
Package ‘SingleR’
November 15, 2025

Title Reference-Based Single-Cell RNA-Seq Annotation

Version 2.13.0

Date 2025-10-16

Description Performs unbiased cell type recognition from single-cell RNA
sequencing data, by leveraging reference transcriptomic datasets of pure cell
types to infer the cell of origin of each single cell independently.

License GPL-3

Depends SummarizedExperiment

Imports methods, Matrix, S4Vectors, DelayedArray, DelayedMatrixStats,
BiocParallel, BiocNeighbors, stats, utils, Rcpp, beachmat (>=
2.25.1)

LinkingTo Rcpp, beachmat, assorthead (>= 1.3.5), BiocNeighbors

Suggests testthat, knitr, rmarkdown, BiocStyle, BiocGenerics,
SingleCellExperiment, scuttle, scrapper (>= 1.3.14), scRNAseq,
ggplot2, pheatmap, grDevices, gridExtra, viridis, celldex

biocViews Software, SingleCell, GeneExpression, Transcriptomics,
Classification, Clustering, Annotation

SystemRequirements C++17

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.3

URL https://github.com/SingleR-inc/SingleR

BugReports https://github.com/SingleR-inc/SingleR/issues

git_url https://git.bioconductor.org/packages/SingleR

git_branch devel

git_last_commit 2ee58a5

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-14

1

https://github.com/SingleR-inc/SingleR
https://github.com/SingleR-inc/SingleR/issues

2 .mockRefData

Author Dvir Aran [aut, cph],
Aaron Lun [ctb, cre],
Daniel Bunis [ctb],
Jared Andrews [ctb],
Friederike Dündar [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents
.mockRefData . 2
aggregateReference . 3
classifySingleR . 5
combineRecomputedResults . 8
datasets . 11
getClassicMarkers . 12
getDeltaFromMedian . 14
matchReferences . 15
plotDeltaDistribution . 16
plotMarkerHeatmap . 18
plotScoreDistribution . 21
plotScoreHeatmap . 23
pruneScores . 28
rebuildIndex . 30
SingleR . 31
trainSingleR . 34

Index 40

.mockRefData Mock data for examples

Description

Make up some test and reference data for the various examples in the SingleR package.

Usage

.mockRefData(ngroups = 5, nreps = 4, ngenes = 1000, prop = 0.5)

.mockTestData(mock.ref, ncells = 100)

Arguments

ngroups Integer scalar specifying the number of groups.

nreps Integer scalar specifying the number of replicates per group.

ngenes Integer scalar specifying the number of genes in the dataset.

aggregateReference 3

prop Numeric scalar specifying the proportion of genes that are DE between groups.

mock.ref A SummarizedExperiment object produced by .mockRefData.

ncells Integer scalar specifying the number of cells to simulate.

Details

This functions are simply provided to simulate some data in the Examples of the documentation.
The simulations are very simple and should not be used for performance comparisons.

Value

Both functions return a SummarizedExperiment object containing simulated counts in the counts
assay, with the group assignment of each sample in the "label" field of the colData.

Author(s)

Aaron Lun

Examples

ref <- .mockRefData()
test <- .mockTestData(ref)

aggregateReference Aggregate reference samples

Description

Aggregate reference samples for a given label by averaging their count profiles. This can be done
with varying degrees of resolution to preserve the within-label heterogeneity.

Usage

aggregateReference(
ref,
labels,
ncenters = NULL,
power = 0.5,
ntop = 1000,
assay.type = "logcounts",
rank = 20,
subset.row = NULL,
check.missing = TRUE,
num.threads = bpnworkers(BPPARAM),
BPPARAM = SerialParam(),
BSPARAM = NULL

)

4 aggregateReference

Arguments

ref A numeric matrix of reference expression values, usually containing log-expression
values. Alternatively, a SummarizedExperiment object containing such a ma-
trix.

labels A character vector or factor of known labels for all cells in ref.

ncenters Integer scalar specifying the maximum number of aggregated profiles to produce
for each label. If NULL, a suitable number of profiles is automatically chosen.

power Numeric scalar between 0 and 1 indicating how much aggregation should be
performed, see Details. Ignored if ncenters is not NULL.

ntop Integer scalar specifying the number of highly variable genes to use for the PCA
step.

assay.type An integer scalar or string specifying the assay of ref containing the relevant
expression matrix, if ref is a SummarizedExperiment object.

rank Integer scalar specfiying the number of principal components to use during clus-
tering.

subset.row Integer, character or logical vector indicating the rows of ref to use for k-means
clustering.

check.missing Logical scalar indicating whether rows should be checked for missing values
(and if found, removed).

num.threads Integer scalar specifying the number to threads to use.

BPPARAM Deprecated, use num.threads instead.

BSPARAM Deprecated and ignored.

Details

With single-cell reference datasets, it is often useful to aggregate individual cells into pseudo-bulk
samples to serve as a reference. This improves speed in downstream assignment with classifySingleR
or SingleR. The most obvious aggregation is to simply average all counts for all cells in a label
to obtain a single pseudo-bulk profile. However, this discards information about the within-label
heterogeneity (e.g., the “shape” and spread of the population in expression space) that may be in-
formative for assignment, especially for closely related labels.

The default approach in this function is to create a series of pseudo-bulk samples to represent each
label. This is achieved by performing vector quantization via k-means clustering on all cells in a
particular label. Cells in each cluster are subsequently averaged to create one pseudo-bulk sample
that serves as a representative for that location in the expression space. This reduces the number
of separate observations (for speed) while preserving some level of population heterogeneity (for
fidelity).

The number of pseudo-bulk samples per label is controlled by ncenters. If ncenters=NULL, we
set the number of clusters to X^power where X is the number of cells for that label. This ensures that
labels with more cells have more resolved representatives. If ncenters is greater than the number
of samples for a label and/or power=1, no aggregation is performed. Setting power=0 will aggregate
all cells of a label into a single pseudo-bulk profile.

In practice, k-means clustering is actually performed on the first rank principal components as com-
puted using runPca. The use of PCs compacts the data for more efficient operation of clusterKmeans;

classifySingleR 5

it also removes some of the high-dimensional noise to highlight major factors of within-label het-
erogenity. Note that the PCs are only used for clustering and the full expression profiles are still
used for the final averaging. Users can disable the PCA step by setting rank=Inf.

By default, we speed things up by only using the top ntop genes with the largest variances in the
PCA, as identified with modelGeneVariances. More subsetting of the matrix prior to the PCA can
be achieved by setting subset.row to an appropriate indexing vector. This option may be useful
for clustering based on known genes of interest but retaining all genes in the aggregated results.
(If both options are set, subsetting by subset.row is done first, and then the top ntop genes are
selected.) In both cases, though, the aggregation is performed on the full expression profiles.

We use the average rather than the sum in order to be compatible with trainSingleR’s internal
marker detection. Moreover, unlike counts, the sum of transformed and normalized expression
values generally has little meaning. We do not use the median to avoid consistently obtaining zeros
for lowly expressed genes.

Value

A SummarizedExperiment object with a "logcounts" assay containing a matrix of aggregated
expression values, and a label column metadata field specifying the label corresponding to each
column.

Author(s)

Aaron Lun

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Making up some labels for demonstration purposes:
labels <- sample(LETTERS, ncol(sce), replace=TRUE)

Aggregation at different resolutions:
(aggr <- aggregateReference(sce, labels, power=0.5))

(aggr <- aggregateReference(sce, labels, power=0))

No aggregation:
(aggr <- aggregateReference(sce, labels, power=1))

classifySingleR Classify cells with SingleR

Description

Assign labels to each cell in a test dataset, using a pre-trained classifier combined with an iterative
fine-tuning approach.

6 classifySingleR

Usage

classifySingleR(
test,
trained,
quantile = 0.8,
fine.tune = TRUE,
tune.thresh = 0.05,
fine.tune.combined = fine.tune,
sd.thresh = NULL,
prune = TRUE,
assay.type = "logcounts",
check.missing = FALSE,
num.threads = bpnworkers(BPPARAM),
BPPARAM = SerialParam()

)

Arguments

test A numeric matrix of single-cell expression values where rows are genes and
columns are cells. Each row should be named with the gene name.
Alternatively, a SummarizedExperiment object containing such a matrix.

trained A List containing the output of the trainSingleR function. If the row names of
test are not exactly the same as the reference dataset, the call to trainSingleR
should set test.genes=rownames(test).
Alternatively, a List of Lists produced by trainSingleR for multiple references.

quantile A numeric scalar specifying the quantile of the correlation distribution to use to
compute the score for each label.

fine.tune A logical scalar indicating whether fine-tuning should be performed.

tune.thresh A numeric scalar specifying the maximum difference from the maximum corre-
lation to use in fine-tuning.

fine.tune.combined

A logical scalar indicating whether fine-tuning should be performed when com-
bining references in combineRecomputedResults.

sd.thresh Deprecated and ignored.

prune A logical scalar indicating whether label pruning should be performed.

assay.type Integer scalar or string specifying the matrix of expression values to use if test
is a SummarizedExperiment.

check.missing Deprecated and ignored, as any row filtering will cause mismatches with the
test.genes= used in trainSingleR.

num.threads Integer scalar specifying the number of threads to use for classification.

