:3], ncol(y), replace=TRUE)
bout <- runPca(y, block=block)

str(bout)

runTsne t-stochastic neighbor embedding

Description

Compute t-SNE coordinates to visualize similarities between cells.

Usage

runTsne(

X’

perplexity = 30,

num.neighbors = tsnePerplexityToNeighbors(perplexity),
theta = 1,

early.exaggeration.iterations = 250,


https://libscran.github.io/scran_pca/

runTsne 43

exaggeration.factor = 12,
momentum.switch.iterations = 250,
start.momentum = 0.5,
final.momentum = 0.8,

eta = 200,

max.depth = 20,
leaf.approximation = FALSE,
max.iterations = 500,

seed = 42,

num.threads = 1,

BNPARAM = AnnoyParam()

tsnePerplexityToNeighbors(perplexity)

Arguments

X Numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.
Alternatively, a named list of nearest-neighbor search results like that returned
by findKNN. This should contain index, an integer matrix where rows are neigh-
bors and columns are cells; and distance, a numeric matrix of the same dimen-
sions containing the distances to each neighbor. Each column contains 1-based
indices for the nearest neighbors of the corresponding cell, ordered by increas-
ing distance. The number of neighbors should be the same as num.neighbors,
otherwise a warning is raised.
Alternatively, an index constructed by buildIndex.

perplexity Numeric scalar specifying the perplexity to use in the t-SNE algorithm. Higher
perplexities will focus on global structure, at the cost of increased runtime and
decreased local resolution.

num.neighbors Integer scalar specifying the number of neighbors, typically derived from perplexity.

theta Numeric scalar specifying the approximation level for the Barnes-Hut calcula-
tion of repulsive forces. Lower values increase accuracy at the cost of increased
compute time. All values should be non-negative.

early.exaggeration.iterations
Integer scalar specifying the number of iterations of the early exaggeration phase,
where clusters are artificially compacted to leave more empty space so that cells
can easily relocate to find a good global organization. Larger values improve
convergence within this phase at the cost of reducing the remaining iterations in
max.iterations.

exaggeration.factor
Numeric scalar containing the exaggeration factor for the early exaggeration
phase (see early.exaggeration.iterations). Larger values increase the at-
traction between nearest neighbors to favor local structure.

momentum.switch.iterations
Integer scalar specifying the number of iterations to perform before switching
from the starting momentum to the final momentum. Higher momentums can
improve convergence by increasing the step size and smoothing over local os-
cillations, at the risk of potentially skipping over relevant minima.

start.momentum Numeric scalar containing the starting momentum, to be used in the iterations
before the momentum switch at momentum. switch.iterations. This is usu-
ally lower than final.momentum to avoid skipping over suitable local minima.



44

runTsne

final.momentum Numeric scalar containing the final momentum, to be used in the iterations af-

eta

max.depth

ter the momentum switch at momentum. switch.iterations. This is usually
higher than start.momentum to accelerate convergence to the local minima
once the observations are moderately well-organized.

Numeric scalar containing the learning rate, used to scale the updates for each
cell. Larger values can speed up convergence at the cost of skipping over local
minima.

Integer scalar specifying the maximum depth of the Barnes-Hut quadtree. If
neighboring cells cannot be separated before the maximum depth is reached,
they will be assigned to the same leaf node of the quadtree. Smaller values
(7-10) improve speed by bounding the recursion depth at the cost of accuracy.

leaf.approximation

max.iterations

seed
num. threads
BNPARAM

Value

Logical scalar indicating whether to use the “leaf approximation”. If TRUE, re-
pulsive forces are computed between leaf nodes and re-used across all cells as-
signed to that leaf node. This sacrifices some accuracy for greater speed, assum-
ing that max.depth is small enough for multiple cells to be assigned to the same
leaf.

Integer scalar specifying the maximum number of iterations to perform. Larger
values improve convergence at the cost of compute time.

Integer scalar specifying the seed to use for generating the initial coordinates.
Integer scalar specifying the number of threads to use.

A BiocNeighborParam object specifying the algorithm to use. Only used if x is
not a prebuilt index or a list of existing nearest-neighbor search results.

For runTsne, a numeric matrix where rows are cells and columns are the two dimensions of the

embedding.

For tsnePerplexityToNeighbors, an integer scalar specifying the number of neighbors to use for
a given perplexity.

Author(s)

Aaron Lun

References

van der Maaten LJP and Hinton GE (2008). Visualizing high-dimensional data using t-SNE. Journal
of Machine Learning Research_ 9, 2579-2605.

van der Maaten LJP (2014). Accelerating t-SNE using tree-based algorithms. Journal of Machine
Learning Research 15, 3221-3245.

See Also

https://libscran.github.io/qdtsne/, for an explanation of the approximations.

Examples

X <- t(as.matrix(iris[,1:41))
embedding <- runTsne(x)
plot(embedding[,1], embedding[,2], col=iris[,5])


https://libscran.github.io/qdtsne/

runUmap 45

runUmap Uniform manifold approxation and projection

Description

Compute UMAP coordinates to visualize similarities between cells.

