\name{generateExprVal}
\alias{express.summary.stat}
\alias{express.summary.stat-methods}
\alias{express.summary.stat.methods}
\alias{upDate.express.summary.stat.methods}
\title{Compute a summary expression value from the probes intensities}
\description{
  Compute a summary expression value from the probes intensities
}
\usage{
express.summary.stat(x, pmcorrect, summary, ...)
express.summary.stat.methods() # vector of names of methods
upDate.express.summary.stat.methods(x)
}
\arguments{
  \item{x}{a (\code{ProbeSet}}
  \item{pmcorrect}{the method used to correct the PM values before
    summarizing to an expression value.}
  \item{summary}{the method used to generate the expression value.}
  \item{\dots}{other parameters the method might need... (see the
    corresponding methods below...)}
}
\value{
  Returns a vector of expression values.
}
\examples{
if (require(affydata)) {
  data(Dilution)

  p <- probeset(Dilution, "1001_at")[[1]]

  par(mfcol=c(5,2))
  mymethods <- express.summary.stat.methods()
  nmet <- length(mymethods)
  nc <- ncol(pm(p))

  layout(matrix(c(1:nc, rep(nc+1, nc)), nc, 2), width = c(1, 1))

  barplot(p)

  results <- matrix(0, nc, nmet)
  rownames(results) <- paste("sample", 1:nc)
  colnames(results) <- mymethods

  for (i in 1:nmet) {
    ev <- express.summary.stat(p, summary=mymethods[i], pmcorrect="pmonly")
    if (mymethods[[i]] != "medianpolish")
      results[, i] <- 2^(ev$exprs)
    else
      results[, i] <- ev$exprs
  }

  dotchart(results, labels=paste("sample", 1:nc))
}
}
\keyword{manip}