BPPARAM A BiocParallelParam object specifying the parallelization scheme to use for NA
scanning, when check.missing=TRUE.

classifySingleR 7

Details

Consider each cell in the test set test and each label in the training set. We compute Spearman’s
rank correlations between the test cell and all cells in the training set with the given label, based on
the expression profiles of the genes selected by trained. The score is defined as the quantile of the
distribution of correlations, as specified by quantile. (Technically, we avoid explicitly computing
all correlations by using a nearest neighbor search, but the resulting score is the same.) After
repeating this across all labels, the label with the highest score is used as the prediction for that cell.

If fine.tune=TRUE, an additional fine-tuning step is performed for each cell to improve resolution.
We identify all labels with scores that are no more than tune.thresh below the maximum score.
These labels are used to identify a fresh set of marker genes, and the calculation of the score is
repeated using only these genes. The aim is to refine the choice of markers and reduce noise when
distinguishing between closely related labels. The best and next-best scores are reported in the
output for use in diagnostics, e.g., pruneScores.

The default assay.type is set to "logcounts" simply for consistency with trainSingleR. In
practice, the raw counts (for UMI data) or the transcript counts (for read count data) can also be used
without normalization and log-transformation. Any monotonic transformation will have no effect
the calculation of the correlation values other than for some minor differences due to numerical
precision.

If prune=TRUE, label pruning is performed as described in pruneScores with default arguments.
This aims to remove low-quality labels that are ambiguous or correspond to misassigned cells.
However, the default settings can be somewhat aggressive and discard otherwise useful labels in
some cases - see ?pruneScores for details.

Value

A DataFrame where each row corresponds to a cell in test. In the case of a single reference, this
contains:

• scores, a numeric matrix of correlations at the specified quantile for each label (column) in
each cell (row). This will contain NAs if multiple references were supplied to trainSingleR.

• labels, a character vector containing the predicted label. If fine.tune=FALSE, this is based
only on the maximum entry in scores.

• delta.next, a numeric vector containing the difference between tbe best and next-best score.
If fine.tune=TRUE, this is reported for scores after fine-tuning.

• pruned.labels, a character vector containing the pruned labels where “low-quality” labels
are replaced with NAs. Only added if prune=TRUE.

The metadata of the DataFrame contains:

• common.genes, a character vector of genes used to compute the correlations prior to fine-
tuning.

• de.genes, a list of list of character vectors, containing the genes used to distinguish between
each pair of labels.

If trained was generated from multiple references, the per-reference statistics are automatically
combined into a single DataFrame of results using combineRecomputedResults. The output of
combineRecomputedResults is then directly returned.

8 combineRecomputedResults

Author(s)

Aaron Lun, based on the original SingleR code by Dvir Aran.

See Also

trainSingleR, to prepare the training set for classification.

pruneScores, to remove low-quality labels based on the scores.

combineRecomputedResults, to combine results from multiple references.

Examples

Mocking up data with log-normalized expression values:
ref <- .mockRefData()
test <- .mockTestData(ref)

ref <- scuttle::logNormCounts(ref)
test <- scuttle::logNormCounts(test)

Setting up the training:
trained <- trainSingleR(ref, label=ref$label)

Performing the classification:
pred <- classifySingleR(test, trained)
table(predicted=pred$labels, truth=test$label)

combineRecomputedResults

Combine SingleR results with recomputation

Description

Combine results from multiple runs of classifySingleR (usually against different references)
into a single DataFrame. This involves recomputing the scores so that they are comparable across
references.

Usage

combineRecomputedResults(
results,
test,
trained,
quantile = 0.8,
fine.tune = TRUE,
tune.thresh = 0.05,
assay.type.test = "logcounts",
check.missing = FALSE,

combineRecomputedResults 9

warn.lost = TRUE,
allow.lost = FALSE,
num.threads = bpnworkers(BPPARAM),
BPPARAM = SerialParam()

)

Arguments

results A list of DataFrame prediction results as returned by classifySingleR when
run on each reference separately.

test A numeric matrix of single-cell expression values where rows are genes and
columns are cells. Alternatively, a SummarizedExperiment object containing
such a matrix.

trained A list of Listgs containing the trained outputs of multiple references, equivalent
to either (i) the output of trainSingleR on multiple references with recompute=TRUE,
or (ii) running trainSingleR on each reference separately and manually mak-
ing a list of the trained outputs.

quantile Numeric scalar specifying the quantile of the correlation distribution to use for
computing the score, see classifySingleR.

fine.tune A logical scalar indicating whether fine-tuning should be performed.

tune.thresh A numeric scalar specifying the maximum difference from the maximum corre-
lation to use in fine-tuning.

assay.type.test

An integer scalar or string specifying the assay of test containing the relevant
expression matrix, if test is a SummarizedExperiment object.

check.missing Deprecated and ignored, as any row filtering will cause mismatches with the
test.genes= used in trainSingleR.

warn.lost Logical scalar indicating whether to emit a warning if markers from one refer-
ence in trained are absent in other references.

allow.lost Deprecated.

num.threads Integer scalar specifying the number of threads to use for index building and
classification.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed
in other steps, see ?trainSingleR and ?classifySingleR for more details.

Details

Here, the strategy is to perform classification separately within each reference, then collate the
results to choose the label with the highest score across references. For a given cell in test, we
extract its assigned label from each reference in results, along with the marker genes associated
with that label. We take the union of the markers for the assigned labels across all references.
This defines a common feature space in which the score for each reference’s assigned label is
recomputed using ref; the label from the reference with the top recomputed score is then reported
as the combined annotation for that cell.

A key aspect of this approach is that each entry of results is generated separately for each refer-
ence. This avoids problems with unintersting technical or biological differences between references

10 combineRecomputedResults

that could otherwise introduce noise by forcing irrelevant genes into the marker list. Similarly, the
common feature space for each cell is defined from the most relevant markers across all references,
analogous to one iteration of fine-tuning using only the best labels from each reference. Indeed, if
fine-tuning is enabled, the common feature space is iteratively refined from the labels with the high-
est scores, using the same process described in classifySingleR. This allows us to distinguish
between closely-related labels from different references.

Value

A DataFrame is returned containing the annotation statistics for each cell or cluster (row). This
mimics the output of classifySingleR and contains the following fields:

• scores, a DataFrame of DataFrames containing the recomputed scores for the best label in
each reference. Each nested DataFrame corresponds to a reference and contains labels (the
best label for that cell in this reference) and scores (the recomputed score).

• labels, a character vector containing the per-cell combined label across references.

• reference, an integer vector specifying the reference from which the combined label was
derived.

• delta.next, a numeric vector containing the difference between the best and next-best score.
If fine.tune=TRUE, this is reported for scores after fine-tuning.

• orig.results, a DataFrame containing results.

It may also contain pruned.labels if these were also present in results.

Dealing with mismatching gene availabilities

It is recommended that the universe of genes be the same across all references in trained. (Or, at
the very least, markers used in one reference are available in the others.) This ensures that a common
feature space can be generated when comparing correlations across references. Differences in the
availability of markers between references will have unpredictable effects on the comparability of
correlation scores, so a warning will be emitted by default when warn.lost=TRUE. Callers can
protect against this by subsetting each reference to the intersection of features present across all
references - this is done by default in SingleR.

That said, this requirement may be too strict when dealing with many references with diverse fea-
ture annotations. In such cases, the recomputation for each reference will automatically use all
available markers in that reference. The idea here is to avoid penalizing all references by removing
an informative marker when it is only absent in a single reference. We hope that the recomputed
scores are still roughly comparable if the number of lost markers is relatively low, coupled with the
use of ranks in the calculation of the Spearman-based scores to reduce the influence of individual
markers. This is perhaps as reliable as one might imagine.

