# (PART) Case studies {-} # Human PBMCs (10X Genomics) ## Introduction This performs an analysis of the public PBMC ID dataset generated by 10X Genomics [@zheng2017massively], starting from the filtered count matrix. ## Data loading ``` r library(TENxPBMCData) all.sce <- list( pbmc3k=TENxPBMCData('pbmc3k'), pbmc4k=TENxPBMCData('pbmc4k'), pbmc8k=TENxPBMCData('pbmc8k') ) ``` ## Quality control ``` r unfiltered <- all.sce ``` Cell calling implicitly serves as a QC step to remove libraries with low total counts and number of detected genes. Thus, we will only filter on the mitochondrial proportion. ``` r library(scater) stats <- high.mito <- list() for (n in names(all.sce)) { current <- all.sce[[n]] is.mito <- grep("MT", rowData(current)$Symbol_TENx) stats[[n]] <- perCellQCMetrics(current, subsets=list(Mito=is.mito)) high.mito[[n]] <- isOutlier(stats[[n]]$subsets_Mito_percent, type="higher") all.sce[[n]] <- current[,!high.mito[[n]]] } ``` ``` r qcplots <- list() for (n in names(all.sce)) { current <- unfiltered[[n]] colData(current) <- cbind(colData(current), stats[[n]]) current$discard <- high.mito[[n]] qcplots[[n]] <- plotColData(current, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() } do.call(gridExtra::grid.arrange, c(qcplots, ncol=3)) ```
Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-pbmc-filtered-var)Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

``` r lapply(high.mito, summary) ``` ``` ## $pbmc3k ## Mode FALSE TRUE ## logical 2609 91 ## ## $pbmc4k ## Mode FALSE TRUE ## logical 4182 158 ## ## $pbmc8k ## Mode FALSE TRUE ## logical 8157 224 ``` ## Normalization We perform library size normalization, simply for convenience when dealing with file-backed matrices. ``` r all.sce <- lapply(all.sce, logNormCounts) ``` ``` r lapply(all.sce, function(x) summary(sizeFactors(x))) ``` ``` ## $pbmc3k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.234 0.748 0.926 1.000 1.157 6.604 ## ## $pbmc4k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.315 0.711 0.890 1.000 1.127 11.027 ## ## $pbmc8k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.296 0.704 0.877 1.000 1.118 6.794 ``` ## Variance modelling ``` r library(scran) all.dec <- lapply(all.sce, modelGeneVar) all.hvgs <- lapply(all.dec, getTopHVGs, prop=0.1) ``` ``` r par(mfrow=c(1,3)) for (n in names(all.dec)) { curdec <- all.dec[[n]] plot(curdec$mean, curdec$total, pch=16, cex=0.5, main=n, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(curdec) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

(\#fig:unref-filtered-pbmc-variance)Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

## Dimensionality reduction For various reasons, we will first analyze each PBMC dataset separately rather than merging them together. We use randomized SVD, which is more efficient for file-backed matrices. ``` r library(BiocSingular) set.seed(10000) all.sce <- mapply(FUN=runPCA, x=all.sce, subset_row=all.hvgs, MoreArgs=list(ncomponents=25, BSPARAM=RandomParam()), SIMPLIFY=FALSE) set.seed(100000) all.sce <- lapply(all.sce, runTSNE, dimred="PCA") set.seed(1000000) all.sce <- lapply(all.sce, runUMAP, dimred="PCA") ``` ## Clustering ``` r for (n in names(all.sce)) { g <- buildSNNGraph(all.sce[[n]], k=10, use.dimred='PCA') clust <- igraph::cluster_walktrap(g)$membership colLabels(all.sce[[n]]) <- factor(clust) } ``` ``` r lapply(all.sce, function(x) table(colLabels(x))) ``` ``` ## $pbmc3k ## ## 1 2 3 4 5 6 7 8 9 10 ## 475 636 153 476 164 31 159 164 340 11 ## ## $pbmc4k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 ## 127 594 518 775 211 394 187 993 55 201 91 36 ## ## $pbmc8k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ## 292 1603 388 94 738 1035 1049 156 203 153 2098 261 64 14 9 ``` ``` r all.tsne <- list() for (n in names(all.sce)) { all.tsne[[n]] <- plotTSNE(all.sce[[n]], colour_by="label") + ggtitle(n) } do.call(gridExtra::grid.arrange, c(all.tsne, list(ncol=2))) ```
Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

(\#fig:unref-filtered-pbmc-tsne)Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

