This page was generated on 2018-05-18 09:51:45 -0400 (Fri, 18 May 2018).
methylationArrayAnalysis 1.3.0 Jovana Maksimovic
Snapshot Date: 2018-05-18 07:35:07 -0400 (Fri, 18 May 2018) |
URL: https://git.bioconductor.org/packages/methylationArrayAnalysis |
Branch: master |
Last Commit: a93fc35 |
Last Changed Date: 2018-04-30 10:10:33 -0400 (Mon, 30 Apr 2018) |
| malbec1 | Linux (Ubuntu 16.04.1 LTS) / x86_64 | OK | OK | |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.8-bioc/R/bin/R -q -e 'rmarkdown::render(".buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.Rmd", output_format="BiocStyle:::html_fragment")' && /home/biocbuild/bbs-3.8-bioc/R/bin/R -q -e 'knitr::purl(".buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.Rmd", ".buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.R")'
###
##############################################################################
##############################################################################
> rmarkdown::render(".buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.Rmd", output_format="BiocStyle:::html_fragment")
processing file: methylationArrayAnalysis.Rmd
|
| | 0%
|
|. | 1%
inline R code fragments
|
|. | 2%
label: setup (with options)
List of 1
$ include: logi FALSE
|
|.. | 3%
ordinary text without R code
|
|... | 4%
label: libload (with options)
List of 4
$ results: chr "hide"
$ echo : logi FALSE
$ message: logi FALSE
$ warning: logi FALSE
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following object is masked from 'package:limma':
plotMA
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, basename, cbind, colMeans,
colnames, colSums, dirname, do.call, duplicated, eval, evalq,
Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply,
lengths, Map, mapply, match, mget, order, paste, pmax, pmax.int,
pmin, pmin.int, Position, rank, rbind, Reduce, rowMeans, rownames,
rowSums, sapply, setdiff, sort, table, tapply, union, unique,
unsplit, which, which.max, which.min
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:base':
expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: SummarizedExperiment
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Loading required package: DelayedArray
Loading required package: matrixStats
Attaching package: 'matrixStats'
The following objects are masked from 'package:Biobase':
anyMissing, rowMedians
Loading required package: BiocParallel
Attaching package: 'DelayedArray'
The following objects are masked from 'package:matrixStats':
colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
The following objects are masked from 'package:base':
aperm, apply
Loading required package: Biostrings
Loading required package: XVector
Attaching package: 'Biostrings'
The following object is masked from 'package:DelayedArray':
type
The following object is masked from 'package:base':
strsplit
Loading required package: bumphunter
Loading required package: foreach
Loading required package: iterators
Loading required package: locfit
locfit 1.5-9.1 2013-03-22
Setting options('download.file.method.GEOquery'='auto')
Setting options('GEOquery.inmemory.gpl'=FALSE)
Loading required package: grid
Loading required package: DSS
Loading required package: bsseq
Attaching package: 'bsseq'
The following object is masked from 'package:minfi':
getMeth
Loading required package: splines
Loading required package: DMRcatedata
|
|... | 5%
inline R code fragments
|
|.... | 6%
label: datadir
|
|..... | 7%
ordinary text without R code
|
|..... | 8%
label: readtargets (with options)
List of 4
$ echo : logi FALSE
$ results: chr "hide"
$ cache : logi TRUE
$ message: logi FALSE
[read.metharray.sheet] Found the following CSV files:
|
|...... | 9%
inline R code fragments
|
|....... | 10%
label: loadlib_noeval (with options)
List of 2
$ eval : logi FALSE
$ message: logi FALSE
|
|....... | 11%
ordinary text without R code
|
|........ | 12%
label: annotations (with options)
List of 1
$ cache: logi TRUE
|
|......... | 13%
ordinary text without R code
|
|.......... | 14%
label: readtargets_noeval (with options)
List of 1
$ eval: logi FALSE
|
|.......... | 15%
ordinary text without R code
|
|........... | 16%
label: readdata
|
|............ | 17%
ordinary text without R code
label: figure2 (with options)
List of 3
$ fig.width : num 10
$ fig.height: num 5
$ fig.cap : chr "Mean detection p-values summarise the quality of the signal across all the probes in each sample. The plot on t"| __truncated__
|
|............. | 18%
ordinary text without R code
|
|.............. | 19%
label: qcreport (with options)
List of 1
$ eval: logi FALSE
|
|.............. | 20%
ordinary text without R code
|
|............... | 21%
label: badsamples
|
|................ | 22%
ordinary text without R code
|
|................ | 23%
label: norm
|
|................. | 24%
ordinary text without R code
|
|.................. | 25%
label: figure3 (with options)
List of 3
$ fig.width : num 10
$ fig.height: num 5
$ fig.cap : chr "The density plots show the distribution of the beta values for each sample before and after normalisation."