Author(s)

Aaron Lun

References

Lun A, Bunis D, Andrews J (2020). Thoughts on a more scalable algorithm for multiple references.
https://github.com/SingleR-inc/SingleR/issues/94

https://github.com/SingleR-inc/SingleR/issues/94

datasets 11

See Also

SingleR and classifySingleR, for generating predictions to use in results.

Examples

Making up data.
ref <- .mockRefData(nreps=8)
ref1 <- ref[,1:2%%2==0]
ref2 <- ref[,1:2%%2==1]
ref2$label <- tolower(ref2$label)

test <- .mockTestData(ref)

Performing classification within each reference.
test <- scuttle::logNormCounts(test)

ref1 <- scuttle::logNormCounts(ref1)
train1 <- trainSingleR(ref1, labels=ref1$label)
pred1 <- classifySingleR(test, train1)

ref2 <- scuttle::logNormCounts(ref2)
train2 <- trainSingleR(ref2, labels=ref2$label)
pred2 <- classifySingleR(test, train2)

Combining results with recomputation of scores.
combined <- combineRecomputedResults(

results=list(pred1, pred2),
test=test,
trained=list(train1, train2))

combined[,1:5]

datasets Reference dataset extractors

Description

These dataset getter functions are deprecated as they have been migrated to the celldex package for
more general use throughout the Bioconductor package ecosystem.

Usage

HumanPrimaryCellAtlasData(...)

BlueprintEncodeData(...)

ImmGenData(...)

12 getClassicMarkers

MouseRNAseqData(...)

DatabaseImmuneCellExpressionData(...)

NovershternHematopoieticData(...)

MonacoImmuneData(...)

Arguments

... Further arguments to pass to the celldex function of the same name.

Value

A SummarizedExperiment object containing the reference dataset.

Author(s)

Aaron Lun

getClassicMarkers Get classic markers

Description

Find markers between pairs of labels using the “classic” approach, i.e., based on the log-fold change
between the medians of labels.

Usage

getClassicMarkers(
ref,
labels,
assay.type = "logcounts",
check.missing = TRUE,
de.n = NULL,
num.threads = bpnworkers(BPPARAM),
BPPARAM = SerialParam()

)

Arguments

ref A numeric matrix of expression values where rows are genes and columns are
reference samples (individual cells or bulk samples). Each row should be named
with the gene name. In general, the expression values are expected to be nor-
malized and log-transformed, see Details.
Alternatively, a SummarizedExperiment object containing such a matrix.
Alternatively, a list or List of SummarizedExperiment objects or numeric matri-
ces containing multiple references.

getClassicMarkers 13

labels A character vector or factor of known labels for all samples in ref.
Alternatively, if ref is a list, labels should be a list of the same length. Each
element should contain a character vector or factor specifying the labels for the
columns of the corresponding element of ref.

assay.type An integer scalar or string specifying the assay of ref containing the relevant
expression matrix, if ref is a SummarizedExperiment object (or is a list that
contains one or more such objects).

check.missing Logical scalar indicating whether rows should be checked for missing values.
If true and any missing values are found, the rows containing these values are
silently removed.

de.n An integer scalar specifying the number of DE genes to use. Defaults to 500 *
(2/3) ^ log2(N) where N is the number of unique labels.

num.threads Integer scalar specifying the number of threads to use.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

Details

This function implements the classic mode of marker detection in SingleR, based only on the mag-
nitude of the log-fold change between labels. In many respects, this approach may be suboptimal
as it does not consider the variance within each label and has limited precision when the expres-
sion values are highly discrete. Nonetheless, it is often the only possible approach when dealing
with reference datasets that lack replication and thus cannot be used with more advanced marker
detection methods.

If multiple references are supplied, ranking is performed based on the average of the log-fold
changes within each reference. This avoids comparison of expression values across references
that can be distorted by batch effects. If a pair of labels does not co-occur in at least one reference,
no attempt is made to perform the comparison and the corresponding character vector is left empty
in the output.

The character vector corresponding to the comparison of a label to itself is always empty.

Value

A list of lists of character vectors, where both the outer and inner lists have names equal to the
unique levels of labels. The character vector contains the names of the top de.n genes with the
largest positive log-fold changes in one label (entry of the outer list) against another label (entry of
the inner list).

Author(s)

Aaron Lun, based on the original SingleR code by Dvir Aran.

See Also

trainSingleR and SingleR, where this function is used when genes="de" and de.method="classic".

14 getDeltaFromMedian

Examples

ref <- .mockRefData()
ref <- scuttle::logNormCounts(ref)
out <- getClassicMarkers(ref, labels=ref$label)
str(out)

Works with multiple references:
ref2 <- .mockRefData()
ref2 <- scuttle::logNormCounts(ref2)
out2 <- getClassicMarkers(list(ref, ref2), labels=list(ref$label, ref2$label))
str(out2)

getDeltaFromMedian Compute the difference from median

Description

Compute the delta value for each cell, defined as the difference between the score for the assigned
label and the and median score across all labels.

Usage

getDeltaFromMedian(results)

Arguments

results A DataFrame containing the output generated by SingleR or classifySingleR.

Details

This funciton computes the same delta value that is used in pruneScores, for users who want to
apply more custom filters or visualizations.

Value

A numeric vector containing delta values for each cell in results.

Author(s)

Aaron Lun

See Also

pruneScores, where the delta values are used.

matchReferences 15

Examples

Running the SingleR() example.
example(SingleR, echo=FALSE)

summary(getDeltaFromMedian(pred))

matchReferences Match labels from two references

Description

Match labels from a pair of references, corresponding to the same underlying cell type or state but
with differences in nomenclature.

Usage

matchReferences(ref1, ref2, labels1, labels2, ...)

Arguments

ref1, ref2 Numeric matrices of single-cell (usually normalized and log-transformed) ex-
pression values where rows are genes and columns are cells. Alternatively,
SummarizedExperiment objects containing such matrices.

labels1, labels2
A character vector or factor of known labels for all cells in ref1 and ref2,
respectively.

... Further arguments to pass to SingleR.

Details

It is often the case that two references contain the same cell types for the same biological system,
but the two sets of labels differ in their nomenclature. This makes it difficult to compare results
from different references. It also interferes with attempts to combine multiple datasets to create a
larger, more comprehensive reference.
The matchReferences function attempts to facilitate matching of labels across two reference datasets.
It does so by using one of the references (say, ref1) to assign its labels to the other (ref2). For
each label X in labels2, we compute the probability of assigning a sample of X to each label Y in
labels1. We also use ref2 to assign labels to ref1, to obtain the probability of assigning a sample
of Y to label X.
We then consider the probability of mutual assignment, i.e., assigning a sample of X to Y and a
sample of Y to X. This is computed by simply taking the product of the two probabilities mentioned
earlier. The output matrix contains mutual assignment probabilities for all pairs of X (rows) and Y
(columns).
The mutual assignment probabilities are only high if there is a 1:1 mapping between labels. A
perfect mapping manifests as probabilities of 1 in the relevant entries of the output matrix. Lower
values are expected for ambiguous mappings and near-zero values for labels that are specific to one
reference.

16 plotDeltaDistribution

Value

A numeric matrix containing a probability table of mutual assignment. Values close to 1 represent
a 1:1 mapping between labels across the two references.

Author(s)

Aaron Lun

See Also

SingleR, to do the actual cross-assignment.

Examples

example(SingleR, echo=FALSE)
test$label <- paste0(test$label, "_X") # modifying the labels.
matchReferences(test, ref, labels1=test$label, labels2=ref$label)

plotDeltaDistribution Plot delta distributions

Description

Plot the distribution of deltas (i.e., the gap between the assignment score for the assigned label and
those of the remaining labels) across cells assigned to each reference label.

Usage

plotDeltaDistribution(
results,
show = c("delta.med", "delta.next"),
labels.use = NULL,
references = NULL,
chosen.only = TRUE,
size = 2,
ncol = 5,
dots.on.top = TRUE,
this.color = "#000000",
pruned.color = "#E69F00",
grid.vars = list()

)

plotDeltaDistribution 17

Arguments

results A DataFrame containing the output from SingleR, classifySingleR, or combineRecomputedResults.

show String specifying whether to show the difference from the median ("delta.med")
or the difference from the next-best score ("delta.next").

labels.use Character vector specifying the labels to show in the plot facets. Defaults to all
labels in results.

references Integer scalar or vector specifying the references to visualize. This is only rele-
vant for combined results, see Details.

chosen.only Logical scalar indicating whether to only show deltas for individual labels that
were chosen as the final label in a combined result.

size Numeric scalar to set the size of the dots.

ncol Integer scalar to set the number of labels to display per row.

dots.on.top Logical scalar specifying whether cell dots should be plotted on top of the violin
plots.

this.color String specifying the color for cells that were assigned to the label.

pruned.color String specifying the color for cells that were assigned to the label but pruned.

grid.vars Named list of extra variables to pass to grid.arrange, used to arrange the mul-
tiple plots generated when references is of length greater than 1.

