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1 Preliminaries

First let’s make sure you have a working R-2.12 installation with all the packages
needed for the course installed. To install any missing package (or to update
the installed packages), start R and use the following command:

> source("http://bioconductor.org/course-packages/install-SeattleIntro2010.R")

2 Use case I: Extracting sequences from a refer-
ence genome

In this introductory use case, we learn how to extract DNA sequences from a
BSgenome data package for a set of given locations. In particular we use the
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transcript, exon and CDS locations stored in a TranscriptDb object to extract
the sequences of those features.

The Bioconductor data repositories provide a BSgenome data package for
the sacCer2 genome (Yeast): the BSgenome.Scerevisiae.UCSC.sacCer2 package.
You should normally have it installed. It contains the full DNA sequences of
the sacCer2 genome.

Also the SeattleIntro2010 package contains a TranscriptDb object corre-
sponding to this genome. Note that a TranscriptDb object contains positional
(and relational) information about features but it does not contain sequences.
If we need to extract the sequence of a given feature, an easy way is to query
the BSgenome.Scerevisiae.UCSC.sacCer2 package with the getSeq function.

Note that the result of this query is meaningful only if the TranscriptDb
object contains positional annotations relative to the genome stored in the
BSgenome data package. For example using a TranscriptDb object based on
BSgenome.Hsapiens.UCSC.hg18 to extract sequences from BSgenome.Hsapiens.UCSC.hg19
would not make sense.

Exercise 1
• Start R and load the SeattleIntro2010 package.

• Use system.file(package="SeattleIntro2010") to get the full path to the
top-level folder of the installed package. (The top-level folder of an in-
stalled package should always be treated as read-only).

• Use list.files on the previous result.

• The TranscriptDb object that we are looking for is in the extdata sub-
folder. Use list.files(system.file("extdata", package="SeattleIntro2010"))

to see it. It’s the sacCer2_sgdGene.sqlite file.

• The sacCer2_sgdGene.sqlite file is an SQLite database that stores the
transcript, exon and CDS locations relative to the sacCer2 genome as well
as the relations between those features and their corresponding genes. This
information was extracted from the “SGD Genes” track for sacCer2 at the
UCSC Genome Browser, and formatted into an SQLite database that can
be loaded in R with the loadFeatures function from the GenomicFeatures
package.

• Load the GenomicFeatures package and use the loadFeatures function to
load the sacCer2_sgdGene.sqlite db into your session. Let’s call txdb

the returned object.

txdb is a TranscriptDb object. You will learn more about those objects in the
next session (in particular, how to make your own). For now, we’re just going to
extract all the exon locations from it and then query the BSgenome.Scerevisiae.UCSC.sacCer2
with getSeq to extract their sequences.
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Exercise 2
• Extract all the exon locations from txdb with the exons function. The

result is a GRanges object.

• What’s the longest exon? Are there exons on the 2micron plasmid?

• Load the BSgenome.Scerevisiae.UCSC.sacCer2 package.

• There is only one symbol defined in this package, the Scerevisiae object
(you can check this with ls("package:BSgenome.Scerevisiae.UCSC.sacCer2")).
Display it.

• Get the lengths of the sequences with seqlengths(Scerevisiae).

• Try to load any sequence with Scerevisiae[["some sequence name"]].

• Use the getSeq function on Scerevisiae and the GRanges object created
previously to extract the exons sequences.

We end up with a DNAStringSet object containing our exon sequences. Later
we will learn more about DNAString and DNAStringSet objects.

3 Use case II: Importing and manipulating a
GappedAlignments object

An high-throughput sequencing experiment produces reads that need to be
aligned against a reference genome. Although the Bioconductor software pro-
vides some fast pattern matching tools that can be used for aligning the reads,
this step is typically done with a third-party software like Bowtie, BWA, Eland,
etc...

The SeattleIntro2010 package contains reads from the Nagalakshmi et al. [1]
experiment (Yeast RNA-seq). They have been aligned against the sacCer2 ref-
erence genome (using the BWA software) and stored in a BAM file. In order
to keep the package to a reasonable size, only the reads from a single lane
(oligo(dT)-primed, original) with hits on chromosome I to V have been kept.
They are in the SRR002051.chrI-V.bam file.

Bioconductor provides several tools to load a BAM file:

• The low-level scanBam function from the Rsamtools package. Returns a
list of lists.

• The middle-level readGappedAlignments function from the GenomicRanges
package. Returns a GappedAlignments object.

• The high-level readAligned function from the ShortRead package. Returns
an AlignedRead object.
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Here we will focus on the middle-level solution. As we will see, GappedAlign-
ments objects don’t store as much information as AlignedRead objects (e.g. the
read sequences, read qualities and alignment scores are not stored), but, unlike
AlignedRead objects, they can store alignments with indels and gaps.