|
|.................. | 26%
ordinary text without R code
|
|................... | 27%
label: figure4 (with options)
List of 3
$ fig.height: num 5
$ fig.width : num 10
$ fig.cap : chr "Multi-dimensional scaling plots are a good way to visualise the relationships between the samples in an experiment."
|
|.................... | 28%
ordinary text without R code
|
|.................... | 29%
label: figure5 (with options)
List of 3
$ fig.width : num 9
$ fig.height: num 3
$ fig.cap : chr "Examining the higher dimensions of an MDS plot can reaveal significant sources of variation in the data."
|
|..................... | 30%
ordinary text without R code
|
|...................... | 31%
label: detpfilter
|
|...................... | 32%
ordinary text without R code
|
|....................... | 33%
label: sexfilter (with options)
List of 1
$ eval: logi FALSE
|
|........................ | 34%
ordinary text without R code
|
|........................ | 35%
label: snpfilter
|
|......................... | 36%
ordinary text without R code
|
|.......................... | 37%
label: xhybfilter
|
|........................... | 38%
ordinary text without R code
|
|........................... | 39%
label: figure6 (with options)
List of 3
$ fig.width : num 10
$ fig.height: num 5
$ fig.cap : chr "Removing SNP-affected CpGs probes from the data changes the sample clustering in the MDS plots."
|
|............................ | 40%
ordinary text without R code
|
|............................. | 41%
label: figure7 (with options)
List of 3
$ fig.width : num 9
$ fig.height: num 3
$ fig.cap : chr "Examining the higher dimensions of the MDS plots shows that significant inter-individual variation still exists"| __truncated__
|
|............................. | 42%
ordinary text without R code
|
|.............................. | 43%
label: getvals
|
|............................... | 44%
ordinary text without R code
|
|............................... | 45%
label: figure8 (with options)
List of 3
$ fig.width : num 10
$ fig.height: num 5
$ fig.cap : chr "The distributions of beta and M-values are quite different; beta values are constrained between 0 and 1 whilst "| __truncated__
|
|................................ | 46%
ordinary text without R code
|
|................................. | 47%
label: dmps
|
|................................. | 48%
ordinary text without R code
|
|.................................. | 49%
label: annotatedmps
|
|................................... | 50%
ordinary text without R code
label: write (with options)
List of 1
$ eval: logi FALSE
|
|.................................... | 51%
ordinary text without R code
|
|..................................... | 52%
label: figure9 (with options)
List of 3
$ fig.width : num 10
$ fig.height: num 10
$ fig.cap : chr "Plotting the top few differentially methylated CpGs is a good way to check whether the results make sense."
|
|..................................... | 53%
ordinary text without R code
|
|...................................... | 54%
label: cpgannotate
|
|....................................... | 55%
ordinary text without R code
|
|....................................... | 56%
label: dmrcate (with options)
List of 1
$ message: logi FALSE
Fitting chr1...
Fitting chr10...
Fitting chr11...
Fitting chr12...
Fitting chr13...
Fitting chr14...
Fitting chr15...
Fitting chr16...
Fitting chr17...
Fitting chr18...
Fitting chr19...
Fitting chr2...
Fitting chr20...
Fitting chr21...
Fitting chr22...
Fitting chr3...
Fitting chr4...