Usage

runUmap (

X,

num.dim = 2,
local.connectivity
bandwidth = 1,
mix.ratio = 1,

1
-

spread = 1,

min.dist = 0.1,

a = NULL,

b = NULL,

repulsion.strength = 1,

initialize.method = c("spectral”, "random”, "none"),

initial.coordinates = NULL,
initialize.random.on.spectral.fail = TRUE,
initialize.spectral.scale = 10,
initialize.spectral.jitter = FALSE,
initialize.spectral.jitter.sd = 1e-04,
initialize.random.scale = 10,
initialize.seed = 9876543210,
num.epochs = NULL,

learning.rate = 1,
negative.sample.rate = 5,
num.neighbors = 15,

optimize.seed = 1234567890,

num. threads = 1,

parallel.optimization = FALSE,

BNPARAM = AnnoyParam()

Arguments

X

Numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.

Alternatively, a named list of nearest-neighbor search results like that returned
by findKNN. This should contain index, an integer matrix where rows are neigh-
bors and columns are cells; and distance, a numeric matrix of the same dimen-
sions containing the distances to each neighbor. Each column contains 1-based
indices for the nearest neighbors of the corresponding cell, ordered by increas-
ing distance. The number of neighbors should be the same as num.neighbors,
otherwise a warning is raised.

Alternatively, an index constructed by buildIndex.



46

num.dim

runUmap

Integer scalar specifying the number of dimensions of the output embedding.

local.connectivity

bandwidth

mix.ratio

spread

min.dist

Numeric scalar specifying the number of nearest neighbors that are assumed to
be always connected, with maximum membership confidence. Larger values
increase the connectivity of the embedding and reduce the focus on local struc-
ture. This may be a fractional number of neighbors, in which case interpolation
is performed when computing the membership confidence.

Numeric scalar specifying the effective bandwidth of the kernel when converting
the distance to a neighbor into a fuzzy set membership confidence. Larger values
reduce the decay in confidence with respect to distance, increasing connectivity
and favoring global structure.

Numeric scalar between 0 and 1 specifying the mixing ratio when combining
fuzzy sets. A mixing ratio of 1 will take the union of confidences, a ratio of 0
will take the intersection, and intermediate values will interpolate between them.
Larger values favor connectivity and more global structure.

Numeric scalar specifying the scale of the coordinates of the final low-dimensional
embedding. Ignored if a and b are provided.

Numeric scalar specifying the minimum distance between observations in the
final low-dimensional embedding. Smaller values will increase local clustering
while larger values favor a more even distribution of observations throughout
the low-dimensional space. This is interpreted relative to spread. Ignored if a
and b are provided.

Numeric scalar specifying the a parameter for the fuzzy set membership strength
calculations. Larger values yield a sharper decay in membership strength with
increasing distance between observations. If this or b are NULL, a suitable value
for this parameter is automatically determined from spread and min.dist.

Numeric scalar specifying the b parameter for the fuzzy set membership strength
calculations. Larger values yield an earlier decay in membership strength with
increasing distance between observations. If this or a are NULL, a suitable value
for this parameter is automatically determined from spread and min.dist.

repulsion.strength

Numeric scalar specifying the modifier for the repulsive force. Larger values
increase repulsion and favor local structure.

initialize.method

String specifying how to initialize the embedding. This should be one of:

* SPECTRAL: spectral decomposition of the normalized graph Laplacian. Specif-
ically, the initial coordinates are defined from the eigenvectors correspond-
ing to the smallest non-zero eigenvalues. This fails in the presence of mul-
tiple graph components or if the approximate SVD fails to converge.

* RANDOM: fills the embedding with random draws from a normal distribution.

* NONE: uses initial values from initial.coordinates.

initial.coordinates

Numeric matrix of initial coordinates, with number of rows equal to the num-
ber of observations and number of columns equal to num.dim. Only relevant
if initialize.method = "NONE"; or initialize.method = "SPECTRAL" and
spectral initialization fails and initialize.random.on.spectral.fail = FALSE.

initialize.random.on.spectral.fail

Logical scalar indicating whether to fall back to random sampling (i.e., same as
RANDOM) if spectral initialization fails due to the presence of multiple compo-
nents in the graph. If FALSE, the values in initial.coordinates will be used



runUmap 47

instead, i.e., same as NONE. Only relevant if initialize.method = "SPECTRAL"
and spectral initialization fails.

initialize.spectral.scale
Numeric scalar specifying the maximum absolute magnitude of the coordinates
after spectral initialization. All initial coordinates are scaled such that the maxi-
mum of the absolute values is equal to initialize.spectral.scale. This en-
sures that outlier observations will not have large absolute distances that may in-
terfere with optimization. Only relevant if initialize.method = "SPECTRAL"
and spectral initialization does not fail.

