IlluminaHumanMethylationEPICv2anno.20a1.hg38

March 26, 2025

 $Illumina Human Methylation EPIC v2 anno. 20a1. hg 38\\ Annotation\ data\ for\ the\ `Illumina Human Methylation EPIC'\ micro\ array.$

Description

This package is based on the file https://support.illumina.com/content/dam/illumina-support/documents/downloads/productfiles/methylationepic/MethylationEPIC%20v2%20Files.zip from https://support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-kit/downloads.html.

Additional SNP annotation is generated by the authors (described in SNPs.CommonSingle).

A script for creating the data object in this package is contained in scripts/createAnno.R.

Format

An object of class IlluminaMethylationAnnotation for IlluminaHumanMethylationEPIv2Canno.20a1.hg38. All others are of class DataFrame

Details

The following changes/ modifications / addition has been made to the source material.

For the annotation related to UCSC islands, a value of "" has been changed to "OpenSea".

The creation of this object based on the Illumina annotation and additional SNP information (see SNPs.CommonSingle) is contained in the createAnno.R script in the scripts directory.

Contents of the columns are the responsibility of Illumina; see their documentation for details.

Source

See description.

Examples

```
IlluminaHumanMethylationEPICv2anno.20a1.hg38
Locations
Manifest
data(SNPs.Illumina) # data object too large, need to be loaded manually by data()
Islands.UCSC
data(Other) # data object too large, need to be loaded manually by data()
```

 ${\tt SNPs.CommonSingle}$

SNP annotation from various versions of dbSNP as represented on UCSC Common SNP table.

Description

SNP annotation from various versions of dbSNP as represented on UCSC Common SNP table. Overlap is based on genomic mappings from the annotation package.

Format

An object of class DataFrame. Rownames are CpG identifiers. There are 6 columns Probe_rs, Probe_maf, CpG_rs, CpG_maf, SBE_rs, and SBE_maf. 'Probe' indicates a SNP in the probe, 'CpG' a SNP in the CpG site and 'SBE' in the single base extension site. The _rs gives the SNP RS identifier and the _maf gives the minor allele frequency.

Details

In addition to the SNP information provided by Illumina, we have added independent information on the overlap of the EPIC (v2.0) array with various versions of dbSNP. The overlap is based on the mappings of the array to the hg38 genome provided by Illumina. As dbSNP we have used the 'Common' table from UCSC (ie. 'snp151Common'). This track contains variants from dbSNP which have a minor allele frequency (MAF) of greater than 1 percent (specifically, this requires db-SNP to actually contain MAF information). Furthermore, we only kept variants marked as 'single' (ie. standard single nucleotide changes, but not insertions or deletions). Scripts for retrieving the UCSC dbSNP table and doing the overlap are contained in the scripts directory. The variants are described in 6 different columns. Probe_rs tells us the RS number (SNP ID number) for a SNP overlapping the probe, and Probe_maf is the minor allelle frequency for the SNP (in case multiple SNPs overlap, only one is recorded). Similarly, CpG_rs describe SNPs overlapping the CpG site and SBE_rs the single base extension of the measured methylation loci.

Source

UCSC Common SNP Table.

Examples

SNPs.141CommonSingle SNPs.142CommonSingle SNPs.144CommonSingle SNPs.146CommonSingle SNPs.147CommonSingle SNPs.150CommonSingle SNPs.151CommonSingle aggregate_to_probes 3

aggregate_to_probes A

Aggregate to the probe-level

Description

Aggregate to the probe-level

Usage

```
aggregate_to_probes(x)
```

Arguments

Х

A data frame or a matrix.

Details

If x is a data frame, it should be one of the following objects: Islands.UCSC, Locations, Other, SNPs.Illumina, SNPs.141CommonSingle, SNPs.142CommonSingle, SNPs.144CommonSingle, SNPs.146CommonSingle, SNPs.151CommonSingle, SNPs.151CommonSingle.

If x is a matrix, it should come from the analysis with the **minfi** package. If multiple rows correspond to the same probe, the average value of rows is simply used.

Examples

 $\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc$

Index

```
* datasets
    IlluminaHumanMethylationEPICv2anno.20a1.hg38,
    SNPs.CommonSingle, 2
aggregate_to_probes, 3
IlluminaHumanMethylationEPICv2anno.20a1.hg38,
Islands.UCSC
        (IlluminaHumanMethylationEPICv2anno.20a1.hg38),
Locations
        (IlluminaHumanMethylationEPICv2anno.20a1.hg38),
        1
Manifest
        (IlluminaHumanMethylationEPICv2anno.20a1.hg38),
Other
        (IlluminaHumanMethylationEPICv2anno.20a1.hg38),
SNPs.141CommonSingle
        (SNPs.CommonSingle), 2
SNPs.142CommonSingle
        (SNPs.CommonSingle), 2
SNPs.144CommonSingle
        (SNPs.CommonSingle), 2
SNPs.146CommonSingle
        ({\sf SNPs.CommonSingle}), 2
{\tt SNPs.147CommonSingle}
        (SNPs.CommonSingle), 2
SNPs.150CommonSingle
        (SNPs.CommonSingle), 2
{\sf SNPs.151CommonSingle}
        (SNPs.CommonSingle), 2
{\sf SNPs.CommonSingle}, 1, 2
SNPs.Illumina
        (IlluminaHumanMethylationEPICv2anno.20a1.hg38),
```