Fitting chr5...
Fitting chr6...
Fitting chr7...
Fitting chr8...
Fitting chr9...
Fitting chrX...
Fitting chrY...
Demarcating regions...
Done!
|
|........................................ | 57%
ordinary text without R code
|
|......................................... | 58%
label: resultsranges
|
|......................................... | 59%
ordinary text without R code
|
|.......................................... | 60%
label: figure10 (with options)
List of 3
$ fig.width : num 10
$ fig.height: num 10
$ fig.cap : chr "The DMRcate \"DMR.plot\" function allows you to quickly visualise DMRs in their genomic context. By default, th"| __truncated__
|
|........................................... | 61%
ordinary text without R code
|
|........................................... | 62%
label: dmrcoord
|
|............................................ | 63%
ordinary text without R code
|
|............................................. | 64%
label: extrafeatures
|
|.............................................. | 65%
ordinary text without R code
|
|.............................................. | 66%
label: gentracks (with options)
List of 1
$ eval: logi FALSE
|
|............................................... | 67%
ordinary text without R code
|
|................................................ | 68%
label: order
|
|................................................ | 69%
ordinary text without R code
|
|................................................. | 70%
label: featuretracks
|
|.................................................. | 71%
ordinary text without R code
|
|.................................................. | 72%
label: figure11 (with options)
List of 4
$ fig.width : num 10
$ fig.height: num 6
$ fig.cap : chr "The Gviz package provides extensive functionality for customising plots of genomic regions. This plot shows the"| __truncated__
$ eval : logi FALSE
|
|................................................... | 73%
ordinary text without R code
|
|.................................................... | 74%
label: gomethsetup
|
|.................................................... | 75%
ordinary text without R code
|
|..................................................... | 76%
label: figure12 (with options)
List of 3
$ fig.width : num 5
$ fig.height: num 5
$ fig.cap : chr "Bias resulting from different numbers of CpG probes in different genes."
|
|...................................................... | 77%
ordinary text without R code
|
|...................................................... | 78%
label: topgo
|
|....................................................... | 79%
ordinary text without R code
|
|........................................................ | 80%
label: topgsa
|
|........................................................ | 81%
ordinary text without R code
|
|......................................................... | 82%
label: unnamed-chunk-1 (with options)
List of 4
$ echo : logi FALSE
$ warning: logi FALSE
$ message: logi FALSE
$ results: chr "hide"
|
|.......................................................... | 83%
ordinary text without R code
label: agedata
|
|........................................................... | 84%
ordinary text without R code
|
|............................................................ | 85%
label: figure13 (with options)
List of 3
$ fig.height: num 5
$ fig.width : num 10
$ fig.cap : chr "When samples from both males and females are included in a study, sex is usually the largest source of variatio"| __truncated__
|
|............................................................ | 86%
ordinary text without R code
|
|............................................................. | 87%
label: agedvps
|
|.............................................................. | 88%
ordinary text without R code
|
|............................................................... | 89%
label: agevals
|
|............................................................... | 90%
ordinary text without R code
|
|................................................................ | 91%
label: figure14 (with options)
List of 4
$ fig.width : num 10
$ fig.height: num 10
$ results : chr "hide"
$ fig.cap : chr "As for DMPs, it is useful to plot the top few differentially variable CpGs to check that the results make sense."
