Installation

To install and load NBAMSeq

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("NBAMSeq")
library(NBAMSeq)

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

## An example of countData
n = 50  ## n stands for number of genes
m = 20   ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)
      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1       9     105     174      82       5      75       3      48       1
gene2       2      71       1       1     118      55     365     104      94
gene3      39       3      22       1     152      76      52     376       2
gene4     175      26       1     335       6      26      22     333       7
gene5     116     518      25       8     108      15      18      55       5
gene6       1       4     113       2      82      11      19       5       9
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1       85       13       39      496        2        1        1      127
gene2        7        8        6        1       65        1       62       49
gene3      143       11      153        1      275       59        5       78
gene4       61       18      274      550        1      245        3       44
gene5       71        9        1       79        4       26      306      235
gene6       36       95      233        9        1       43       17        1
      sample18 sample19 sample20
gene1        6        1      337
gene2        1       13        1
gene3      214        1      349
gene4      148      248        9
gene5        3        5       99
gene6       47       20       33

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
    var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)
           pheno       var1       var2       var3 var4
sample1 27.19290 -0.5861555  1.7585950 -0.9905229    0
sample2 29.05819  0.1147545  0.8510832 -0.5310150    0
sample3 72.55932  0.2655290  0.6709331  1.1109882    2
sample4 45.80138 -0.3306476 -1.2182899 -0.5207085    2
sample5 21.57738  1.2043281 -1.6277578 -0.3555773    1
sample6 30.49804  0.5029970  1.0251392 -1.7668132    2

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

design = ~ s(pheno) + var1 + var2 + var3 + var4

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

gsd = NBAMSeqDataSet(countData = countData, colData = colData, design = design)
gsd
class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

gsd = NBAMSeq(gsd)

Several other arguments in NBAMSeq function are available for users to customize the analysis.

library(BiocParallel)
gsd = NBAMSeq(gsd, parallel = TRUE)

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

res1 = results(gsd, name = "pheno")
head(res1)
DataFrame with 6 rows and 7 columns
       baseMean       edf      stat    pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   54.3424   1.00012  1.648106 0.1992389  0.622761   205.453   212.423
gene2   43.3224   1.00013  2.600316 0.1068709  0.534355   195.032   202.002
gene3   80.1094   1.00008  0.508392 0.4759182  0.699880   229.597   236.567
gene4   94.2934   1.00010  3.356670 0.0669421  0.478158   233.426   240.396
gene5   65.3469   1.00045  0.103066 0.7483486  0.872978   215.109   222.079
gene6   33.8218   1.00005  3.111227 0.0777717  0.486073   185.647   192.617

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

res2 = results(gsd, name = "var1")
head(res2)
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   54.3424 -0.477274  0.600484 -0.794816  0.426721  0.677558   205.453
gene2   43.3224  0.184703  0.625577  0.295252  0.767802  0.871944   195.032
gene3   80.1094  0.122362  0.639071  0.191468  0.848159  0.883499   229.597
gene4   94.2934 -0.204624  0.592645 -0.345272  0.729890  0.871944   233.426
gene5   65.3469  0.559950  0.536059  1.044567  0.296223  0.643963   215.109
gene6   33.8218  0.402422  0.494180  0.814323  0.415460  0.677558   185.647
            BIC
      <numeric>
gene1   212.423
gene2   202.002
gene3   236.567
gene4   240.396
gene5   222.079
gene6   192.617

For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

res3 = results(gsd, contrast = c("var4", "2", "0"))
head(res3)
DataFrame with 6 rows and 8 columns
       baseMean       coef        SE       stat    pvalue      padj       AIC
      <numeric>  <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene1   54.3424 -0.2673007  0.948476 -0.2818212 0.7780806  0.884182   205.453
gene2   43.3224  0.0958975  1.012920  0.0946742 0.9245736  0.983589   195.032
gene3   80.1094 -0.4629410  1.029157 -0.4498257 0.6528362  0.796142   229.597
gene4   94.2934 -1.6747475  0.951779 -1.7595962 0.0784763  0.392381   233.426
gene5   65.3469 -1.3003584  0.858959 -1.5138774 0.1300569  0.464489   215.109
gene6   33.8218 -0.8194133  0.805575 -1.0171786 0.3090685  0.669371   185.647
            BIC
      <numeric>
gene1   212.423
gene2   202.002
gene3   236.567
gene4   240.396
gene5   222.079
gene6   192.617

