## ----setup, include = FALSE, warning = FALSE---------------------------------- knitr::opts_chunk$set(comment = FALSE, warning = FALSE, message = FALSE) ## ----------------------------------------------------------------------------- library(cellmig) library(ggplot2) library(ggforce) ggplot2::theme_set(new = theme_bw(base_size = 10)) ## ----eval=FALSE--------------------------------------------------------------- # if (!require("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("cellmig") ## ----------------------------------------------------------------------------- data("d", package = "cellmig") str(d) ## ----fig.width=7, fig.height=6------------------------------------------------ ggplot(data = d)+ facet_wrap(facets = ~paste0("compound=", compound), scales = "free_y", ncol = 2)+ geom_sina(aes(x = as.factor(dose), col = plate, y = v, group = well), size = 0.5)+ theme_bw()+ theme(legend.position = "top", strip.text.x = element_text(margin = margin(0.03,0,0.03,0, "cm")))+ ylab(label = "migration velocity")+ xlab(label = '')+ scale_color_grey()+ guides(color = guide_legend(override.aes = list(size = 3)))+ guides(shape = guide_legend(override.aes = list(size = 3)))+ scale_y_log10()+ annotation_logticks(base = 10, sides = "l") ## ----fig.width=7, fig.height=6------------------------------------------------ dm <- aggregate(v~well+plate+compound+dose, data = d, FUN = mean) ggplot(data = dm)+ facet_wrap(facets = ~paste0("compound=", compound), scales = "free_y", ncol = 2)+ geom_sina(aes(x = as.factor(dose), col = plate, y = v, group = well), size = 1.5, alpha = 0.7)+ theme_bw()+ theme(legend.position = "top", strip.text.x = element_text(margin = margin(0.03,0,0.03,0, "cm")))+ ylab(label = "migration velocity")+ xlab(label = '')+ scale_color_grey()+ guides(color = guide_legend(override.aes = list(size = 3)))+ guides(shape = guide_legend(override.aes = list(size = 3)))+ scale_y_log10()+ annotation_logticks(base = 10, sides = "l") ## ----fig.width=7, fig.height=3.5---------------------------------------------- o <- cellmig(x = d, control = list(mcmc_warmup = 300, # nr. of MCMC warmup step? mcmc_steps = 1000, # nr. of MCMC iteration steps? mcmc_chains = 2, # nr. of MCMC chains mcmc_cores = 2)) # nr. of MCMC cores ## ----------------------------------------------------------------------------- str(o$posteriors$delta_t) ## ----fig.width=6, fig.height=3.3---------------------------------------------- ggplot(data = o$posteriors$delta_t)+ geom_line(aes(x = dose, y = mean, col = compound, group = compound))+ geom_point(aes(x = dose, y = mean, col = compound))+ geom_errorbar(aes(x = dose, y = mean, ymin = X2.5., ymax = X97.5., col = compound), width = 0.1)+ ylab(label = expression("Overall treatment effect ("*delta*")"))+ theme(legend.position = "top") ## ----fig.width=9.5, fig.height=5---------------------------------------------- get_dose_response_profile(x = o)+ patchwork::plot_layout(widths = c(.7, 1, 4)) ## ----fig.width=14, fig.height=6----------------------------------------------- u <- get_pairs(x = o, exponentiate = FALSE) u$plot ## ----fig.width=7, fig.height=2.5---------------------------------------------- get_groups(x = o) u <- get_violins(x = o, from_groups = get_groups(x = o)$group, to_group = "C2|D1", exponentiate = FALSE) u$plot ## ----fig.width=5, fig.height=6------------------------------------------------ g <- get_ppc_violins(x = o, wrap = TRUE, ncol = 3) g+scale_y_log10() ## ----fig.width=4, fig.height=4------------------------------------------------ g <- get_ppc_means(x = o) g ## ----fig.height=2, fig.width=6------------------------------------------------ g_alpha_p <- ggplot(data = o$posteriors$alpha_p)+ geom_errorbarh(aes(y = plate_id, x = mean, xmin = X2.5., xmax = X97.5.), height = 0.1)+ geom_point(aes(y = plate_id, x = mean)) g_sigma <- ggplot()+ geom_errorbarh(data = o$posteriors$sigma_bio, aes(y = "sigma_bio", x = mean, xmin = X2.5., xmax = X97.5.), height = 0.1)+ geom_errorbarh(data = o$posteriors$sigma_tech, aes(y = "sigma_tech", x = mean, xmin = X2.5., xmax = X97.5.), height = 0.1)+ geom_point(data = o$posteriors$sigma_bio, aes(y = "sigma_bio", x = mean))+ geom_point(data = o$posteriors$sigma_tech, aes(y = "sigma_tech", x = mean))+ ylab(label = '') g_alpha_p|g_sigma ## ----------------------------------------------------------------------------- sessionInfo()