\name{clusteringOutput-class} \docType{class} \alias{clusteringOutput-class} \alias{RObject,clusteringOutput-method} \alias{plot,clusteringOutput,ANY-method} \alias{show,clusteringOutput-method} \alias{show,clusteringSchema-method} \alias{getConverter,clusteringSchema-method} \alias{getDist,clusteringSchema-method} \alias{getConverter} \alias{getDist} \title{container for clustering outputs in uniform structure} \description{container for clustering outputs in uniform structure} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("clusteringOutput", ...)}. } \section{Slots}{ \describe{ \item{\code{partition}:}{Object of class \code{"integer"}, labels for observations as clustered } \item{\code{silhouette}:}{Object of class \code{"silhouette"}, structure from Rousseeuw cluster package measuring cluster membership strength per observation} \item{\code{prcomp}:}{Object of class \code{"prcompObj"} a wrapped instance of stats package prcomp output } % \item{\code{metric}:}{Object of class \code{"character"} string %identifying the distance function used to orient objects in feature space } \item{\code{call}:}{Object of class \code{"call"} for auditing } \item{\code{learnerSchema}:}{Object of class \code{"learnerSchema"}, a formal object indicating the package, function, and other attributes of the clustering algorithm employed to generate this object } \item{\code{RObject}:}{Object of class \code{"ANY"}, the unaltered output of the function called according to learnerSchema } \item{\code{converter}:}{converter propagated from call} \item{\code{distFun}:}{distfun propagated from call} } } \section{Methods}{ \describe{ \item{RObject}{\code{signature(x = "clusteringOutput")}: extract the unaltered output of the R function or method called according to learnerSchema } \item{plot}{\code{signature(x = "clusteringOutput", y = "ANY")}: a 4-panel plot showing features of the clustering, including the scree plot for a principal components transformation and a display of the partition in PC1xPC2 plane. For a clustering method that does not have a native plot procedure, such as kmeans, the parameter y should be bound to a data frame or matrix with feature data for all records; an image plot of robust feature z-scores (z=(x-median(x))/mad(x)) and the cluster indices is produced in the northwest panel. } \item{show}{\code{signature(object = "clusteringOutput")}: concise report } } } %\references{ ~put references to the literature/web site here ~ } \author{ VJ Carey } %\note{ ~~further notes~~ } % % ~Make other sections like Warning with \section{Warning }{....} ~ % %\seealso{ % ~~objects to See Also as \code{\link{~~fun~~}}, ~~~ % or \code{\linkS4class{CLASSNAME}} for links to other classes %} \examples{ showClass("clusteringOutput") } \keyword{classes}