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

## assuming we are interested in the nonlinear relationship between gene10's 
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]  
sf = getsf(gsd)  ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf) 
head(res1)
DataFrame with 6 rows and 7 columns
        baseMean       edf      stat      pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric>   <numeric> <numeric> <numeric> <numeric>
gene26   55.0138   1.00016  11.05631 0.000884561  0.044228   208.014   214.985
gene22   84.8739   1.00045   7.44304 0.006375755  0.110306   221.960   228.930
gene29   90.8773   1.00015   7.37682 0.006618348  0.110306   223.067   230.037
gene16   55.9561   1.00007   5.54155 0.018576126  0.232202   203.767   210.738
gene48   62.8462   1.00003   4.40382 0.035865656  0.358657   210.116   217.086
gene40  110.5123   1.00009   3.45636 0.063027811  0.478158   218.549   225.519
library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
    geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
    annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1, 
    label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
    ggtitle(setTitle)+
    theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))

Session info

sessionInfo()
R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggplot2_4.0.0               BiocParallel_1.45.0        
 [3] NBAMSeq_1.27.0              SummarizedExperiment_1.41.0
 [5] Biobase_2.71.0              GenomicRanges_1.63.0       
 [7] Seqinfo_1.1.0               IRanges_2.45.0             
 [9] S4Vectors_0.49.0            BiocGenerics_0.57.0        
[11] generics_0.1.4              MatrixGenerics_1.23.0      
[13] matrixStats_1.5.0          

loaded via a namespace (and not attached):
 [1] KEGGREST_1.51.0      gtable_0.3.6         xfun_0.54           
 [4] bslib_0.9.0          lattice_0.22-7       vctrs_0.6.5         
 [7] tools_4.6.0          parallel_4.6.0       tibble_3.3.0        
[10] AnnotationDbi_1.73.0 RSQLite_2.4.3        blob_1.2.4          
[13] pkgconfig_2.0.3      Matrix_1.7-4         RColorBrewer_1.1-3  
[16] S7_0.2.0             lifecycle_1.0.4      compiler_4.6.0      
[19] farver_2.1.2         Biostrings_2.79.1    DESeq2_1.51.0       
[22] codetools_0.2-20     htmltools_0.5.8.1    sass_0.4.10         
[25] yaml_2.3.10          crayon_1.5.3         pillar_1.11.1       
[28] jquerylib_0.1.4      DelayedArray_0.37.0  cachem_1.1.0        
[31] abind_1.4-8          nlme_3.1-168         genefilter_1.93.0   
[34] tidyselect_1.2.1     locfit_1.5-9.12      digest_0.6.37       
[37] dplyr_1.1.4          labeling_0.4.3       splines_4.6.0       
[40] fastmap_1.2.0        grid_4.6.0           cli_3.6.5           
[43] SparseArray_1.11.1   magrittr_2.0.4       S4Arrays_1.11.0     
[46] survival_3.8-3       dichromat_2.0-0.1    XML_3.99-0.19       
[49] withr_3.0.2          scales_1.4.0         bit64_4.6.0-1       
[52] rmarkdown_2.30       XVector_0.51.0       httr_1.4.7          
[55] bit_4.6.0            png_0.1-8            memoise_2.0.1       
[58] evaluate_1.0.5       knitr_1.50           mgcv_1.9-3          
[61] rlang_1.1.6          Rcpp_1.1.0           xtable_1.8-4        
[64] glue_1.8.0           DBI_1.2.3            annotate_1.89.0     
[67] jsonlite_2.0.0       R6_2.6.1            

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.