Back to Multiple platform build/check report
Package: limma |
Version: 2.6.0 |
Command: /home/biocbuild/arch/sparc/R-2.3.0/bin/R CMD check limma_2.6.0.tar.gz |
RetCode: 0 |
Time: 500.8 seconds |
Status: OK |
CheckDir: limma.Rcheck |
Warnings: 0 |
* checking for working latex ... OK * using log directory '/loc/biocbuild/1.8d/madman/Rpacks/limma.Rcheck' * using Version 2.3.0 (2006-04-24) * checking for file 'limma/DESCRIPTION' ... OK * this is package 'limma' version '2.6.0' * checking package dependencies ... OK * checking if this is a source package ... OK * checking whether package 'limma' can be installed ... OK * checking package directory ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for syntax errors ... OK * checking R files for library.dynam ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking Rd files ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * creating limma-Ex.R ... OK * checking examples ... OK * checking tests ... make[1]: Entering directory `/loc/biocbuild/1.8d/madman/Rpacks/limma.Rcheck/tests' Running 'limma-Tests.R' Comparing 'limma-Tests.Rout' to 'limma-Tests.Rout.save' ...2,926d1 < < > library(limma) < > < > set.seed(0); u <- runif(100) < > < > ### splitName < > < > x <- c("ab;cd;efg","abc;def","z","") < > splitName(x) < $Name < [1] "ab;cd" "abc" "z" "" < < $Annotation < [1] "efg" "def" "" "" < < > < > ### removeext < > < > removeExt(c("slide1.spot","slide.2.spot")) < [1] "slide1" "slide.2" < > removeExt(c("slide1.spot","slide")) < [1] "slide1.spot" "slide" < > < > ### printorder < > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4) < $printorder < [1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 < [19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 < [37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 < [55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 < [73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 < [91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 < [109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25 < [127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 < [145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 < [163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 < [181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49 < [199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 < [217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 < [235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 < [253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 < [271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 < [289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 < [307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 < [325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49 < [343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 < [361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 < [379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103 < [397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 < [415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 < [433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109 < [451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 < [469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97 < [487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 < [505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 < [523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 < [541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 < [559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 < [577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 < [595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 < [613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145 < [631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 < [649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181 < [667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151 < [685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 < [703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 < [721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 < [739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 < [757] 186 185 184 183 182 181 192 191 190 189 188 187 < < $plate < [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < < $plate.r < [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 < [26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 < [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 < [76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 < [101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 < [151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 < [201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 < [226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 < [251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 < [276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 < [301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 < [326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 < [351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 < [376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 < [401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 < [426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 < [451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 < [476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 < [501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 < [526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 < [551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 < [576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 < [601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 < [626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 < [651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 < [676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 < [701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 < [726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 < [751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 < < $plate.c < [1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 < [26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 < [51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 < [76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 < [101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 < [126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 < [151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 < [176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 < [201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 < [226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 < [251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 < [276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 < [301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 < [326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 < [351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 < [376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 < [401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 < [426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 < [451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 < [476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 < [501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 < [526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 < [551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 < [576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 < [601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 < [626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 < [651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 < [676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 < [701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 < [726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 < [751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 < < $plateposition < [1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05" < [10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07" < [19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14" < [28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16" < [37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23" < [46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01" < [55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08" < [64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10" < [73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17" < [82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19" < [91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02" < [100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04" < [109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11" < [118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13" < [127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20" < [136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22" < [145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05" < [154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07" < [163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14" < [172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16" < [181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23" < [190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01" < [199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08" < [208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10" < [217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17" < [226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19" < [235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02" < [244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04" < [253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11" < [262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13" < [271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20" < [280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22" < [289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05" < [298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07" < [307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14" < [316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16" < [325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23" < [334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01" < [343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08" < [352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10" < [361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17" < [370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19" < [379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02" < [388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04" < [397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11" < [406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13" < [415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20" < [424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22" < [433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05" < [442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07" < [451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14" < [460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16" < [469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23" < [478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01" < [487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08" < [496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10" < [505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17" < [514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19" < [523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02" < [532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04" < [541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11" < [550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13" < [559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20" < [568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22" < [577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05" < [586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07" < [595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14" < [604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16" < [613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23" < [622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01" < [631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08" < [640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10" < [649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17" < [658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19" < [667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02" < [676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04" < [685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11" < [694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13" < [703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20" < [712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22" < [721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05" < [730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07" < [739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14" < [748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16" < [757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23" < [766] "p1M23" "p1M22" "p1M22" < < > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6)) < $printorder < [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 < [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 < [51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 < [76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 < [101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 < [126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 < [151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 < [176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 < [201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 < [226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 < [251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 < [276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 < [301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 < [326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 < [351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 < [376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 < [401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 < [426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 < [451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 < [476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 < [501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 < [526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 < [551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 < [576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 < [601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 < [626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 < [651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 < [676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 < [701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 < [726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 < [751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 < < $plate < [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 < [38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 < [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 < [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 < [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 < [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 < [371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 < [445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 < [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 < [556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 < [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 < [704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < < $plate.r < [1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 < [26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 < [51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 < [76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 < [101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 < [126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 < [151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 < [176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 < [201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 < [226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 < [251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 < [276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 < [301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 < [326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 < [351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 < [376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 < [401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 < [426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 < [451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 < [476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 < [501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 < [526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 < [551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 < [576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 < [601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 < [626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 < [651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 < [676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 < [701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 < [726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 < [751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 < < $plate.c < [1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 < [26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 < [51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 < [76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 < [101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 < [126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 < [151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 < [176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6 < [201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 < [226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 < [251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 < [276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 < [301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 < [326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 < [351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 < [376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 < [401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 < [426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 < [451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 < [476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 < [501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 < [526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 < [551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 < [576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 < [601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 < [626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 < [651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 < [676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 < [701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 < [726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 < [751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 < < $plateposition < [1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09" < [10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21" < [19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09" < [28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21" < [37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09" < [46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21" < [55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09" < [64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21" < [73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09" < [82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21" < [91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09" < [100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21" < [109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09" < [118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21" < [127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09" < [136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21" < [145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09" < [154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21" < [163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09" < [172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21" < [181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09" < [190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22" < [199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10" < [208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22" < [217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10" < [226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22" < [235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10" < [244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22" < [253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10" < [262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22" < [271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10" < [280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22" < [289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10" < [298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22" < [307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10" < [316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22" < [325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10" < [334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22" < [343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10" < [352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22" < [361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10" < [370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22" < [379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11" < [388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23" < [397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11" < [406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23" < [415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11" < [424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23" < [433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11" < [442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23" < [451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11" < [460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23" < [469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11" < [478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23" < [487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11" < [496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23" < [505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11" < [514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23" < [523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11" < [532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23" < [541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11" < [550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23" < [559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11" < [568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23" < [577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12" < [586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24" < [595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12" < [604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24" < [613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12" < [622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24" < [631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12" < [640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24" < [649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12" < [658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24" < [667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12" < [676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24" < [685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12" < [694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24" < [703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12" < [712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24" < [721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12" < [730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24" < [739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12" < [748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24" < [757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12" < [766] "p2M16" "p2M20" "p2M24" < < > < > ### merge.rglist < > < > R <- G <- matrix(11:14,4,2) < > rownames(R) <- rownames(G) <- c("a","a","b","c") < > RG1 <- new("RGList",list(R=R,G=G)) < > R <- G <- matrix(21:24,4,2) < > rownames(R) <- rownames(G) <- c("b","a","a","c") < > RG2 <- new("RGList",list(R=R,G=G)) < > merge(RG1,RG2) < An