Details

This function creates jitter and violin plots showing the deltas for all cells across one or more labels.
The idea is to provide a visual diagnostic for the confidence of assignment of each cell to its label.
The show argument determines what values to show on the y-axis:

• "delta.med", the difference between the score of the assigned label and the median of all
scores for each cell.

• "delta.next", the difference between best and second-best scores of each cell at the last
round of fine-tuning.

If any fine-tuning was performed, the highest scoring label for an individual cell may not be its
final label. This may manifest as negative values when show="delta.med". show="delta.next"
is guaranteed to be positive but may be overly stringent for references involving very similar labels.

Pruned calls are identified as NAs in the pruned.labels field in results. Points corresponding to
cells with pruned calls are colored by pruned.color; this can be disabled by setting pruned.color=NA.

For combined results (see ?combineRecomputedResults), this function will show the deltas faceted
by the assigned label within each individual reference. The references to show in this manner can be
specified using the references argument, entries of which refer to columns of results$orig.results.

By default, a separate plot is created for each individual reference in a combined results. Deltas
are only shown in each plot if the label in the corresponding reference was chosen as the overall
best label in the combined results. However, this can be changed to show all deltas for an individual
reference by setting chosen.only=FALSE.

18 plotMarkerHeatmap

Value

If references specifies a single set of deltas, a ggplot object is returned showing the deltas in violin
plots.

If references specifies multiple deltas for a combined result, multiple ggplot objects are generated
in a grid on the current graphics device.

If delta.use specifies multiple deltas and grid.vars is set to NULL, a list is returned containing
the ggplot objects for manual display.

Author(s)

Daniel Bunis and Aaron Lun

See Also

pruneScores, to remove low-quality labels based on the scores.

plotScoreDistribution and plotScoreHeatmap, for alternative diagnostic plots.

Examples

example(SingleR, echo=FALSE)

Showing the delta to the median:
plotDeltaDistribution(pred)

Showing the delta to the next-highest score:
plotDeltaDistribution(pred, show = "delta.next")

Multi-reference compatibility:
example(combineRecomputedResults, echo = FALSE)

plotDeltaDistribution(results = combined)

plotDeltaDistribution(results = combined, chosen.only=FALSE)

Tweaking the grid controls:
plotDeltaDistribution(combined, grid.vars = list(ncol = 2))

plotMarkerHeatmap Plot a heatmap of the markers for a label

Description

Create a heatmap of the log-normalized expression for the most interesting markers of a particular
label.

plotMarkerHeatmap 19

Usage

plotMarkerHeatmap(
results,
test,
label,
other.labels = NULL,
assay.type = "logcounts",
display.row.names = NULL,
use.pruned = FALSE,
order.by.effect = "cohens.d",
order.by.summary = "min.rank",
top = 20,
num.threads = bpnworkers(BPPARAM),
BPPARAM = SerialParam(),
...

)

configureMarkerHeatmap(
results,
test,
label,
other.labels = NULL,
assay.type = "logcounts",
use.pruned = FALSE,
order.by.effect = "cohens.d",
order.by.summary = "min.rank",
num.threads = 1

)

Arguments

results A DataFrame containing the output from SingleR, classifySingleR, or combineRecomputedResults.

test A numeric matrix of log-normalized expression values where rows are genes
and columns are cells. Each row should be named with the same gene name that
was used to compute results.
Alternatively, a SummarizedExperiment object containing such a matrix.

label String specifying the label of interest.

other.labels Character vector specifying the other labels to be compared to label when find-
ing interesting markers. Defaults to all available labels.

assay.type Integer scalar or string specifying the matrix of expression values to use if test
is a SummarizedExperiment.

display.row.names

Character vector of length equal to the number of rows of test, containing the
names of the features to show on the heatmap (e.g., to replace IDs with symbols).
If NULL, the existing row names of test are used.

use.pruned Logical scalar indicating whether the pruned labels should be used instead.

20 plotMarkerHeatmap

order.by.effect

String specifying the effect size from scoreMarkers with which to sort for in-
teresting markers.

order.by.summary

String specifying the summary statistic from scoreMarkers with which to sort
for interesting markers.

top Integer scalar indicating the top most interesting markers to show in the heatmap.

num.threads Integer scalar specifying the number to threads to use.

BPPARAM Deprecated, use num.threads instead.

... Additional parameters for heatmap control passed to pheatmap.

Details

The plotMarkerHeatmap function creates a heatmap where each row is a marker gene for label
and each column is a cell in the test dataset. The aim is to check the effectiveness of the reference-
derived markers for distinguishing between labels in the test dataset. “Interesting” markers should
show strong upregulation in cells assigned to label compared to cells assigned to all other.labels.
We identify such markers by scoring all reference-derived markers with scoreMarkers on the test
expression. The top markers based on the specified order.by.* fields are shown in the heatmap.
If only one label is present, markers are ranked by average abundance intead.

The configureMarkerHeatmap function performs all the calculations underlying plotMarkerHeatmap.
This can be used to apply the same general approach with other plots, e.g., using functions from
scuttle or dittoSeq.

Value

For plotMarkerHeatmap, the output of pheatmap is returned showing the heatmap on the current
graphics device.

For configureMarkerHeatmap, a list is returned containing:

• rows, an integer vector of row indices for the markers of label, ordered from most to least
interesting.

• columns, an integer vector of column indices to show in the heatmap. This is ordered by the
predicted labels so that cells assigned to the same label are contiguous.

• predictions, a character vector of predicted labels for cells to be shown in the heatmap.
Each entry corresponds to an entry of columns. The labels in this vector are guaranteed to be
sorted.

Author(s)

Aaron Lun

Examples

Running the SingleR() example.
example(SingleR, echo=FALSE)

plotScoreDistribution 21

plotMarkerHeatmap(pred, test, pred$labels[1])
plotMarkerHeatmap(pred, test, pred$labels[1], use.pruned=TRUE)
plotMarkerHeatmap(pred, test, pred$labels[1], order.by.effect="auc")

Manually configuring a simpler heatmap by label:
config <- configureMarkerHeatmap(pred, test, pred$labels[1])
mat <- assay(test, "logcounts")[head(config$rows, 20), config$columns]
aggregated <- scuttle::summarizeAssayByGroup(mat, config$predictions)
pheatmap::pheatmap(assay(aggregated), cluster_col=FALSE)

plotScoreDistribution Plot score distributions

Description

Plot the distribution of assignment scores across all cells assigned to each reference label.

Usage

plotScoreDistribution(
results,
show = NULL,
labels.use = NULL,
references = NULL,
scores.use = NULL,
calls.use = 0,
pruned.use = NULL,
size = 0.5,
ncol = 5,
dots.on.top = TRUE,
this.color = "#F0E442",
pruned.color = "#E69F00",
other.color = "gray60",
show.nmads = 3,
show.min.diff = NULL,
grid.vars = list()

)

Arguments

results A DataFrame containing the output from SingleR, classifySingleR, or combineRecomputedResults.

show Deprecated, use plotDeltaDistribution instead for show!="scores".

labels.use Character vector specifying the labels to show in the plot facets. Defaults to all
labels in results.

references Integer scalar or vector specifying the references to visualize. This is only rele-
vant for combined results, see Details.

22 plotScoreDistribution

scores.use Deprecated, see references.

calls.use Deprecated and ignored.

pruned.use Deprecated and ignored.

size Numeric scalar to set the size of the dots.

ncol Integer scalar to set the number of labels to display per row.

dots.on.top Logical scalar specifying whether cell dots should be plotted on top of the violin
plots.

this.color String specifying the color for cells that were assigned to the label.

pruned.color String specifying the color for cells that were assigned to the label but pruned.

other.color String specifying the color for other cells not assigned to the label.
show.nmads, show.min.diff

Deprecated, use plotDeltaDistribution instead.

grid.vars Named list of extra variables to pass to grid.arrange, used to arrange the mul-
tiple plots generated when references is of length greater than 1.

