

An introduction to reproducible research using RStudio, knitr and git

Jeff Johnston (jjj@stowers.org)
Zeitlinger Lab
Stowers Institute for Medical Research
Kansas City, MO

BioC July 19th, 2013

What are these tools?

- RStudio: an integrated development environment (IDE) for R
- knitr: an R package designed to make literate programming easier
- git: a version control system for tracking changes to text and software code

The first (and most important) lesson

Literate Programming

Lab Notebook (description)

Analysis
Code
(implementation)

Spreadsheet

Description

Code

Description

Code

Table

Description

Code

Figure

Description

In literate programming, an analytical document is composed of a descriptive narrative "woven" together with software code and computed results.

Description

Code

Description

Code

Table

Description

Code

Figure

Description

Advantages

- A single document both describes and performs the analysis
- Enforces reproducibility
- Gets you in the habit of Good Science

Version Control

 Think of Microsoft Word's Track Changes feature

- Version control allows you to:
 - Save the "state" of your project at any time
 - Keep a log of all your changes
 - Return to or review previous versions of your analyses
 - More easily work with others on the same project
 - Lots more!

Agenda

- Start a new version-controlled analysis project in RStudio
- Learn about knitr, markdown, tables, figures and citations
- Perform a quick bioinformatics analysis as a knitr document
- Occasionally "save" our progress with git