object of class "RGList" < $R < [,1] [,2] [,3] [,4] < a 11 11 22 22 < a 12 12 23 23 < b 13 13 21 21 < c 14 14 24 24 < < $G < [,1] [,2] [,3] [,4] < a 11 11 22 22 < a 12 12 23 23 < b 13 13 21 21 < c 14 14 24 24 < < > merge(RG2,RG1) < An object of class "RGList" < $R < [,1] [,2] [,3] [,4] < b 21 21 13 13 < a 22 22 11 11 < a 23 23 12 12 < c 24 24 14 14 < < $G < [,1] [,2] [,3] [,4] < b 21 21 13 13 < a 22 22 11 11 < a 23 23 12 12 < c 24 24 14 14 < < > < > ### background correction < > RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2))) < > backgroundCorrect(RG) < An object of class "RGList" < $R < [1] -1 0 1 2 < < $G < [1] -1 0 1 2 < < > backgroundCorrect(RG, method="half") < An object of class "RGList" < $R < [1] 0.5 0.5 1.0 2.0 < < $G < [1] 0.5 0.5 1.0 2.0 < < > backgroundCorrect(RG, method="minimum") < An object of class "RGList" < $R < [,1] < [1,] 0.5 < [2,] 0.5 < [3,] 1.0 < [4,] 2.0 < < $G < [,1] < [1,] 0.5 < [2,] 0.5 < [3,] 1.0 < [4,] 2.0 < < > backgroundCorrect(RG, offset=5) < An object of class "RGList" < $R < [1] 4 5 6 7 < < $G < [1] 4 5 6 7 < < > < > ### normalizeWithinArrays < > < > library(sma) < > data(MouseArray) < > MA <- normalizeWithinArrays(mouse.data, mouse.setup, method="robustspline") < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.21539109 -0.79670669 -0.55011008 0.14243756 -0.3933328 0.86741957 < [2,] 0.06449435 0.16873653 0.26020426 0.92440874 0.6640048 1.30672583 < [3,] -0.23149571 -0.66662065 -0.68092134 -0.09651125 -0.4205728 -0.31124721 < [4,] -0.20090146 -0.09709476 -0.28354313 0.32830186 0.1916112 -0.09738907 < [5,] -0.86822005 -0.13192148 -0.08634807 -0.01017014 0.2763200 -0.22570480 < > MA <- normalizeWithinArrays(mouse.data, mouse.setup) < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.22006681 -0.85229101 -0.61528102 0.07080387 -0.4017245 0.8790516 < [2,] 0.06720908 0.11711457 0.21083609 0.99616190 0.6494259 1.3351120 < [3,] -0.23069447 -0.71229077 -0.72631373 -0.12375213 -0.4262350 -0.3237170 < [4,] -0.17262990 -0.06186499 -0.28347377 0.27201473 0.2028371 -0.1018497 < [5,] -0.83900000 -0.09643457 -0.08877846 -0.06550247 0.2807478 -0.2229941 < > < > ### normalizeBetweenArrays < > < > MA <- normalizeBetweenArrays(MA,method="scale") < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.22060913 -0.97047013 -0.7132995 0.05299212 -0.4035381 0.8835727 < [2,] 0.06737471 0.13335374 0.2444237 0.74556284 0.6523577 1.3419787 < [3,] -0.23126298 -0.81105738 -0.8420205 -0.09262048 -0.4281592 -0.3253819 < [4,] -0.17305532 -0.07044322 -0.3286331 0.20358545 0.2037528 -0.1023735 < [5,] -0.84106756 -0.10980624 -0.1029215 -0.04902437 0.2820152 -0.2241410 < > MA$A[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] 11.332980 11.198841 11.337353 9.693899 11.196822 10.506374 < [2,] 11.245664 11.074098 11.051345 10.931562 11.273305 10.008818 < [3,] 10.113995 10.923628 12.322088 9.875351 11.096463 10.829522 < [4,] 8.390963 9.019036 8.720987 9.774672 8.826249 9.113240 < [5,] 8.684837 9.017042 8.406961 9.477079 8.739632 8.557627 < > MA <- normalizeBetweenArrays(MA,method="quantile") < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.31703694 -0.9938725 -0.5791881 0.03617137 -0.3769488 0.9820991 < [2,] 0.03923233 0.1066559 0.2312904 0.76612052 0.6368203 1.4728996 < [3,] -0.27566044 -0.8580353 -0.7504079 -0.08854074 -0.4200884 -0.2960210 < [4,] -0.11946685 -0.1095793 -0.2985336 0.15876207 0.2612499 -0.1006169 < [5,] -0.67628732 -0.1634459 -0.0938785 -0.05338925 0.3477450 -0.2227479 < > MA$A[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] 11.478807 11.311915 11.142829 9.749722 11.137385 10.56415 < [2,] 11.369349 11.191410 10.896307 10.893490 11.205219 10.04138 < [3,] 10.124225 11.010219 12.026393 9.906701 11.045121 10.91363 < [4,] 8.521087 8.771148 8.810923 9.817860 8.681051 9.06633 < [5,] 8.772261 8.766051 8.538890 9.580934 8.567045 8.55471 < > < > ### unwrapdups < > < > M <- matrix(1:12,6,2) < > unwrapdups(M,ndups=1) < [,1] [,2] < [1,] 1 7 < [2,] 2 8 < [3,] 3 9 < [4,] 4 10 < [5,] 5 11 < [6,] 6 12 < > unwrapdups(M,ndups=2) < [,1] [,2] [,3] [,4] < [1,] 1 2 7 8 < [2,] 3 4 9 10 < [3,] 5 6 11 12 < > unwrapdups(M,ndups=3) < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] 1 2 3 7 8 9 < [2,] 4 5 6 10 11 12 < > unwrapdups(M,ndups=2,spacing=3) < [,1] [,2] [,3] [,4] < [1,] 1 4 7 10 < [2,] 2 5 8 11 < [3,] 3 6 9 12 < > < > ### trigammaInverse < > < > trigammaInverse(c(1e-6,NA,5,1e6)) < [1] 1.000000e+06 NA 4.961687e-01 1.000001e-03 < > < > ### lm.series, contrasts.fit, ebayes < > < > M <- matrix(rnorm(10*6,sd=0.3),10,6) < > M[1,1:3] <- M[1,1:3] + 2 < > design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1)) < > fit <- lm.series(M,design=design) < > contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1)) < > fit2 <- contrasts.fit(fit,contrasts=contrast.matrix) < > eb <- ebayes(fit2) < > < > eb$t < First3 Last3 Last3-First3 < [1,] 13.01360810 0.8094614 -8.62963489 < [2,] -0.08220793 -0.2496031 -0.11836624 < [3,] 0.53689924 0.1037124 -0.30630936 < [4,] -0.64950290 -0.6643004 -0.01046340 < [5,] -0.12967606 -0.6044961 -0.33574846 < [6,] 1.00443329 0.1749033 -0.58656627 < [7,] -0.41799559 -0.3567558 0.04330306 < [8,] 0.04763415 1.7686344 1.21693097 < [9,] -1.82026162 0.6205108 1.72588671 < [10,] -1.66163020 2.0938216 2.65550546 < > eb$s2.prior < [1] 0.07549435 < > eb$s2.post < [1] 0.07549435 0.07549435 0.07549435 0.07549435 0.07549435 0.07549435 < [7] 0.07549435 0.07549435 0.07549435 0.07549435 < > eb$df.prior < [1] Inf < > eb$lods < First3 Last3 Last3-First3 < [1,] 76.894615 -4.836703 29.863710 < [2,] -7.551544 -5.007910 -7.137158 < [3,] -7.411171 -5.022793 -7.097495 < [4,] -7.344554 -4.898476 -7.144066 < [5,] -7.546529 -4.920386 -7.088102 < [6,] -7.051826 -5.017066 -6.973142 < [7,] -7.467789 -4.989149 -7.143189 < [8,] -7.553783 -4.122674 -6.408184 < [9,] -5.902688 -4.914721 -5.663877 < [10,] -6.178115 -3.760000 -3.639805 < > eb$p.value < First3 Last3 Last3-First3 < [1,] 1.023910e-38 0.41824980 6.154813e-18 < [2,] 9.344814e-01 0.80289433 9.057775e-01 < [3,] 5.913372e-01 0.91739759 7.593691e-01 < [4,] 5.160134e-01 0.50649808 9.916516e-01 < [5,] 8.968227e-01 0.54551387 7.370606e-01 < [6,] 3.151698e-01 0.86115561 5.574950e-01 < [7,] 6.759503e-01 0.72127462 9.654600e-01 < [8,] 9.620078e-01 0.07695490 2.236305e-01 < [9,] 6.871917e-02 0.53492156 8.436780e-02 < [10,] 