Details

This function creates jitter and violin plots showing assignment scores for all cells across one or
more labels. Each facet represents a label in labels.use and contains three violin plots:

• “Assigned”, containing scores for all cells assigned to that label. Colored according to this.color.
“Pruned”, containing scores for all cells assigned to that label but pruned out, e.g., by pruneScores.
Colored according to pruned.color, and can be omitted by setting pruned.color=NA.

• “Other”, containing the scores for all cells assigned to other labels. Colored according to
other.color.

The expectation is that the former is higher than the latter, though the deltas generated by plotDeltaDistribution
are often more informative in this regard.

For combined results (see ?combineRecomputedResults), this function can show both the com-
bined and individual scores. This is done using the references argument, entries of which refer to
columns of results$orig.results if positive or to the combined results if zero. For example:

• If we set references=2, we will plot the scores from the second individual reference.

• If we set references=1:2, we will plot the scores from first and second references (in separate
plots) faceted by their corresponding labels.

• By default, the function will create a separate plot for the combined scores and each individual
reference, equivalent to references=0:N for N individual references.

Value

If references specifies a single set of scores, a ggplot object is returned showing the scores in
violin plots.

If references specifies multiple scores for a combined result, multiple ggplot objects are generated
in a grid on the current graphics device.

If references specifies multiple scores and grid.vars=NULL, a list is returned containing the
ggplot objects for manual display.

plotScoreHeatmap 23

Author(s)

Daniel Bunis and Aaron Lun

See Also

pruneScores, to remove low-quality labels based on the scores.

plotDeltaDistribution and plotScoreHeatmap, for alternative diagnostic plots.

Examples

example(SingleR, echo=FALSE)

To show the distribution of scores grouped by label:
plotScoreDistribution(results = pred)

We can display a particular label using the label
plotScoreDistribution(results = pred,

labels.use = "B")

For multiple references, default output will contain separate plots for
each original reference as well as for the the combined scores.
example(combineRecomputedResults, echo = FALSE)
plotScoreDistribution(results = combined)

'references' specifies which original results to plot distributions for.
plotScoreDistribution(results = combined, references = 0)
plotScoreDistribution(results = combined, references = 1:2)

Tweaking the grid arrangement:
plotScoreDistribution(combined, grid.vars = list(ncol = 2))

plotScoreHeatmap Plot a score heatmap

Description

Create a heatmap of the SingleR assignment scores across all cell-label combinations.

Usage

plotScoreHeatmap(
results,
cells.use = NULL,
labels.use = NULL,
clusters = NULL,
show.labels = TRUE,
show.pruned = FALSE,

24 plotScoreHeatmap

max.labels = 40,
normalize = TRUE,
cells.order = NULL,
order.by = c("labels", "clusters"),
rows.order = NULL,
scores.use = NULL,
calls.use = 0,
na.color = "gray30",
color = NA,
breaks = NA,
legend_breaks = NA,
legend_labels = NA,
cluster_cols = FALSE,
annotation_col = NULL,
show_colnames = FALSE,
silent = FALSE,
...,
grid.vars = list()

)

Arguments

results A DataFrame containing the output from SingleR, classifySingleR, or combineRecomputedResults.

cells.use Integer or string vector specifying the single cells (i.e., rows of results) to
show. If NULL, all cells are shown.

labels.use Character vector specifying the labels to show in the heatmap rows. Defaults to
all labels in results.

clusters String vector or factor containing cell cluster assignments, to be shown as an
annotation bar in the heatmap.

show.labels Logical indicating whether the assigned labels should be shown as an annotation
bar.

show.pruned Logical indicating whether the pruning status of the cell labels, as defined by
pruneScores, should be shown as an annotation bar.

max.labels Integer scalar specifying the maximum number of labels to show.

normalize Logical specifying whether correlations should be normalized to lie in [0, 1].

cells.order Integer or String vector specifying how to order the cells/columns of the heatmap.
Regardless of cells.use, this input should be the the same length as the total
number of cells. Ignored if cluster_cols is set.

order.by String providing the annotation to be used for cells/columns ordering. Can be
"labels" (default) or "clusters" (when provided). Ignored if cells.order or
cluster_cols are specified.

rows.order String vector specifying how to order rows of the heatmap. Contents should be
the reference-labels in the order you would like them to appear, from top-to-
bottom. For combined results, include labels for all plots in a single vector and
labels relevant to each plot will be extracted.

plotScoreHeatmap 25

scores.use Integer scalar or vector specifying the individual annotation result from which
to take scores. This is only relevant for combined results, see Details.

calls.use Integer scalar or vector specifying the individual annotation result from which
to take labels, for use in the annotation bar when show.labels=TRUE. This is
only relevant for combined results, see Details.

na.color String specifying the color for non-calculated scores of combined results. This
will always be displayed in the legend if any NA values are present in the scores.

color Character vector of colors passed to pheatmap. If NA and normalize=TRUE,
the viridis color scheme is used by default; while if normalize=FALSE, a de-
fault red-blue color scheme is chosen that should be symmetric around zero (see
breaks).

breaks Numeric vector to map scores to colors, see the argument of the same name in
pheatmap. If NA, this defaults to a sequence from 0 to 1 when normalize=TRUE,
or a sequence from -T to T where T is the largest absolute score when normalize=FALSE.

legend_breaks, legend_labels
Arguments passed to pheatmap to label the legend. If NA, only the legend ex-
tremes are labelled by default; and when normalize=TRUE, the legend extremes
are only labelled as “Lower” and “Higher”, as actual normalized values have
little meaning.

annotation_col, cluster_cols, show_colnames, silent, ...
Additional parameters for heatmap control passed to pheatmap.

grid.vars A named list of extra variables to pass to grid.arrange, used to arrange the
multiple plots generated when scores.use is of length greater than 1.

Details

This function creates a heatmap containing the SingleR initial assignment scores for each cell
(columns) to each reference label (rows). Users can then easily identify the high-scoring labels
associated with each cell and/or cluster of cells.

If show.labels=TRUE, an annotation bar will be added to the heatmap showing the label assigned
to each cell. This is also used to order the columns for a more organized visualization when
order.by="label". Note that scores shown in the heatmap are initial scores prior to the fine-
tuning step, so the reported labels may not match up to the visual maximum for each cell in the
heatmap.

If max.labels is less than the total number of unique labels, only the top labels are shown in the
plot. Labels that were called most frequently are prioritized. The remaining labels are then selected
based on:

• Labels with max z-scores after per-cell centering and scaling of the scores matrix, if results
does not contain combined scores.

• Labels which were suggested most frequently by individual references, if results contains
combined scores.

Value

If scores.use specifies a single set of scores, the output of pheatmap is returned showing the
heatmap on the current graphics device.

26 plotScoreHeatmap

If scores.use specifies multiple scores for a combined result, multiple heatmaps are generated in
a grid on the current graphics device.

If scores.use specifies multiple scores and grid.vars is set to NULL, a list is returned containing
the pheatmap globs for manual display.

Working with combined results

For combined results (see ?combineRecomputedResults), this function can show both the com-
bined and individual scores or labels. This is done using the scores.use and calls.use arguments,
entries of which refer to columns of results$orig.results if positive or to the combined results
if zero. For example:

• If we set scores.use=2 and calls.use=1, we will plot the scores from the second individual
reference with the annotation bar containing label assignments from the first reference.

• If we set scores.use=1:2 and calls.use=1:2, we will plot the scores from first and second
references (in separate plots) with the annotation bar in each plot containing the corresponding
label assignments.

• By default, the function will create a separate plot the combined scores and each individual
reference. In each plot, the annotation bar contains the combined labels; this is equivalent to
scores.use=0:N and calls.use=0 for N individual references.

Tweaking the output

Additional arguments can be passed to pheatmap for further tweaking of the heatmap. Partic-
ularly useful parameters are show_colnames, which can be used to display cell/cluster names;
treeheight_row, which sets the width of the clustering tree; and annotation_col, which can
be used to add extra annotation layers. Clustering, pruning and label annotations are automatically
generated and appended to annotation_col when available.

Normalization of colors

If normalize=TRUE, scores will be linearly adjusted for each cell so that the smallest score is 0 and
the largest score is 1. This is followed by cubing of the adjusted scores to improve dynamic range
near 1. Visually, the color scheme is changed to a blue-green-yellow scale.

The adjustment is intended to inflate differences between scores within a given cell for easier vi-
sualization. This is because the scores are often systematically shifted between cells, making the
raw values difficult to directly compare. However, it may be somewhat misleading; fine-tuning may
appear to assign a cell to a label with much lower score whereas the actual scores are much closer.
It is for this reason that the color bar values are not shown as the absolute values of the score have
little meaning.