initialize.spectral.jitter
Logical scalar indicating whether to jitter coordinates after spectral initializa-
tion to separate duplicate observations (e.g., to avoid overplotting). This is
done using normally-distributed noise of mean zero and standard deviation of
initialize.spectral.jitter.sd. Only relevant if initialize.method =
"SPECTRAL" and spectral initialization does not fail.

initialize.spectral.jitter.sd
Numeric scalar specifying the standard deviation of the jitter to apply after
spectral initialization. Only relevant if initialize.method = "SPECTRAL" and
spectral initialization does not fail and initialize.spectral. jitter = TRUE.

initialize.random.scale
Numeric scalar specifying the scale of the randomly generated initial coor-
dinates. Coordinates are sampled from a uniform distribution from [—z, z)
where z is initialize.random.scale. Only relevant if initialize.method
= "RANDOM", or initialize.method = "SPECTRAL" and spectral initialization
fails and initialize.random.on.spectral.fail = TRUE.

initialize.seed
Numeric scalar specifying the seed for the random number generation during
initialization. Only relevantif initialize.method = "RANDOM"”, or initialize.method
= "SPECTRAL" and initialize.spectral.jitter = TRUE;or initialize.method
= "SPECTRAL" and spectral initialization fails and initialize.random.on.spectral.fail
= TRUE.

num. epochs Integer scalar specifying the number of epochs for the gradient descent, i.e.,
optimization iterations. Larger values improve accuracy at the cost of increased
compute time. If NULL, a value is automatically chosen based on the size of the
dataset:

¢ For datasets with no more than 10000 observations, the default number of
epochs is set to 500.

* For larger datasets, the number of epochs is inversely proportional to the
number of cells, starting from 500 and decreasing asymptotically to a lower
limit of 200. This choice aims to reduce computational work for very large
datasets.

learning.rate Numeric scalar specifying the initial learning rate used in the gradient descent.
Larger values can accelerate convergence but at the risk of skipping over suitable
local optima.

negative.sample.rate
Numeric scalar specifying the rate of sampling negative observations to compute
repulsive forces. Greater values will improve accuracy but increase compute
time.

num.neighbors Integer scalar specifying the number of neighbors to use to define the fuzzy sets.
Larger values improve connectivity and favor preservation of global structure, at



48

sanitizeSizeFactors

the cost of increased compute time. If x contains pre-computed neighbor search
result, the number of neighbors should be equal to num.neighbors.

optimize.seed Numeric scalar specifying the seed to use for the optimization epochs.

num. threads Integer scalar specifying the number of threads to use.
parallel.optimization

BNPARAM

Value

Logical scalar specifying whether to parallelize the optimization step.

A BiocNeighborParam object specifying the algorithm to use. Only used if x is
not a prebuilt index or a list of existing nearest-neighbor search results.

A numeric matrix where rows are cells and columns are the two dimensions of the embedding.

Author(s)

Aaron Lun

References

Mclnnes L, Healy J, Melville J (2020). UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. arXiv, https://arxiv.org/abs/1802.03426

See Also

https://libscran.github.io/umappp/, for details on the underlying implementation.

Examples

x <- t(as.matrix(iris[,1:41))
embedding <- runUmap(x)
plot(embedding[,1], embedding[,2], col=iris[,5])

sanitizeSizeFactors Sanitize size factors

Description

Replace invalid size factors, i.e., zero, negative, infinite or NaN values. Such size factors can
occasionally arise if, e.g., insufficient quality control was performed upstream. Removing them
ensures that the normalized values from normalizeCounts remain finite for sensible downstream

processing.
Usage

sanitizeSizeFactors(
size.factors,
replace.zero = TRUE,
replace.negative = TRUE,
replace.infinite = TRUE,
replace.nan = TRUE


https://arxiv.org/abs/1802.03426
https://libscran.github.io/umappp/

scaleByNeighbors

Arguments

size.factors

replace.zero

49

Numeric vector of size factors across cells.

Logical scalar indicating whether to replace size factors of zero with the low-
est positive factor in size.factors. This ensures that the normalized values
will be large to reflect the extremity of the scaling, but still finite for sensible
downstream processing. If FALSE, zeros are retained.

replace.negative

Logical scalar indicating whether to replace negative size factors with the low-
est positive factor in size.factors. This ensures that the normalized values
will be large to reflect the extremity of the scaling, but still finite for sensible
downstream processing. If FALSE, negative values are retained.

replace.infinite

replace.nan

Value

Logical scalar indicating whether to replace infinite size factors with the largest
positive factor in size.factors. This ensures that any normalized values will
be, at least, finite; the choice of a relatively large replacement value reflects the
extremity of the scaling. If FALSE, infinite values are retained.

Logical scalar indicating whether to replace NaN size factors with unity, e.g.,
scaling normalization is a no-op. If FALSE, NaN values are retained.

Numeric vector of length equal to size.factors, containing the sanitized size factors.