|
|................................................................. | 92%
ordinary text without R code
|
|................................................................. | 93%
label: unnamed-chunk-2 (with options)
List of 4
$ echo : logi FALSE
$ warning: logi FALSE
$ message: logi FALSE
$ results: chr "hide"
|
|.................................................................. | 94%
ordinary text without R code
|
|................................................................... | 95%
label: cellcounts (with options)
List of 1
$ eval: logi FALSE
|
|................................................................... | 96%
ordinary text without R code
|
|.................................................................... | 97%
label: figure15 (with options)
List of 5
$ fig.width : num 5
$ fig.height: num 5
$ cache : logi TRUE
$ fig.cap : chr "If samples come from a population of mixed cells e.g. blood, it is advisable to check for potential confounding"| __truncated__
$ eval : logi FALSE
|
|..................................................................... | 98%
ordinary text without R code
|
|..................................................................... | 99%
label: sessioninfo
|
|......................................................................| 100%
ordinary text without R code
output file: methylationArrayAnalysis.knit.md
/usr/bin/pandoc +RTS -K512m -RTS methylationArrayAnalysis.utf8.md --to html4 --from markdown+autolink_bare_uris+ascii_identifiers+tex_math_single_backslash+smart --output methylationArrayAnalysis.html --email-obfuscation none --self-contained --wrap preserve --standalone --section-divs --table-of-contents --toc-depth 3 --template /home/biocbuild/bbs-3.8-bioc/R/library/BiocStyle/resources/fragment.html --no-highlight --number-sections --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --filter /usr/bin/pandoc-citeproc
Output created: methylationArrayAnalysis.html
>
>
> knitr::purl(".buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.Rmd", ".buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.R")
processing file: .buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.Rmd
|
| | 0%
|
|. | 1%
|
|. | 2%
|
|.. | 3%
|
|... | 4%
|
|... | 5%
|
|.... | 6%
|
|.... | 7%
|
|..... | 8%
|
|...... | 9%
|
|...... | 10%
|
|....... | 11%
|
|........ | 12%
|
|........ | 13%
|
|......... | 14%
|
|......... | 15%
|
|.......... | 16%
|
|........... | 17%
|
|............ | 18%
|
|............. | 19%
|
|............. | 20%
|
|.............. | 21%
|
|............... | 22%
|
|............... | 23%
|
|................ | 24%
|
|................ | 25%
|
|................. | 26%
|
|.................. | 27%
|
|.................. | 28%
|
|................... | 29%
|
|.................... | 30%
|
|.................... | 31%
|
|..................... | 32%
|
|..................... | 33%
|
|...................... | 34%
|
|....................... | 35%
|
|....................... | 36%
|
|........................ | 37%
|
|......................... | 38%
|
|......................... | 39%
|
|.......................... | 40%
|
|........................... | 41%
|
|........................... | 42%
|
|............................ | 43%
|
|............................ | 44%
|
|............................. | 45%
|
|.............................. | 46%
|
|.............................. | 47%
|
|............................... | 48%
|
|................................ | 49%
|
|................................ | 50%
|
|................................. | 50%
|
|................................. | 51%
|
|.................................. | 52%
|
|................................... | 53%
|
|................................... | 54%
|
|.................................... | 55%
|
|..................................... | 56%
|
|..................................... | 57%
|
|...................................... | 58%
|
|...................................... | 59%
|
|....................................... | 60%
|
|........................................ | 61%
|
|........................................ | 62%
|
|......................................... | 63%
|
|.......................................... | 64%
|
|.......................................... | 65%
|
|........................................... | 66%
|
|............................................ | 67%
|
|............................................ | 68%
|
|............................................. | 69%
|
|............................................. | 70%
|
|.............................................. | 71%
|
|............................................... | 72%
|
|............................................... | 73%
|
|................................................ | 74%
|
|................................................. | 75%
|
|................................................. | 76%
|
|.................................................. | 77%
|
|.................................................. | 78%
|
|................................................... | 79%
|
|.................................................... | 80%
|
|.................................................... | 81%
|
|..................................................... | 82%
|
|...................................................... | 83%
|
|....................................................... | 84%
|
|........................................................ | 85%
|
|........................................................ | 86%
|
|......................................................... | 87%
|
|......................................................... | 88%
|
|.......................................................... | 89%
|
|........................................................... | 90%
|
|........................................................... | 91%
|
|............................................................ | 92%
|
|............................................................. | 93%
|
|............................................................. | 94%
|
|.............................................................. | 95%
|
|.............................................................. | 96%
|
|............................................................... | 97%
|
|................................................................ | 98%
|
|................................................................ | 99%
|
|.................................................................| 100%
output file: .buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.R
[1] ".buildwebvig/methylationArrayAnalysis/methylationArrayAnalysis.R"
>
>