Note that this transformation is not dependent on the choice of the top max.labels labels. Altering
max.labels will not change the normalized values, only the labels that are shown. However, the
transformation will respond to labels.use.

Author(s)

Daniel Bunis, based on code by Dvir Aran.

plotScoreHeatmap 27

See Also

SingleR, to generate scores.

pruneScores, to remove low-quality labels based on the scores.

pheatmap, for additional tweaks to the heatmap.

grid.arrange, for tweaks to the how heatmaps are arranged when multiple are output together.

Examples

Running the SingleR() example.
example(SingleR, echo=FALSE)

Grab the original identities of the cells as mock clusters
clusts <- test$label

Creating a heatmap with just the labels.
plotScoreHeatmap(pred)

Creating a heatmap with clusters also displayed.
plotScoreHeatmap(pred,

clusters=clusts)

Creating a heatmap with whether cells were pruned displayed.
plotScoreHeatmap(pred,

show.pruned = TRUE)

We can also turn off the normalization with Normalize = FALSE
plotScoreHeatmap(pred, clusters=clusts,

normalize = FALSE)

To only show certain labels, you can use labels.use or max.labels
plotScoreHeatmap(pred, clusters=clusts,

labels.use = c("A","B","D"))
plotScoreHeatmap(pred, clusters=clusts,

max.labels = 4)

We can pass extra tweaks the heatmap as well
plotScoreHeatmap(pred, clusters=clusts,

fontsize_row = 20)
plotScoreHeatmap(pred, clusters=clusts,

treeheight_row = 15)
plotScoreHeatmap(pred, clusters=clusts, cluster_col = TRUE,

cutree_cols = 5)

Multi-Reference Compatibility

example(combineRecomputedResults, echo = FALSE)
plotScoreHeatmap(combined)

'scores.use' sets which particular run's scores to show, and can be multiple
plotScoreHeatmap(combined,

scores.use = 1)

28 pruneScores

plotScoreHeatmap(combined,
scores.use = c(0,2))

'calls.use' adjusts which run's labels and pruning calls to display.
plotScoreHeatmap(combined,

calls.use = 1)

To have plots output in a grid rather than as separate pages, provide,
a list of inputs for gridExtra::grid.arrange() to 'grids.vars'.
plotScoreHeatmap(combined,

grid.vars = list(ncol = 1))

An empty list will use grid.arrange defaluts
plotScoreHeatmap(combined,

grid.vars = list())

pruneScores Prune out low-quality assignments

Description

Remove low-quality assignments based on the cell-label score matrix returned by classifySingleR.

Usage

pruneScores(
results,
nmads = 3,
min.diff.med = -Inf,
min.diff.next = 0,
get.thresholds = FALSE

)

Arguments

results A DataFrame containing the output generated by SingleR or classifySingleR.

nmads Numeric scalar specifying the number of MADs to use for defining low outliers
in the per-label distribution of delta values (i.e., difference from median).

min.diff.med Numeric scalar specifying the minimum acceptable delta for each cell.

min.diff.next Numeric scalar specifying the minimum difference between the best score and
the next best score in fine-tuning.

get.thresholds Logical scalar indicating whether the per-label thresholds on the deltas should
be returned.

pruneScores 29

Details

By itself, the SingleR algorithm will always assign a label to every cell. This occurs even if the cell’s
true label is not represented in the reference set of labels, resulting in assignment of an incorrect
label to that cell. The pruneScores function aims to mitigate this effect by removing poor-quality
assignments with “low” scores.

We compute a “delta” value for each cell, defined as the difference between the score for the as-
signed label and the median score across all labels. If the delta is small, this indicates that the cell
matches all labels with the same confidence such that the assigned label is not particularly mean-
ingful. The aim is to discard low delta values caused by (i) ambiguous assignments with closely
related reference labels and (ii) incorrect assignments that match poorly to all reference labels.

We use an outlier-based approach to obtain a minimum threshold for filtering “low” delta values.
For each (pre-fine-tuning) label, we obtain a distribution of deltas across all assigned cells. Cells
that are more than nmads below the median score for each label are ignored. This assumes that
most cells are correctly assigned to their true label and that cells of the same label have a unimodal
distribution of delta values.

Filtering on outliers is useful as it adapts to the spread and scale of delta values. For example,
references with many closely related cell types will naturally yield lower deltas. By comparison,
references with more distinct cell types would yield large deltas, even for cells that have no rep-
resentative type in the reference and are incorrectly assigned to the next-most-related label. The
outlier definition procedure adjusts naturally to these situations.

The default nmads is motivated by the fact that, for a normal distribution, 99% of observations lie
within 3 standard deviations from the mean. Smaller values for nmads will increase the stringency
of the pruning.

Value

A logical vector is returned by default, specifying which assignments in results should be ignored.

If get.thresholds=TRUE, a numeric vector is returned containing the per-label thresholds on the
deltas, as defined using the outlier-based approach with nmads.

Applying a hard filter on the deltas

If min.diff.med is specified, cells with deltas below this threshold are discarded. This is provided
as an alternative filtering approach if the assumptions of outlier detection are violated. For example,
if one label is consistently missassigned, the incorrect assignments would not be pruned. In such
cases, one could set a threshold with min.diff.med to forcibly remove low-scoring cells.

It is possible for the per-label delta distribution to be multimodal yet still correct, e.g., due to cells
belonging to subtypes nested within a main type label. This violates the unimodal assumption
mentioned above for the outlier detection. In such cases, it may be better to set nmads=Inf and rely
on min.diff.med for filtering instead.

Note that the deltas do not consider the effects of fine-tuning as scores are not comparable across
different fine-tuning steps. In situations involving a majority of labels with only subtle distinctions,
it is possible for the scores to be relatively similar but for the labels to be correctly assigned after
fine-tuning. While outlier detection will automatically adapt to smaller scores, this effect should be
considered if a threshold needs to be manually chosen for use in min.diff.med.

30 rebuildIndex

Filtering on fine-tuning scores

If fine-tuning was performed to generate results, we ignore any cell for which the fine-tuning
score is not more than min.diff.next greater than the next best score. This aims to only retain
labels for which there is no ambiguity in assignment, especially when some labels have similar
scores because they are closely related (and thus easily confused).

Typical values of min.diff.next woud lie between [0, 0.1]. That said, the min.diff.next cutoff
can be harmful in some applications involving highly related labels. From a user perspective, any
confusion between these labels may not be a problem as the assignment is broadly correct; however,
the best and next best scores will be very close and cause the labels to be unnecessarily discarded.

Author(s)

Aaron Lun and Daniel Bunis

See Also

classifySingleR, to generate results.

getDeltaFromMedian, to compute the per-cell deltas.

Examples

Running the SingleR() example.
example(SingleR, echo=FALSE)

summary(pruneScores(pred))
pruneScores(pred, get.thresholds=TRUE)

Less stringent:
summary(pruneScores(pred, min.diff.med=0))
summary(pruneScores(pred, nmads=5))

More stringent:
summary(pruneScores(pred, min.diff.med=0.1))
summary(pruneScores(pred, nmads=2))
summary(pruneScores(pred, min.diff.next=0.1))

rebuildIndex Rebuild the index

Description

Rebuild the index (or indices), typically after restarting the R session. This is because the indices
are held in external memory and are not serialized correctly by R.

Usage

rebuildIndex(trained, num.threads = 1)

SingleR 31

Arguments

trained List containing the output of trainSingleR, possibly after some operations that
invalidate the indices.

num.threads Integer specifying the number of threads to use for training.

Value

trained is returned with valid indices. If it already had valid indices, this function is a no-op.

Author(s)

Aaron Lun

Examples

Making up the training set.
ref <- .mockRefData()
ref <- scuttle::logNormCounts(ref)
trained <- trainSingleR(ref, ref$label)
trained$built # a valid address

Saving and reloading the index.
tmp <- tempfile(fileext=".rds")
saveRDS(trained, file=tmp)
reloaded <- readRDS(tmp)
reloaded$built # not valid anymore

rebuilt <- rebuildIndex(reloaded)
rebuilt$built # back to validity

SingleR Annotate scRNA-seq data

Description

Returns the best annotation for each cell in a test dataset, given a labelled reference dataset in the
same feature space.