Exercise 3
• Load the SRR002051.chrI-V.bam file (located in the extdata subfolder

of the SeattleIntro2010 package) with the readGappedAlignments function
from the GenomicRanges package. Let’s call the result galn.

• Display galn. What’s its class? What’s its length?

galn is a GappedAlignments object. According to the man page for those
objects (?GappedAlignments):

A GappedAlignments object is a vector-like object where each
element describes an alignment, that is, how a given sequence
(called “query” or “read”, typically short) aligns to a reference
sequence (typically long).

Alignments are also called “hits” or “matches”. It’s important to note that
the relationship between the original set of queries to align (i.e. the input of the
aligner software) and the elements of the GappedAlignments object is generally
not one-to-one. Queries with no hits don’t show up in the GappedAlignments
object. Queries with multiple hits might have been part of the output of the
aligner software and stored in the BAM file (by assigning more than one BAM
record to the same query ID). In that case the resulting GappedAlignments
object would have more than one element corresponding to the same query ID.

Like for TranscriptDb, the information stored in a GappedAlignments object
is positional only (no sequence is stored), and positions are always 1-based with
respect to the 5’ end of the plus strand of the reference sequence.

The basic accessors for a GappedAlignments object are rname, strand, cigar,
qwidth, start, end, width and ngap. They all return a vector of the same length
as the GappedAlignments object itself.

Note that the “r” in rname and the “q” in qwidth stand for “reference” and
“query”, respectively, that is, the rname accessor gets (or sets) the name of the
reference sequence for each alignment and the qwidth accessor gets the width of
the query (i.e. its number of bases). Although they are not prefixed with “r”,
start, end and width are relative to the reference genome.

In the next exercise we look more closely at the difference between qwidth

and width.

Exercise 4
• Compare the output of table(qwidth(galn)) and table(width(galn)). What

we observe is that, even if all the queries are 33-base long, the portion of
the reference sequence that they are aligned to can have a slightly different
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length. This is because those alignments contain indels (represented with
I’s or a D’s in the CIGAR) or gaps (represented with N’s in the CIGAR).

• Do the alignments have gaps?

• The GenomicRanges package provides some CIGAR utility functions doc-
umented in ?`cigar-utils` (note the use of the backticks). In order to
find the alignments that don’t have a simple cigar (simple cigar means
“only M’s in it”), we’re going to use the cigarOpTable function. Extract
the CIGAR strings from the galn object and pass them to cigarOpTable.

• What we have now is a numeric matrix with one row per CIGAR string
and one column per valid CIGAR letter 1. Drop the M column and use
rowSums to collapse the remaining columns into a single column.

• From here it should be easy to extract the index of alignments that don’t
have a simple cigar.

One last thing before we move on to the next section.

Exercise 5
• Turn galn into a GRanges object (let’s call it hits). Tip: Consult the man

page for GappedAlignments objects for how to do this.

We will use this GRanges object in the next section.

4 Use case III: Looking at the reads that don’t
hit a (known) gene

In this section, we want to identify the reads that don’t hit a (known) gene
as well as the regions in the genomes covered by those reads. Because those
reads are coming from an RNA-seq experiment, those regions would be good
candidates for de-novo gene/transcript discovery.

Exercise 6
• Load the sacCer2_sgdGene.sqlite file (located in the extdata subfolder

of the SeattleIntro2010 package) with loadFeatures. Let’s call txdb this
TranscriptDb object.

• Use the countOverlaps function to find the elements in the hits object
(from the previous section) that don’t hit any gene. Note that there
are basically 2 approaches to this: one based on the start/end of the
transcripts and one based on the start/end of the exons. Let’s call hits0
the subset of hits made of those elements that don’t hit any gene.

• Use the reduce function to extract the regions covered by hits0.

1This set of CIGAR letters corresponds to the extended CIGAR specification as described
in the SAMtools spec – see http://samtools.sourceforge.net/ for more information
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We want to refine the way we’ve determined the above regions by using a
method based on the depth of the coverage of the hits. More precisely we want
to find the regions of the genome where the coverage of hits0 is greater than
(or equal to) some threshold (e.g. 10). An alternative way to formulate this is:
we want to find the regions of the genome corresponding to all the bases that
receive at least 10 hits.

Exercise 7
• Compute the genome wide coverage of hits0. The result is a SimpleRleList

object. This sounds complicated but it helps to think of it as a named list
of Rle objects. The names of the list are the chromosomes and each top-
level element in the list is an Rle object representing the coverage for the
corresponding chromosome. Let’s call this SimpleRleList object cov0. Like
you would do with a standard list object, you can use the double-bracket
operator ([[) to extract an element from cov0.