Author(s)

Aaron Lun

See Also

The sanitize_size_factors function in https://libscran.github.io/scran_norm/.

Examples

sf <= 2*rnorm(100)

sf[1] <- 0@
sf[2] <- -1
sf[3] <- Inf
sf[4] <- NaN

sanitizeSizeFactors(sf)

scaleByNeighbors

Scale and combine multiple embeddings

Description

Scale multiple embeddings (usually derived from different modalities for the same cells) so that
their within-population variances are comparable, and then combine them into a single embedding
matrix for further analyses like clustering, t-SNE, etc. The aim is to equalize uninteresting variance
across modalities so that high technical variance in one modality does not drown out interesting
biology in another modality.


https://libscran.github.io/scran_norm/

50 scaleByNeighbors
Usage
scaleByNeighbors(
X )
num.neighbors = 20,
num.threads = 1,
weights = NULL,
BNPARAM = AnnoyParam()
)
Arguments
X List of numeric matrices of principal components or other embeddings, one for

num.neighbors

num. threads

weights

BNPARAM

Value

each modality. For each entry, rows are dimensions and columns are cells. All
entries should have the same number of columns but may have different numbers
of rows.

Integer scalar specifying the number of neighbors to use to define the scaling
factor.

Integer scalar specifying the number of threads to use.

Numeric vector of length equal to that of x, specifying the weights to apply to
each modality. Each value represents a multiplier of the within-population vari-
ance of its modality, i.e., larger values increase the contribution of that modality
in the combined output matrix. NULL is equivalent to an all-1 vector, i.e., all
modalities are scaled to have the same within-population variance.

A BiocNeighborParam object specifying how to perform the neighbor search.

List containing scaling, a vector of scaling factors to be aplied to each embedding; and combined,
a numeric matrix creating by scaling each entry of x by scaling and then rbinding them together.

Author(s)

Aaron Lun

See Also

https://libscran.github.io/mumosa/, for the basis and caveats of this approach.

Examples

pcs <- list(

gene = matrix(rnorm(10000), ncol=200),

protein = mat
guide = matri

)

out <- scaleByNei
out$scaling
dim(out$combined)

rix(rnorm(1000, sd=3), ncol=200),
x(rnorm(2000, sd=5), ncol=200)

ghbors(pcs)


https://libscran.github.io/mumosa/

scoreGeneSet

51

scoreGeneSet Score gene set activity for each cell

Description

Compute per-cell scores for a gene set, defined as the column sums of a rank-1 approximation to
the submatrix for the gene set. This uses the same approach as the GSDecon package by Jason

Hackney, adapted to use an approximate PCA (via IRLBA) and to support blocking.

Usage

scoreGeneSet (
X,
set,
rank = 1,
scale = FALSE,
block = NULL,
block.weight.policy = c("variable"”, "equal”, "none"),

variable.block.weight = c(@, 1000),
extra.work = 7,

iterations = 1000,

seed = 5489,

realized = TRUE,

num. threads = 1

)
Arguments

X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Typically, the matrix is expected to contain log-
expression values.

set Integer, logical or character vector specifying the rows that belong to the gene
set.

rank Integer scalar specifying the rank of the approximation. The default value of 1
assumes that each gene set only describes a single coordinated biological func-
tion.

scale Logical scalar indicating whether to scale all genes to have the same variance.
This ensures that each gene contributes equally to the PCA, favoring consis-
tent variation across many genes rather than large variation in a few genes. If
block is specified, each gene’s variance is calculated as a weighted sum of the
variances from each block. Genes with zero variance are ignored.

block Factor specifying the block of origin (e.g., batch, sample) for each cell in x. The

PCA will be performed on the residuals after regressing out the block effect,
ensuring that differences between block do not dominate the variation in the
dataset. Alternatively NULL if all cells are from the same block.

block.weight.policy

String specifying the policy to use for weighting the contribution of different
blocks to the PCA. See the argument of the same name in computeBlockWeights
for more detail. Only used if block is not NULL.



52 scoreMarkers

variable.block.weight
Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable”.

extra.work Integer scalar specifying the extra dimensions for the IRLBA workspace. Larger
values improve accuracy at the cost of compute time.

iterations Integer scalar specifying the maximum number of restart iterations for IRLBA.
Larger values improve accuracy at the cost of compute time.

seed Integer scalar specifying the seed for the initial random vector in IRLBA.

realized Logical scalar indicating whether to realize x into an optimal memory layout for
IRLBA. This speeds up computation at the cost of increased memory usage.

num. threads Number of threads to use.

Value

List containing scores, a numeric vector of per-cell scores for each column in x; and weights, a
numeric vector of per-gene weights for each gene in set.

Author(s)

Aaron Lun

See Also

The compute and compute_blocked functions in https://libscran.github.io/gsdecon/.

