\name{ProfileCleanUp} \alias{ProfileCleanUp} \title{ Reduce redundancy of the profile } \description{ This function reduces/removes redundancy in a profile. } \usage{ ProfileCleanUp(Profile, timeSplit = 500, r_thres = 0.95) } \arguments{ \item{Profile}{ A \code{tsProfile} object. See \code{\link{Profile}}. } \item{timeSplit}{ A RI window. } \item{r_thres}{ A correlation threshold. } } \details{ Metabolites that are inside a \code{timeSplit} window will be correlated to see whether the metabolites are the same or not, by using \code{r_thres} as a cutoff. If so, the intensities and RI will be averaged and the metabolite with more correlating masses will be suggested. } \value{ A \code{tsProfile} object with a non-redundant profile of the masses that were searched and correlated, and intensity and RI matrices of the correlating masses. \item{slot "Info"}{A data frame with a profile of all masses that correlate and the metabolites that correlate in a \code{timeSplit} window.} \item{slot "profInt"}{A matrix with the averaged intensities of the correlating masses.} \item{slot "profRI"}{A matrix with the averaged RI of the correlating masses.} \item{slot "Intensity"}{A list containing peak-intensity matrices, one matrix per metabolite.} \item{slot "RI"}{A list containing RI matrices, one matrix per metabolite.} } \examples{ # load example data require(TargetSearchData) data(TargetSearchData) RI.path <- file.path(.find.package("TargetSearchData"), "gc-ms-data") refLibrary <- ImportLibrary(file.path(RI.path,"library.txt")) # update RI file path RIpath(sampleDescription) <- RI.path # Import Library refLibrary <- ImportLibrary(file.path(RI.path,'library.txt')) # update median RI refLibrary <- medianRILib(sampleDescription, refLibrary) # get the sample RI corRI <- sampleRI(sampleDescription, refLibrary, r_thres = 0.95) # obtain the peak Intensities of all the masses in the library peakData <- peakFind(sampleDescription, refLibrary, corRI) metabProfile <- Profile(sampleDescription, refLibrary, peakData, r_thres = 0.95) # here we use the metabProfile previously calculated and return a "cleaned" profile. metabProfile.clean <- ProfileCleanUp(metabProfile, timeSplit = 500, r_thres = 0.95) # Different cutoffs could be specified metabProfile.clean <- ProfileCleanUp(metabProfile, timeSplit = 1000, r_thres = 0.9) } \author{ Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig } \seealso{ \code{\link{Profile}}, \code{\linkS4class{tsProfile}} }