## Data integration With the per-dataset analyses out of the way, we will now repeat the analysis after merging together the three batches. ``` r # Intersecting the common genes. universe <- Reduce(intersect, lapply(all.sce, rownames)) all.sce2 <- lapply(all.sce, "[", i=universe,) all.dec2 <- lapply(all.dec, "[", i=universe,) # Renormalizing to adjust for differences in depth. library(batchelor) normed.sce <- do.call(multiBatchNorm, all.sce2) # Identifying a set of HVGs using stats from all batches. combined.dec <- do.call(combineVar, all.dec2) combined.hvg <- getTopHVGs(combined.dec, n=5000) set.seed(1000101) merged.pbmc <- do.call(fastMNN, c(normed.sce, list(subset.row=combined.hvg, BSPARAM=RandomParam()))) ``` We use the percentage of lost variance as a diagnostic measure. ``` r metadata(merged.pbmc)$merge.info$lost.var ``` ``` ## pbmc3k pbmc4k pbmc8k ## [1,] 7.044e-03 3.129e-03 0.000000 ## [2,] 6.876e-05 4.912e-05 0.003008 ``` We proceed to clustering: ``` r g <- buildSNNGraph(merged.pbmc, use.dimred="corrected") colLabels(merged.pbmc) <- factor(igraph::cluster_louvain(g)$membership) table(colLabels(merged.pbmc), merged.pbmc$batch) ``` ``` ## ## pbmc3k pbmc4k pbmc8k ## 1 535 426 830 ## 2 331 588 1126 ## 3 182 122 217 ## 4 150 179 292 ## 5 170 345 573 ## 6 292 538 1020 ## 7 342 630 1236 ## 8 437 749 1538 ## 9 9 18 95 ## 10 97 365 782 ## 11 34 120 201 ## 12 11 54 159 ## 13 11 3 9 ## 14 4 36 64 ## 15 4 9 15 ``` And visualization: ``` r set.seed(10101010) merged.pbmc <- runTSNE(merged.pbmc, dimred="corrected") gridExtra::grid.arrange( plotTSNE(merged.pbmc, colour_by="label", text_by="label", text_colour="red"), plotTSNE(merged.pbmc, colour_by="batch") ) ```
Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

(\#fig:unref-filtered-pbmc-merged-tsne)Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

## Session Info {-}
``` R version 4.4.2 (2024-10-31) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.1 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] batchelor_1.22.0 BiocSingular_1.22.0 [3] scran_1.34.0 scater_1.34.0 [5] ggplot2_3.5.1 scuttle_1.16.0 [7] TENxPBMCData_1.24.0 HDF5Array_1.34.0 [9] rhdf5_2.50.2 DelayedArray_0.32.0 [11] SparseArray_1.6.1 S4Arrays_1.6.0 [13] abind_1.4-8 Matrix_1.7-1 [15] SingleCellExperiment_1.28.1 SummarizedExperiment_1.36.0 [17] Biobase_2.66.0 GenomicRanges_1.58.0 [19] GenomeInfoDb_1.42.1 IRanges_2.40.1 [21] S4Vectors_0.44.0 BiocGenerics_0.52.0 [23] MatrixGenerics_1.18.1 matrixStats_1.5.0 [25] BiocStyle_2.34.0 rebook_1.16.0 loaded via a namespace (and not attached): [1] DBI_1.2.3 gridExtra_2.3 [3] CodeDepends_0.6.6 rlang_1.1.5 [5] magrittr_2.0.3 RcppAnnoy_0.0.22 [7] compiler_4.4.2 RSQLite_2.3.9 [9] DelayedMatrixStats_1.28.1 dir.expiry_1.14.0 [11] png_0.1-8 vctrs_0.6.5 [13] pkgconfig_2.0.3 crayon_1.5.3 [15] fastmap_1.2.0 dbplyr_2.5.0 [17] XVector_0.46.0 labeling_0.4.3 [19] rmarkdown_2.29 graph_1.84.1 [21] UCSC.utils_1.2.0 ggbeeswarm_0.7.2 [23] purrr_1.0.2 bit_4.5.0.1 [25] bluster_1.16.0 xfun_0.50 [27] zlibbioc_1.52.0 cachem_1.1.0 [29] beachmat_2.22.0 jsonlite_1.8.9 [31] blob_1.2.4 rhdf5filters_1.18.0 [33] Rhdf5lib_1.28.0 BiocParallel_1.40.0 [35] cluster_2.1.8 irlba_2.3.5.1 [37] parallel_4.4.2 R6_2.5.1 [39] bslib_0.8.0 limma_3.62.2 [41] jquerylib_0.1.4 Rcpp_1.0.14 [43] bookdown_0.42 knitr_1.49 [45] FNN_1.1.4.1 igraph_2.1.3 [47] tidyselect_1.2.1 viridis_0.6.5 [49] yaml_2.3.10 codetools_0.2-20 [51] curl_6.1.0 lattice_0.22-6 [53] tibble_3.2.1 withr_3.0.2 [55] KEGGREST_1.46.0 Rtsne_0.17 [57] evaluate_1.0.3 BiocFileCache_2.14.0 [59] ExperimentHub_2.14.0 Biostrings_2.74.1 [61] pillar_1.10.1 BiocManager_1.30.25 [63] filelock_1.0.3 generics_0.1.3 [65] BiocVersion_3.20.0 sparseMatrixStats_1.18.0 [67] munsell_0.5.1 scales_1.3.0 [69] glue_1.8.0 metapod_1.14.0 [71] tools_4.4.2 AnnotationHub_3.14.0 [73] BiocNeighbors_2.0.1 ScaledMatrix_1.14.0 [75] locfit_1.5-9.10 XML_3.99-0.18 [77] cowplot_1.1.3 grid_4.4.2 [79] edgeR_4.4.1 AnnotationDbi_1.68.0 [81] colorspace_2.1-1 GenomeInfoDbData_1.2.13 [83] beeswarm_0.4.0 vipor_0.4.7 [85] cli_3.6.3 rsvd_1.0.5 [87] rappdirs_0.3.3 viridisLite_0.4.2 [89] dplyr_1.1.4 ResidualMatrix_1.16.0 [91] uwot_0.2.2 gtable_0.3.6 [93] sass_0.4.9 digest_0.6.37 [95] dqrng_0.4.1 ggrepel_0.9.6 [97] farver_2.1.2 memoise_2.0.1 [99] htmltools_0.5.8.1 lifecycle_1.0.4 [101] httr_1.4.7 statmod_1.5.0 [103] mime_0.12 bit64_4.6.0-1 ```