Examples

library(Matrix)

X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))

normed <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))
scoreGeneSet (normed, set=c(1,3,5,10,20,100))

scoreMarkers Score marker genes

Description

Score marker genes for each group using a variety of effect sizes from pairwise comparisons be-
tween groups. This includes Cohen’s d, the area under the curve (AUC), the difference in the means
(delta-mean) and the difference in the proportion of detected cells (delta-detected). For each group,
the strongest markers are those genes with the largest effect sizes (i.e., upregulated) when compared
to all other groups.


https://libscran.github.io/gsdecon/

scoreMarkers

Usage

scoreMarkers(

X’
groups,

block = NULL,

53

block.weight.policy = c("variable"”, "equal”, "none"),
variable.block.weight = c(@, 1000),
compute.delta.mean = TRUE,

compute.delta.detected = TRUE,

compute.cohens.d = TRUE,

compute.auc = TRUE,

threshold = 0,

all.pairwise = FALSE,

num. threads

Arguments

X

groups
block

1

A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. It is typically expected to contain log-expression
values, e.g., from normalizeCounts.

A vector specifying the group assignment for each cell in x.

Factor specifying the block of origin (e.g., batch, sample) for each cell in x.
If provided, comparisons are performed within each block to ensure that block
effects do not confound the estimates. The weighted average of the effect sizes
across all blocks is reported for each gene. Alternatively NULL, if all cells are
from the same block.

block.weight.policy

String specifying the policy to use for weighting different blocks when com-
puting the average for each statistic. See the argument of the same name in
computeBlockWeights for more detail. Only used if block is not NULL.

variable.block.weight

Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable”.

compute.delta.mean

Logical scalar indicating whether to compute the delta-means, i.e., the log-fold
change when x contains log-expression values.

compute.delta.detected

Logical scalar indicating whether to compute the delta-detected, i.e., differences
in the proportion of cells with detected expression.

compute.cohens.d

compute.auc

threshold

Logical scalar indicating whether to compute Cohen’s d.

Logical scalar indicating whether to compute the AUC. Setting this to FALSE
can improve speed and memory efficiency.

Non-negative numeric scalar specifying the minimum threshold on the differ-
ences in means (i.e., the log-fold change, if x contains log-expression values).
This is incorporated into the effect sizes for Cohen’s d and the AUC. Larger
thresholds will favor genes with large differences at the expense of genes with
low variance that would otherwise have comparable effect sizes.



54

scoreMarkers

all.pairwise  Logical scalar indicating whether to report the effect sizes for every pairwise

comparison between groups. If FALSE, only the summary statistics are reported.

num. threads Integer scalar specifying the number of threads to use.

Value

If all.pairwise=FALSE, a named list is returned containing:

mean, a numeric matrix containing the mean expression for each group. Each row is a gene
and each column is a group.

detected, a numeric matrix containing the proportion of detected cells in each group. Each
row is a gene and each column is a group.

cohens.d, a list of data frames where each data frame corresponds to a group. Each row
of each data frame represents a gene, while each column contains a summary of Cohen’s d
from pairwise comparisons to all other groups. This includes the min, mean, median, max and
min.rank - check out ?summarizeEffects for details. Omitted if compute.cohens.d=FALSE.

auc, a list like cohens. d but containing the summaries of the AUCs from each pairwise com-
parison. Omitted if compute.auc=FALSE.

delta.mean, a list like cohens.d but containing the summaries of the delta-mean from each
pairwise comparison. Omitted if compute.delta.mean=FALSE.

delta.detected, a list like cohens.d but containing the summaries of the delta-detected
from each pairwise comparison. Omitted if compute.delta.detected=FALSE.

If all.pairwise=TRUE, a list is returned containing:

mean, a numeric matrix containing the mean expression for each group. Each row is a gene
and each column is a group.

detected, a numeric matrix containing the proportion of detected cells in each group. Each
row is a gene and each column is a group.

cohens.d, a 3-dimensional numeric array containing the Cohen’s d from each pairwise com-
parison between groups. The extents of the first two dimensions are equal to the number of
groups, while the extent of the final dimension is equal to the number of genes. The entry [1i,
j, k1 represents Cohen’s d from the comparison of group j over group i for gene k. Omitted
if compute.cohens.d=FALSE.

auc, an array like cohens. d but containing the AUCs from each pairwise comparison. Omit-
ted if compute.auc=FALSE.

delta.mean, an array like cohens.d but containing the delta-mean from each pairwise com-
parison. Omitted if compute.delta.mean=FALSE.

delta.detected, an array like cohens. d but containing the delta-detected from each pairwise
comparison. Omitted if compute.delta.detected=FALSE.

Choice of effect size

The delta-mean is the difference in the mean expression between groups. This is fairly straight-
forward to interpret - a positive delta-mean corresponds to increased expression in the first group
compared to the second. The delta-mean can also be treated as the log-fold change if the input
matrix contains log-transformed normalized expression values.

The delta-detected is the difference in the proportion of cells with detected expression between
groups. This lies between 1 and -1, with the extremes occurring when a gene is silent in one group
and detected in all cells of the other group. For this interpretation, we assume that the input matrix



scoreMarkers 55

contains non-negative expression values, where a value of zero corresponds to lack of detectable
expression.