Usage

SingleR(
test,
ref,
labels,
method = NULL,
clusters = NULL,
genes = "de",

32 SingleR

sd.thresh = 1,
de.method = "classic",
de.n = NULL,
de.args = list(),
aggr.ref = FALSE,
aggr.args = list(),
recompute = TRUE,
restrict = NULL,
quantile = 0.8,
fine.tune = TRUE,
tune.thresh = 0.05,
fine.tune.combined = fine.tune,
prune = TRUE,
assay.type.test = "logcounts",
assay.type.ref = "logcounts",
check.missing.test = FALSE,
check.missing.ref = check.missing,
check.missing = TRUE,
num.threads = bpnworkers(BPPARAM),
BNPARAM = NULL,
BPPARAM = SerialParam()

)

Arguments

test A numeric matrix of single-cell expression values where rows are genes and
columns are cells. Alternatively, a SummarizedExperiment object containing
such a matrix.

ref A numeric matrix of (usually normalized and log-transformed) expression val-
ues from a reference dataset, or a SummarizedExperiment object containing
such a matrix; see trainSingleR for details.
Alternatively, a list or List of SummarizedExperiment objects or numeric matri-
ces containing multiple references. Row names may be different across entries
but only the intersection will be used, see Details.

labels A character vector or factor of known labels for all samples in ref.
Alternatively, if ref is a list, labels should be a list of the same length. Each
element should contain a character vector or factor specifying the labels for the
columns of the corresponding element of ref.

method Deprecated.

clusters A character vector or factor of cluster identities for each cell in test. If set,
annotation is performed on the aggregated cluster profiles, otherwise it defaults
to per-cell annotation.

genes, sd.thresh, de.method, de.n, de.args
Arguments controlling the choice of marker genes used for annotation, see trainSingleR.

aggr.ref, aggr.args
Arguments controlling the aggregation of the references prior to annotation, see
trainSingleR.

SingleR 33

recompute Deprecated and ignored.

restrict A character vector of gene names to use for marker selection. By default, all
genes in ref are used.

quantile, fine.tune, tune.thresh, fine.tune.combined, prune
Further arguments to pass to classifySingleR.

assay.type.test

An integer scalar or string specifying the assay of test containing the relevant
expression matrix, if test is a SummarizedExperiment object.

assay.type.ref An integer scalar or string specifying the assay of ref containing the relevant
expression matrix, if ref is a SummarizedExperiment object (or is a list that
contains one or more such objects).

check.missing.test

Logical scalar indicating whether rows of test should be checked for missing
values (and if found, removed).

check.missing.ref

Logical scalar indicating whether rows of ref should be checked for missing
values (and if found, removed).

check.missing Deprecated, use check.missing.test and check.missing.ref instead.

num.threads Integer scalar specifying the number of threads to use for index building and
classification.

BNPARAM Deprecated and ignored.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed
in other steps, see ?trainSingleR and ?classifySingleR for more details.

Details

This function is just a convenient wrapper around trainSingleR and classifySingleR. The func-
tion will automatically restrict the analysis to the intersection of the genes in both ref and test.
If this intersection is empty (e.g., because the two datasets use different gene annotations), an error
will be raised.

If clusters is specified, per-cell profiles are summed to obtain per-cluster profiles. Annotation is
then performed by running classifySingleR on these profiles. This yields a DataFrame with one
row per level of clusters.

The default settings of this function are based on the assumption that ref contains or bulk data. If
it contains single-cell data, this usually requires a different de.method choice. Read the Note in
?trainSingleR for more details.

Value

A DataFrame is returned containing the annotation statistics for each cell (one cell per row). This
is identical to the output of classifySingleR.

Author(s)

Aaron Lun, based on code by Dvir Aran.

34 trainSingleR

References

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing
reveals a transitional profibrotic macrophage. Nat. Immunology 20, 163–172.

Examples

Mocking up data with log-normalized expression values:
ref <- .mockRefData()
test <- .mockTestData(ref)

ref <- scuttle::logNormCounts(ref)
test <- scuttle::logNormCounts(test)

Running the classification with different options:
pred <- SingleR(test, ref, labels=ref$label)
table(predicted=pred$labels, truth=test$label)

k.out<- kmeans(t(assay(test, "logcounts")), center=5) # mock up a clustering
pred2 <- SingleR(test, ref, labels=ref$label, clusters=k.out$cluster)
table(predicted=pred2$labels, cluster=rownames(pred2))

trainSingleR Train the SingleR classifier

Description

Train the SingleR classifier on one or more reference datasets with known labels.

Usage

trainSingleR(
ref,
labels,
test.genes = NULL,
genes = "de",
sd.thresh = NULL,
de.method = c("classic", "wilcox", "t"),
de.n = NULL,
de.args = list(),
aggr.ref = FALSE,
aggr.args = list(),
recompute = TRUE,
restrict = NULL,
assay.type = "logcounts",
check.missing = TRUE,
approximate = FALSE,
num.threads = bpnworkers(BPPARAM),

trainSingleR 35

BNPARAM = NULL,
BPPARAM = SerialParam()

)

Arguments

ref A numeric matrix of expression values where rows are genes and columns are
reference samples (individual cells or bulk samples). Each row should be named
with the gene name. In general, the expression values are expected to be nor-
malized and log-transformed, see Details.
Alternatively, a SummarizedExperiment object containing such a matrix.
Alternatively, a list or List of SummarizedExperiment objects or numeric matri-
ces containing multiple references.

labels A character vector or factor of known labels for all samples in ref.
Alternatively, if ref is a list, labels should be a list of the same length. Each
element should contain a character vector or factor specifying the labels for the
columns of the corresponding element of ref.

test.genes Character vector of the names of the genes in the test dataset, i.e., the row names
of test in classifySingleR. If NULL, it is assumed that the test dataset and ref
have the same genes in the same row order.

genes A string containing "de", indicating that markers should be calculated from ref.
For back compatibility, other string values are allowed but will be ignored with
a deprecation warning.
Alternatively, if ref is not a list, genes can be either:

• A list of lists of character vectors containing DE genes between pairs of
labels.

• A list of character vectors containing marker genes for each label.

If ref is a list, genes can be a list of length equal to ref. Each element of the list
should be one of the two above choices described for non-list ref, containing
markers for labels in the corresponding entry of ref.

sd.thresh Deprecated and ignored.

de.method String specifying how DE genes should be detected between pairs of labels.
Defaults to "classic", which sorts genes by the log-fold changes and takes the
top de.n. Other options are "wilcox" and "t", see Details. Ignored if genes is
a list of markers/DE genes.

de.n An integer scalar specifying the number of DE genes to use when genes="de".
If de.method="classic", defaults to 500 * (2/3) ^ log2(N) where N is the
number of unique labels. Otherwise, defaults to 10. Ignored if genes is a list of
markers/DE genes.

de.args Named list of additional arguments to pass to scoreMarkers when de.method="wilcox"
or "t". Ignored if genes is a list of markers/DE genes.

aggr.ref Logical scalar indicating whether references should be aggregated to pseudo-
bulk samples for speed, see aggregateReference.

aggr.args Further arguments to pass to aggregateReference when aggr.ref=TRUE.

36 trainSingleR

recompute Deprecated and ignored.

restrict A character vector of gene names to use for marker selection. By default, all
genes in ref are used.

assay.type An integer scalar or string specifying the assay of ref containing the relevant
expression matrix, if ref is a SummarizedExperiment object (or is a list that
contains one or more such objects).

check.missing Logical scalar indicating whether rows should be checked for missing values.
If true and any missing values are found, the rows containing these values are
silently removed.

approximate Deprecated, use BNPARAM instead.

num.threads Integer scalar specifying the number of threads to use for index building.

BNPARAM A BiocNeighborParam object specifying how the neighbor search index should
be constructed.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed
when check.missing = TRUE.

Details

This function uses a training data set to select interesting features and construct nearest neighbor
indices in rank space. The resulting objects can be re-used across multiple classification steps with
different test data sets via classifySingleR. This improves efficiency by avoiding unnecessary
repetition of steps during the downstream analysis.

The automatic marker detection (genes="de") identifies genes that are differentially expressed
between pairs of labels in the reference dataset. The expression values are expected to be log-
transformed and normalized. For each pair of labels, the top de.n genes with strongest upregulation
in one label are chosen as markers to distinguish it from the other label. The exact ranking depends
on the de.method= argument:

• The default de.method="classic" will use getClassicMarkers to compute the median ex-
pression for each label and each gene. Then, for each pair of labels, the top de.n genes with
the largest positive differences are chosen as markers to distinguish the first label from the
second. This is intended for reference datasets derived from bulk transcriptomic data (e.g.,
microarrays) with a high density of non-zero values. It is less effective for single-cell data,
where it is not uncommon to have more than 50% zero counts for a given gene such that the
median is also zero for each group.