• Use the slice function to slice cov0 horizontally. The result of this is a
SimpleRleViewsList object. This sounds even more complicated but here
again it helps to think of it as a named list of RleViews objects. The
names of the list are still the chromosomes and each top-level element in
the list now is an RleViews object i.e. a set of views on the coverage vector
for the corresponding chromosome.

• Use the generic function as to turn the result of the previous slicing into
a GRanges object.

There is an issue with the above method: we’ve lost the strand information.
We might want to retain it if our final goal were to identify new transcripts. In
the next exercise we improve our “pile up and slice” method to propagate the
strand information stored in hits0.

Exercise 8
• Split hits0 in two GRanges object: one containing the hits located on the

plus strand and one containing the hits located on the minus strand.

• Apply the “pile up and slice” method used in the previous exercise to
each GRanges object. This transforms each GRanges object into another
GRanges object.

• Note that the two GRanges objects obtained previously are unstranded.
Add the strand information to them.

• Combine the two GRanges objects obtained previously with the generic
function c.

• One last thing we might want to do is use reduce on the final result. The
only effect of reducing here is to reorder the regions first by chromosome
and then by strand (this is how reduce orders the elements of a GRanges
object).
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Finally, to make it easier to repeat the transformation we’ve done to hits0

in the previous exercise but now with different values of the threshold used in
the slicing step, we want to wrap our code in a function.

Exercise 9
• Write a function (coveredRegions) that takes a set of hits (in a GRanges

object) and a threshold (lower) and returns a GRanges object containing
the regions where the coverage of the hits is greater than (or equal to)
the threshold. Make sure the returned GRanges object is stranded and
reduced.

• Sanity check: compare coveredRegions(hits0, 1) with reduce(hits0).

• Extract the DNA sequences corresponding to the regions returned by cov-

eredRegions(hits0, 10). Try with other threshold values.

5 Use case IV: Measuring the complexity of the
reads

A common task when dealing with HTS data is to filter out reads with a low
complexity like poly-As or reads made of the repetition of the same 2-mer (din-
ucleotide) etc... In this section, we implement a simple function that takes a
DNAStringSet object (the reads) and returns a score for each read based on
its complexity. The approach we use is inspired and adapted from the DUST
algorithm.

The basic idea behind DUST is that a DNA sequence with a “poor trinu-
cleotide content” (i.e. with a small number of distinct trinucleotides) is consid-
ered to have a low complexity. For example, the following sequences have a low
complexity:

• AAAAAAAAAA: contains only 1 tri-nculeotide: AAA

• ATATATATATATATA: contains 2 tri-nucleotide: ATA and TAT

On the other hand, a DNA sequence with a “rich trinucleotide content”
(i.e. many distinct trinucleotides) is considered to have a high complexity. For
example, the following 36-mer:

• GGGCTACATGACGGTCCTGTATTTAGCCAGAGGATC

has the highest complexity a 36-mer can have because all the trinucleotides
contained in it (34 in total) are distinct.

Here is how we will compute the score of a given DNA sequence:

• Count the number of occurences (frequency) of each possible trinucleotide:
FAAA, FAAC , FAAG, FAAT , FACA, ..., FTTT (64 in total).
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• Substract 1 to the frequencies that are not zero. That is: for each Fxxx,
if Fxxx! = 0 then Fxxx = Fxxx − 1.

• score = 1−
√∑

F 2
xxx

L−3 where L is the length of the sequence.

A score of 0 indicates a poly-A, poly-C, poly-G or poly-T. A score of 1
can only be obtained by a sequence where all trinucleotides are distinct which
implies that the sequence is no more than 66 bases long. Sequences longer than
this cannot obtain a score of 1 and this scoring algorithm is not expected to give
meaningful results on long sequences. Also, the score of very short sequences
(i.e. 4 <= length <= 6) is not very meaningful either.

The SeattleIntro2010 package contains reads from the Nagalakshmi et al.
experiment stored in a FASTQ file (unaligned reads). Let’s start by loading
and “cleaning” them.

Exercise 10
• Use the read.DNAStringSet function from the Biostrings package to load

the SRR002051.reads1-50k.fastq file located in the extdata subfolder
of the SeattleIntro2010 package. Note that, by default, read.DNAStringSet
expects a FASTA file. Consult the man page for read.DNAStringSet to see
how to read a FASTQ file.

• Use the alphabetFrequency function (with collapse=TRUE) on those reads.

• The scoring algorithm described above doesn’t apply to reads that con-
tain IUPAC ambiguity letters. Remove those reads. Tip: Try to use
alphabetFrequency with baseOnly=TRUE.

Let’s call cleanreads the DNAStringSet object containing the result of the
previous exercise. Now we are going to compute the score of those reads.