Cohen’s d is the standardized difference between two groups. This is defined as the difference in
the mean for each group scaled by the average standard deviation across the two groups. (Tech-
nically, we should use the pooled variance; however, this introduces some unintuitive asymmetry
depending on the variance of the larger group, so we take a simple average instead.) A positive
value indicates that the gene has increased expression in the first group compared to the second.
Cohen’s d is analogous to the t-statistic in a two-sample t-test and avoids spuriously large effect
sizes from comparisons between highly variable groups. We can also interpret Cohen’s d as the
number of standard deviations between the two group means.

The area under the curve (AUC) is the probability that a randomly chosen observation in one group
is greater than a randomly chosen observation in the other group. Values greater than 0.5 indicate
that a gene is upregulated in the first group. The AUC is closely related to the U-statistic used in
the Wilcoxon rank sum test. The key difference between the AUC and Cohen’s d is that the former
is less sensitive to the variance within each group, e.g., if two distributions exhibit no overlap, the
AUC is the same regardless of the variance of each distribution. This may or may not be desirable
as it improves robustness to outliers but reduces the information available to obtain a fine-grained
ranking.

With a minimum change threshold

Setting a minimum change threshold (i.e., threshold) prioritizes genes with large shifts in expres-
sion instead of those with low variances. Currently, only positive thresholds are supported, which
focuses on genes that are upregulated in the first group compared to the second. The effect size
definitions are generalized when testing against a non-zero threshold:

* Cohen’s d is redefined as the standardized difference between the difference in means and the
specified threshold, analogous to the TREAT method from the limma package. Large positive
values are only obtained when the observed difference in means is significantly greater than
the threshold. For example, if we had a threshold of 2 and we obtained a Cohen’s d of 3, this
means that the observed difference in means was 3 standard deviations greater than 2. Note
that a negative Cohen’s d cannot be intepreted as downregulation, as the difference in means
may still be positive but less than the threshold.

* The AUC is generalized to the probability of obtaining a random observation in one group
that is greater than a random observation plus the threshold in the other group. For example,
if we had a threshold of 2 and we obtained an AUC of 0.8, this means that, 80 the random
observation from the first group would be greater than a random observation from the second
group by 2 or more. Again, AUCs below 0.5 cannot be interpreted as downregulation, as it
may be caused by a positive shift that is less than the threshold.

See Also

The score_markers_summary and the score_markers_pairwise functions (for all.pairwise=FALSE
and TRUE, respectively) in https://libscran.github.io/scran_markers/. See their blocked
equivalents score_markers_summary_blocked and score_markers_pairwise_blocked when block
is specified.

summarizeEffects, to summarize the pairwise effects returned when all.pairwise=TRUE.

reportGroupMarkerStatistics, to consolidate the statistics for a single group into its own data
frame.


https://libscran.github.io/scran_markers/

56 subsampleByNeighbors

Examples

# Mocking a matrix:

library(Matrix)

X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))

normed <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))

# Compute marker summaries for each group:

g <- sample(letters[1:4], ncol(x), replace=TRUE)
scores <- scoreMarkers(normed, g)

names(scores)

head(scores$mean)

head(scores$cohens.d[["a"]1])

# Report marker statistics for a single group:
reportGroupMarkerStatistics(scores, "b")

subsampleByNeighbors  Subsample cells based on their neighbors

Description

Subsample a dataset by selecting cells to represent all of their nearest neighbors. The aim is to pre-
serve the relative density of the original dataset while guaranteeing representation of low-frequency
subpopulations.

Usage

subsampleByNeighbors(
X,
num.neighbors
min.remaining
num.threads = 1,
BNPARAM = AnnoyParam()

20,
10,

Arguments

X A numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.

Alternatively, an index constructed by buildIndex.
Alternatively, a list containing existing nearest-neighbor search results. This
should contain:

* index, an integer matrix where rows are neighbors and columns are cells.
Each column contains 1-based indices for the nearest neighbors of the cor-
responding cell, ordered by increasing distance.

* distance, a numeric matrix of the same dimensions as index, containing
the distances to each of the nearest neighbors.

The number of neighbors should be equal to num.neighbors, otherwise a warn-
ing is raised.



subsampleByNeighbors 57

num.neighbors Integer scalar specifying the number of neighbors to use. Larger values result
in stronger downsampling. Only used if x does not contain existing nearest-
neighbor results.

min.remaining Integer scalar specifying the minimum number of remaining neighbors that a
cell must have in order to be considered for selection. This should be less than
or equal to num.neighbors. Larger values result in stronger downsampling.

num. threads Integer scalar specifying the number of threads to use for the nearest-neighbor
search. Only used if x does not contain existing nearest-neighbor results.

BNPARAM A BiocNeighborParam object specifying the algorithm to use. Only used if x
does not contain existing nearest-neighbor results.