• de.method="wilcox" will rank genes based on the area under the curve (AUC) in each pair-
wise comparison between labels. The top de.n genes with the largest AUCs above 0.5 are
chosen as markers for the first label compared to the second. This is analogous to ranking on
significance in the Wilcoxon ranked sum test and is intended for use with single-cell data. The
exact calculaton is performed using the scoreMarkers function.

• de.method="t" will rank genes on the Cohen’s d in each pairiwse comparison. The top de.n
genes with the largest positive Cohen’s d are chosen as markers for the first label compared to
the second. This is roughly analogous to ranking on significance in the t-test and is faster than
the AUC. The exact calculaton is performed using the scoreMarkers function.

trainSingleR 37

Alternatively, users can detect markers externally and pass a list of markers to genes (see “Custom
gene specification”).

Classification with classifySingleR assumes that the test dataset contains all marker genes that
were detected from the reference. If the test and reference datasets do not have the same genes
in the same order, we can set test.genes to the row names of the test dataset. This will instruct
trainSingleR to only consider markers that are present in the test dataset. Any subsequent call to
classifySingleR will also check that test.genes is consistent with rownames(test).

On a similar note, if restrict is specified, marker selection will only be performed using the spec-
ified subset of genes. This can be convenient for ignoring inappropriate genes like pseudogenes
or predicted genes. It has the same effect as filtering out undesirable rows from ref prior to call-
ing trainSingleR. Unlike test.genes, setting restrict does not introduce further checks on
rownames(test) in classifySingleR.

Value

For a single reference, a List is returned containing:

built: An external pointer to various indices in C++ space. Note that this cannot be serialized and
should be removed prior to any saveRDS step.

ref: The reference expression matrix. This may have fewer columns than the input ref if aggr.ref
= TRUE.

markers: A list containing unique, a character vector of all marker genes used in training; and
full, a list of list of character vectors containing the markers for each pairwise comparison
between labels.

labels: A list containing unique, a character vector of all unique reference labels; and full, a
character vector containing the assigned label for each column in ref.

For multiple references, a List of Lists is returned where each internal List corresponds to a refer-
ence in ref and has the same structure as described above.

Custom gene specification

Rather than relying on the in-built feature selection, users can pass in their own features of interest
to genes. The function expects a named list of named lists of character vectors, with each vector
containing the DE genes between a pair of labels. For example:

genes <- list(
A = list(A = character(0), B = "GENE_1", C = c("GENE_2", "GENE_3")),
B = list(A = "GENE_100", B = character(0), C = "GENE_200"),
C = list(A = c("GENE_4", "GENE_5"), B = "GENE_5", C = character(0))

)

If we consider the entry genesAB, this contains marker genes for label "A" against label "B".
That is, these genes are upregulated in "A" compared to "B". The outer list should have one list per
label, and each inner list should have one character vector per label. (Obviously, a label cannot have
markers against itself, so this is just set to character(0).)

Alternatively, genes can be a named list of character vectors containing per-label markers. For
example:

38 trainSingleR

genes <- list(
A = c("GENE_1", "GENE_2", "GENE_3"),
B = c("GENE_100", "GENE_200"),
C = c("GENE_4", "GENE_5")

)

The entry genes$A represent the genes that are upregulated in A compared to some or all other
labels. This allows the function to handle pre-defined marker lists for specific cell populations.
However, it obviously captures less information than marker sets for the pairwise comparisons.

If genes is manually passed, ref can contain the raw counts or any monotonic transformation
thereof. There is no need to supply (log-)normalized expression values for the benefit of the
automatic marker detection. Similarly, for manual genes, the values of de.method, de.n and
sd.thresh have no effect.

Check out the Examples to see how manual genes can be passed to trainSingleR.

Dealing with multiple references

The default SingleR policy for dealing with multiple references is to perform the classification
for each reference separately and combine the results (see ?combineRecomputedResults for an
explanation). To this end, if ref is a list with multiple references, marker genes are identified
separately within each reference if genes = NULL. Rank calculation and index construction is then
performed within each reference separately. The result is identical to lapplying over a list of
references and runing trainSingleR on each reference.

Alternatively, genes can still be used to explicitly specify marker genes for each label in each of
multiple references. This is achieved by passing a list of lists to genes, where each inner list corre-
sponds to a reference in ref and can be of any format described in “Custom feature specification”.
Thus, it is possible for genes to be - wait for it - a list (per reference) of lists (per label) of lists (per
label) of character vectors.

Aggregating single-cell references

It is generally unnecessary to have single-cell resolution on the reference profiles. We can in-
stead set aggr.ref=TRUE to aggregate per-cell references into a set of pseudo-bulk profiles using
aggregateReference. This improves classification speed while using vector quantization to pre-
serve within-label heterogeneity and mitigate the loss of information. Note that any aggregation
is done after marker gene detection; this ensures that the relevant tests can appropriately penal-
ize within-label variation. Users should also be sure to set the seed as the aggregation involves
randomization.

Author(s)

Aaron Lun, based on the original SingleR code by Dvir Aran.

See Also

classifySingleR, where the output of this function gets used.

combineRecomputedResults, to combine results from multiple references.

rebuildIndex, to rebuild the index after external memory is invalidated.

trainSingleR 39

Examples

Making up some data for a quick demonstration.
ref <- .mockRefData()

Normalizing and log-transforming for automated marker detection.
ref <- scuttle::logNormCounts(ref)

trained <- trainSingleR(ref, ref$label)
trained
length(trained$markers$unique)

Alternatively, supplying a custom set of markers from pairwise comparisons.
all.labels <- unique(ref$label)
custom.markers <- list()
for (x in all.labels) {

current.markers <- lapply(all.labels, function(x) sample(rownames(ref), 20))
names(current.markers) <- all.labels
current.markers[[x]] <- character(0)
custom.markers[[x]] <- current.markers

}
custom.trained <- trainSingleR(ref, ref$label, genes=custom.markers)

Alternatively, supplying a custom set of markers for each label.
custom.markers <- list()
for (x in all.labels) {

custom.markers[[x]] <- sample(rownames(ref), 20)
}
custom.trained <- trainSingleR(ref, ref$label, genes=custom.markers)

Index

.mockRefData, 2

.mockTestData (.mockRefData), 2

aggregateReference, 3, 35, 38

BiocNeighborParam, 36
BiocParallelParam, 6, 9, 13, 33, 36
BlueprintEncodeData (datasets), 11

classifySingleR, 4, 5, 8–11, 14, 17, 19, 21,
24, 28, 30, 33, 35, 36, 38

clusterKmeans, 4
colData, 3
combineCommonResults

(combineRecomputedResults), 8
combineRecomputedResults, 6–8, 8, 17, 19,

21, 22, 24, 26, 38
configureMarkerHeatmap

(plotMarkerHeatmap), 18

DatabaseImmuneCellExpressionData
(datasets), 11

DataFrame, 7–10, 14, 17, 19, 21, 24, 28, 33
datasets, 11

getClassicMarkers, 12, 36
getDeltaFromMedian, 14, 30
ggplot, 18, 22
grid.arrange, 17, 22, 25, 27

HumanPrimaryCellAtlasData (datasets), 11

ImmGenData (datasets), 11

List, 6, 9, 12, 32, 35, 37

matchReferences, 15
metadata, 7
modelGeneVariances, 5
MonacoImmuneData (datasets), 11
MouseRNAseqData (datasets), 11

NovershternHematopoieticData
(datasets), 11

pheatmap, 20, 25–27
plotDeltaDistribution, 16, 21–23
plotMarkerHeatmap, 18
plotScoreDistribution, 18, 21
plotScoreHeatmap, 18, 23, 23
pruneScores, 7, 8, 14, 18, 22–24, 27, 28

rebuildIndex, 30, 38
runPca, 4

saveRDS, 37
scoreMarkers, 20, 35, 36
SingleR, 4, 10, 11, 13–17, 19, 21, 23–25, 27,

28, 31
SummarizedExperiment, 3–6, 9, 12, 13, 15,

19, 32, 33, 35, 36

trainSingleR, 5–9, 13, 31–33, 34

40

	.mockRefData
	aggregateReference
	classifySingleR
	combineRecomputedResults
	datasets
	getClassicMarkers
	getDeltaFromMedian
	matchReferences
	plotDeltaDistribution
	plotMarkerHeatmap
	plotScoreDistribution
	plotScoreHeatmap
	pruneScores
	rebuildIndex
	SingleR
	trainSingleR
	Index