9.658694e-02 0.03627587 7.918965e-03 < > eb$var.prior < [1] 123.7528665 0.4556155 108.4630118 < > < > ### toptable < > < > toptable(fit) < M t P.Value adj.P.Val B < 1 2.064402265 13.01360810 1.023910e-38 1.023910e-37 76.894615 < 9 -0.288755599 -1.82026162 6.871917e-02 3.219565e-01 -5.902688 < 10 -0.263591244 -1.66163020 9.658694e-02 3.219565e-01 -6.178115 < 6 0.159337391 1.00443329 3.151698e-01 7.879245e-01 -7.051826 < 4 -0.103033320 -0.64950290 5.160134e-01 9.620078e-01 -7.344554 < 3 0.085170539 0.53689924 5.913372e-01 9.620078e-01 -7.411171 < 7 -0.066308362 -0.41799559 6.759503e-01 9.620078e-01 -7.467789 < 5 -0.020571048 -0.12967606 8.968227e-01 9.620078e-01 -7.546529 < 2 -0.013040982 -0.08220793 9.344814e-01 9.620078e-01 -7.551544 < 8 0.007556402 0.04763415 9.620078e-01 9.620078e-01 -7.553783 < > < > ### duplicateCorrelation < > < > cor.out <- duplicateCorrelation(M) < < Attaching package: 'statmod' < < < The following object(s) are masked from package:limma : < < matvec vecmat < < > cor.out$consensus.correlation < [1] -0.1300222 < > cor.out$atanh.correlations < [1] -0.3496702 -0.3528761 0.1320187 -0.7957172 0.7124326 < > < > ### gls.series < > < > fit <- gls.series(M,design,correlation=cor.out$cor) < > fit$coefficients < First3Arrays Last3Arrays < [1,] 1.02568064 0.04440632 < [2,] -0.00893139 -0.04446419 < [3,] 0.06938317 -0.03407404 < [4,] -0.02937598 0.11198606 < [5,] -0.27617342 0.21529287 < > fit$stdev.unscaled < First3Arrays Last3Arrays < [1,] 0.3807838 0.3807838 < [2,] 0.3807838 0.3807838 < [3,] 0.3807838 0.3807838 < [4,] 0.3807838 0.3807838 < [5,] 0.3807838 0.3807838 < > fit$sigma < [1] 0.7880432 0.2880540 0.1997484 0.2750895 0.2621346 < > fit$df.residual < [1] 10 10 10 10 10 < > < > ### mrlm < > < > fit <- mrlm(M,design) < > fit$coef < [,1] [,2] < [1,] 2.064402265 0.23453509 < [2,] -0.013040982 -0.15267834 < [3,] -0.030835828 0.01645232 < [4,] -0.103033320 -0.10538070 < [5,] -0.020571048 -0.09589370 < [6,] 0.159337391 0.02774563 < [7,] -0.066308362 -0.05659364 < [8,] 0.007556402 0.38166839 < [9,] -0.288755599 0.09843418 < [10,] -0.263591244 0.33215155 < > fit$stdev.unscaled < [,1] [,2] < [1,] 0.5773503 0.7315593 < [2,] 0.5773503 0.6511403 < [3,] 0.6269590 0.5773503 < [4,] 0.5773503 0.5773503 < [5,] 0.5773503 0.5773503 < [6,] 0.5773503 0.5773503 < [7,] 0.5773503 0.5773503 < [8,] 0.5773503 0.6527609 < [9,] 0.5773503 0.5773503 < [10,] 0.5773503 0.5773503 < > fit$sigma < [1] 0.0755165 0.1410025 0.3087025 0.1390960 0.3289335 0.1719261 0.4295126 < [8] 0.1197697 0.3906706 0.2267115 < > fit$df.residual < [1] 4 4 4 4 4 4 4 4 4 4 < > < > # Similar to Mette Langaas 19 May 2004 < > set.seed(123) < > narrays <- 9 < > ngenes <- 5 < > mu <- 0 < > alpha <- 2 < > beta <- -2 < > epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays) < > X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1)) < > dimnames(X) <- list(1:9,c("mu","alpha","beta")) < > yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3] < > ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon < > ymat[5,1:2] <- NA < > fit <- lmFit(ymat,design=X) < > test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1)) < > dimnames(test.contr) <- list(1:3,c("alpha-beta","mu+alpha","mu+beta")) < > fit2 <- contrasts.fit(fit,contrasts=test.contr) < > eBayes(fit2) < An object of class "MArrayLM" < $coefficients < alpha-beta mu+alpha mu+beta < [1,] 3.537333 1.677465 -1.859868 < [2,] 4.355578 2.372554 -1.983024 < [3,] 3.197645 1.053584 -2.144061 < [4,] 2.697734 1.611443 -1.086291 < [5,] 3.502304 2.051995 -1.450309 < < $stdev.unscaled < alpha-beta mu+alpha mu+beta < [1,] 0.8164966 0.5773503 0.5773503 < [2,] 0.8164966 0.5773503 0.5773503 < [3,] 0.8164966 0.5773503 0.5773503 < [4,] 0.8164966 0.5773503 0.5773503 < [5,] 1.1547005 0.8368633 0.8368633 < < $sigma < [1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509 < < $df.residual < [1] 6 6 6 6 4 < < $cov.coefficients < alpha-beta mu+alpha mu+beta < alpha-beta 0.6666667 3.333333e-01 -3.333333e-01 < mu+alpha 0.3333333 3.333333e-01 5.551115e-17 < mu+beta -0.3333333 5.551115e-17 3.333333e-01 < < $method < [1] "ls" < < $design < mu alpha beta < 1 1 0 0 < 2 1 0 0 < 3 1 0 0 < 4 1 1 0 < 5 1 1 0 < 6 1 1 0 < 7 1 0 1 < 8 1 0 1 < 9 1 0 1 < < $Amean < [1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593 < < $contrasts < alpha-beta mu+alpha mu+beta < 1 0 1 1 < 2 1 1 0 < 3 -1 0 1 < < $df.prior < [1] 9.306153 < < $s2.prior < [1] 0.923179 < < $var.prior < [1] 17.33142 17.33142 12.26855 < < $proportion < [1] 0.01 < < $s2.post < [1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980 < < $t < alpha-beta mu+alpha mu+beta < [1,] 3.847656 2.580411 -2.860996 < [2,] 6.637308 5.113018 -4.273553 < [3,] 3.692066 1.720376 -3.500994 < [4,] 3.464003 2.926234 -1.972606 < [5,] 3.175181 2.566881 -1.814221 < < $p.value < alpha-beta mu+alpha mu+beta < [1,] 1.529450e-03 0.0206493481 0.0117123495 < [2,] 7.144893e-06 0.0001195844 0.0006385076 < [3,] 2.109270e-03 0.1055117477 0.0031325769 < [4,] 3.381970e-03 0.0102514264 0.0668844448 < [5,] 7.124839e-03 0.0230888584 0.0922478630 < < $lods < alpha-beta mu+alpha mu+beta < [1,] -1.013417 -3.702133 -3.0332393 < [2,] 3.981496 1.283349 -0.2615911 < [3,] -1.315036 -5.168621 -1.7864101 < [4,] -1.757103 -3.043209 -4.6191869 < [5,] -2.257358 -3.478267 -4.5683738 < < $F < [1] 7.421911 22.203107 7.608327 6.227010 5.060579 < < $F.p.value < [1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02 < < > < > ### uniquegenelist < > < > uniquegenelist(letters[1:8],ndups=2) < [1] "a" "c" "e" "g" < > uniquegenelist(letters[1:8],ndups=2,spacing=2) < [1] "a" "b" "e" "f" < > < > ### classifyTests < > < > tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE) < > classifyTestsF(tstat) < TestResults matrix < [,1] [,2] [,3] < [1,] 0 1 0 < [2,] 0 0 0 < [3,] -1 -1 1 < [4,] 0 0 0 < > FStat(tstat) < [1] 8.333333 2.083333 4.000000 1.000000 < attr(,"df1") < [1] 3 < attr(,"df2") < [1] Inf < > classifyTestsT(tstat) < TestResults matrix < [,1] [,2] [,3] < [1,] 0 1 0 < [2,] 0 0 0 < [3,] 0 0 0 < [4,] 0 0 0 < > classifyTestsP(tstat) < TestResults matrix < [,1] [,2] [,3] < [1,] 0 1 0 < [2,] 0 1 0 < [3,] 0 0 0 < [4,] 0 0 0 < > OK make[1]: Leaving directory `/loc/biocbuild/1.8d/madman/Rpacks/limma.Rcheck/tests' OK * checking package vignettes in 'inst/doc' ... OK * creating limma-manual.tex ... OK * checking limma-manual.tex ... OK