Details

Starting from the densest region in the high-dimensional space, we select an observation for inclu-
sion into the subsampled dataset. Every time we select an observation, we remove it and all of its
nearest neighbors from the dataset. We then select the next observation with the most remaining
neighbors, with ties broken by density; this is repeated until there are no more observations.

The premise is that each selected observation serves as a representative for its nearest neighbors.
This ensures that the subsampled points are well-distributed across the original dataset. Low-
frequency subpopulations will always have at least a few representatives if they are sufficiently
distant from other subpopulations. We also preserve the relative density of the original dataset as
more representatives will be generated from high-density regions.

Value

Integer vector with the indices of the selected cells in the subsample.

Author(s)

Aaron Lun

See Also

https://libscran.github.io/nenesub/, for more details on the underlying algorithm.

Examples

X <- matrix(rnorm(10000), nrow=2)

keep <- subsampleByNeighbors(x, 10)

plot(x[1,]1, x[2,1)

points(x[1,keep], x[2,keep], col="red")

legend('topright', col=c('black', 'red'), legend=c('all', 'subsample'), pch=1)


https://libscran.github.io/nenesub/

58

summarizeEffects

summarizeEffects Summarize pairwise effect sizes for each group

Description

For each group, summarize the effect sizes for all pairwise comparisons to other groups. This yields
a set of summary statistics that can be used to rank marker genes for each group.

Usage

summarizeEffects(effects, num.threads = 1)

Arguments
effects A 3-dimensional numeric containing the effect sizes from each pairwise com-
parison between groups. The extents of the first two dimensions are equal to the
number of groups, while the extent of the final dimension is equal to the number
of genes. The entry [i, j, k] represents the effect size from the comparison of
group j against group i for gene k. See also the output of scoreMarkers with
all.pairwise=TRUE.
num. threads Integer scalar specifying the number of threads to use.
Details

Each summary statistic can be used to prioritize different sets of marker genes for the group of
interest, by ranking them in decreasing order according to said statistic:

* min contains the minimum effect size across all comparisons involving the group of interest.

Genes with large values are upregulated in all comparisons. As such, it is the most stringent
summary as markers will only have large values if they are uniquely upregulated in the group
of interest compared to every other group.

mean contains the mean effect size across all comparisons involving the group of interest.
Genes with large values are upregulated on average compared to the other groups. This is a
good general-purpose summary statistic.

median contains the median effect size across all comparisons involving the group of interest.
Genes with large values are upregulated compared to most (i.e., at least 50 Compared to the
mean, this is more robust to outlier effects but less sensitive to strong effects in a minority of
comparisons.

max contains the maximum effect size across all comparisons involving the group of interest.
Using this to define markers will focus on genes that are upregulated in at least one compari-
son. As such, it is the least stringent summary as markers can achieve large values if they are
upregulated in the group of interest compared to any one other group.

The exact definition of “large” depends on the choice of effect size. For signed effects like Cohen’s
d, delta-mean and delta-detected, the value must be positive to be considered “large”. For the AUC,
a value greater than 0.5 is considered “large”. This interpretation is also affected by the choice of
threshold= used to compute each effect size in scoreMarkers, e.g., a negative Cohen’s d cannot
be interpreted as downregulation when the threshold is positive.

The min.rank is a more exotic summary statistic, containing the minimum rank for each gene
across all comparisons involving the group of interest. This is defined by ranking the effect sizes



testEnrichment 59

across genes within each comparison, and then taking the minimum of these ranks across compar-
isons. Taking all genes with min.rank <= T will yield a set containing the top T genes from each
comparison. The idea is to ensure that there are at least T genes that can distinguish the group of
interest from any other group.

NaN effect sizes are allowed, e.g., if two groups do not exist in the same block for a blocked anal-
ysis in scoreMarkers with block=. This function will ignore NaN values when computing each
summary. If all effects are NaN for a particular group, the summary statistic will also be NaN.

Value

List of data frames containing summary statistics for the effect sizes. Each data frame corresponds
to a group, each row corresponds to a gene, and each column contains a summary statistic.

Author(s)

Aaron Lun

See Also

The summarize_effects function in https://libscran.github.io/scran_markers/.

scoreMarkers, to compute the pairwise effects in the first place.

Examples

# Mocking a matrix:

library(Matrix)

X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))

normed <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))

g <- sample(letters[1:4], ncol(x), replace=TRUE)
effects <- scoreMarkers(normed, g, all.pairwise=TRUE)

summarized <- summarizeEffects(effects$cohens.d)
str(summarized)

testEnrichment Test for gene set enrichment

Description
Perform a hypergeometric test for enrichment of gene sets in a list of interesting genes (e.g., mark-
ers).

Usage

testEnrichment(x, sets, universe = NULL, log = FALSE, num.threads = 1)


https://libscran.github.io/scran_markers/

60

Arguments

X

sets

universe

log

num. threads

Value

testEnrichment

Vector of identifiers for some interesting genes, e.g., symbols or Ensembl IDs.
This is usually derived from a selection of top markers, e.g., from scoreMarkers.