Exercise 11
• Use the trinucleotideFrequency function from the Biostrings package to

compute the trinucleotide frequencies of the clean reads. The result (let’s
call it tnf) is a matrix containing the trinucleotide counts for each input
read. The matrix has 1 row per read and 64 columns (i.e. one column per
each possible trinucleotide).

• Use the tnf matrix to compute the scores of the clean reads by following
the steps described above. Tip 1: Note that, by performing vectorized
arithmetic (a key feature of arithmetic operations in R), we can avoid the
use of loops and be very fast. Tip 2: You can use rowSums on a numeric
matrix to sum all the coefficients that belong to the same row, and this
for all the rows.

• Wrap the previous code in a function i.e. implement the complexityOf-

Reads function that computes the complexity scores of each element of a
DNAStringSet object.
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• Display the reads with a score of 0, then the reads with a score of 1.

• Use complexityOfReads to compute the complexity of the reads in SRR002051.reads1-

50k.fastq and plot the histogram of the result.

6 Use case V: Pattern matching

In this last use case, we’re going to try to align our reads with the pattern
matching tools available in the Biostrings package.

We can divide those tools in 2 categories:

• General purpose pattern matching/aligning tools:

– matchPattern (and convenience wrapper countPattern);

– vmatchPattern (and convenience wrapper vcountPattern);

– pairwiseAlignment.

• Specialized pattern matching/finding tools:

– matchPDict (and convenience wrappers countPDict, whichPDict);

– vmatchPDict (and convenience wrappers vcountPDict, vwhichPDict);

– matchLRPatterns;

– matchProbePair;

– trimLRPatterns;

– matchPWM;

– findPalindromes.

The matchPDict function (and family) is the tool of choice when it comes
to matching a high number of short DNA sequences (the patterns) against a
long reference DNA sequence (the subject). The countPDict and whichPDict

functions are convenience wrappers for situations where counting the hits only
is desired (countPDict), or when we just want to know which patterns have at
least 1 hit (whichPDict). A common feature of all the *PDict matching functions
is that, in order to be efficient, they all require to preprocess the set of patterns
(aka “the pattern dictionary”). This is achieved with the PDict constructor:

> system.time(nhits <- countPDict(cleanreads, Scerevisiae$chrI))

user system elapsed

37.258 0.033 37.520

> system.time(nhits2 <- countPDict(PDict(cleanreads), Scerevisiae$chrI))

user system elapsed

1.176 0.067 1.249
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> identical(nhits, nhits2)

[1] TRUE

> table(nhits)

nhits

0 1 2 4

48648 164 23 45

Note that, by default, matchPDict and family look for exact matches only.
See ?PDict for how to allow a small numbers of mismatches (at the price of a
significant slowdown though).

Let’s start by illustrating the basic usage of PDict/countPDict.

Exercise 12
• Preprocess the cleanreads dictionary with PDict.

• Use countPDict to count the number of hits per pattern against sacCer2
chromosome IV (the longest chromosome in Yeast).

Note that, without taking any special precaution, the hit counts we got are
for hits on the plus strand of chrIV only. However, a simple and efficient way to
count the hits on the minus strand is to repeat the 2 steps above on the reverse
complement of cleanreads.

Exercise 13
• Use the reverseComplement function on cleanreads.

• Count the hits on the minus strand of chrIV.

• Finally add the 2 vectors of hit counts you got.

Note that one way to make this faster (at the cost of more memory usage)
is to preprocess the patterns and their reverse complements in the same PDict
object, but this goes beyond the scope of this simple introduction to fast pattern
matching with Biostrings.

In the next exercise, we want to match our clean reads against the full
sacCer2 genome, by searching the plus and minus strands of each reference
sequence. Again, we will do exact matching only.

Exercise 14
• Write a function countSingleStrandGenomeHits, that takes 2 arguments:

(1) a pattern dictionary (DNAStringSet) and, (2) a BSgenome object (e.g.
Scerevisiae). The function will return the number of hits on the entire
genome for each pattern in the input dictionary. The function should only
count the hits on the plus strand.

– Tip 1: Use seqnames on a BSgenome object to get its sequence names.
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– Tip 2: Loop over the sequence names with a for loop.

– Tip 3: Before you start the loop, create an integer vector of the length
of the input dictionary with nhits <- integer(length(dict)). It will
be initialized with zeroes. Then, inside the loop, add the results for
each sequence to nhits.

• Use countSingleStrandGenomeHits to count the hits of our clean reads
against the full sacCer2 genome. The final result (let’s call it gwnhits

for “genome wide nhits”) must take both strands into account.

• What’s the percentage of reads that don’t hit the genome? How could
this be improved?

7 Session information

• R version 2.12.1 beta (2010-12-07 r53813), i386-apple-darwin9.8.0

• Locale: C
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