List of vectors of identifiers for the pre-defined gene sets. Each inner vector
corresponds to a gene set and should contain the same type of identifiers as x.

Vector of identifiers for the universe of genes in the dataset. x and each vector
in sets will be subsetted to only include those genes in universe. If NULL, the
universe is defined as the union of all genes in x and sets.

Alternatively, an integer scalar specifying the number of genes in the universe.
This is assumed to be greater than or equal to the number of unique genes in x
and sets.

Logical scalar indicating whether to report log-transformed p-values. This may
be desirable to avoid underflow at near-zero p-values.

Integer scalar specifying the number of threads to use.

Numeric vector of (log-transformed) p-values to test for significant enrichment of x in each entry

of sets.

Author(s)

Aaron Lun

See Also

phyper and https://libscran.github.io/phyper/, which is the basis for the underlying calcu-

lation.

Examples

testEnrichment(

x=LETTERS[1:5],

sets=list(

first=LETTERS[1:10],
second=LETTERS[1:5 * 27,
third=LETTERS[10:20]

)7

universe=LETTERS


https://libscran.github.io/phyper/

Index

adt_quality_control, 2
aggregateAcrossCells, 5,7
aggregateAcrossGenes, 5, 6
analyze, 7, 25

BiocNeighborParam, 10, 13,27, 39, 44, 48,
50, 57

buildIndex, 13, 39, 43,45, 56

buildSnnGraph, 9, 11, 12, 18, 39

centerSizeFactors, 9, 11,14, 17,24, 34
chooseHighlyVariableGenes, 9, 11, 15, 33,
40
choosePseudoCount, 16, 35
clusterGraph, 9, 11, 13, 14,17, 39
clusterKmeans, 9, 11, 19
combineFactors, 5, 22
computeAdtQcMetrics, 8, 10
computeAdtQcMetrics
(adt_quality_control), 2
computeBlockWeights, 23, 32, 41, 51-53
computeClrmiFactors, 9, 11,24
computeCrisprQcMetrics, 10
computeCrisprQcMetrics
(crispr_quality_control), 28
computeRnaQcMetrics, 8, 10
computeRnaQcMetrics
(rna_quality_control), 37
convertAnalyzeResults, 12, 25
correctMnn, 9, 11, 26, 41
crispr_quality_control, 28

DataFrame, 25
DelayedArray, 35

filterAdtQcMetrics, 10
filterAdtQcMetrics
(adt_quality_control), 2
filterCrisprQcMetrics, 10
filterCrisprQcMetrics
(crispr_quality_control), 28
filterRnaQcMetrics, 10
filterRnaQcMetrics
(rna_quality_control), 37

61

findKNN, 43, 45
fitVarianceTrend, 30, 33

igraph, 18
initializeCpp, 34, 35

kmeans, 21
modelGeneVariances, 9, 11, 16, 31, 32

normalizeCounts, 9, 11, 14, 16, 17, 32, 34,
40,48, 53

phyper, 60

reportGroupMarkerStatistics, 35, 55
rna_quality_control, 37
runAllNeighborSteps, 9, 11, 39
runPca, 9, 11, 13, 15, 20, 26, 39, 40, 43, 45, 56
runTsne, 9, 11, 39, 42
runUmap, 9, 11, 39, 45

sanitizeSizeFactors, 34, 48
scaleByNeighbors, 9, 11, 49
scoreGeneSet, 51
scoreMarkers, 10, 12, 36, 52, 58—60
SingleCellExperiment, 12, 25
subsampleByNeighbors, 56
suggestAdtQcThresholds, 9, 10
suggestAdtQcThresholds
(adt_quality_control), 2
suggestCrisprQcThresholds, 9, 10
suggestCrisprQcThresholds
(crispr_quality_control), 28
suggestRnaQcThresholds, 8, 10
suggestRnaQcThresholds
(rna_quality_control), 37
SummarizedExperiment, 8, 10
summarizeEffects, 36, 54, 55, 58

testEnrichment, 59
tsnePerplexityToNeighbors (runTsne), 42



	adt_quality_control
	aggregateAcrossCells
	aggregateAcrossGenes
	analyze
	buildSnnGraph
	centerSizeFactors
	chooseHighlyVariableGenes
	choosePseudoCount
	clusterGraph
	clusterKmeans
	combineFactors
	computeBlockWeights
	computeClrm1Factors
	convertAnalyzeResults
	correctMnn
	crispr_quality_control
	fitVarianceTrend
	modelGeneVariances
	normalizeCounts
	reportGroupMarkerStatistics
	rna_quality_control
	runAllNeighborSteps
	runPca
	runTsne
	runUmap
	sanitizeSizeFactors
	scaleByNeighbors
	scoreGeneSet
	scoreMarkers
	subsampleByNeighbors
	summarizeEffects
	testEnrichment
	Index

