\name{betweensampleVariance} \docType{genericFunction} \alias{betweensampleVariance} \alias{betweensampleVariance,aclinicalProteomicsData} \alias{biologicalVariance} \title{A generic function for computing the biological variance and mean differences between cases and controls} \description{ This generic function fits a regression model to the averaged replicate data. The outputs are the between sample variance, and the differences in mean expression between cases and controls, adjusted for confounders. } \usage{ betweensampleVariance(Data, \dots) } \arguments{ \item{Data}{An object of \code{aclinicalProteomicsData} class. } \item{\dots}{Some methods for this generic function may take additional, optional arguments. At present none do.} } \value{It returns a list with the following components: \item{betweensamplevariance }{A vector of the between-sample variance for each peak.} \item{differences }{A vector of the differences in mean expression values between the cases and controls, adjusted for confounders for each peak. } \item{significance }{A dataframe, or a vector of the differential-expression p-values for each peak.} } \author{ Stephen Nyangoma} \examples{ ######################################## ##### methods for the generic function ######################################## showMethods("betweensampleVariance") ################################################### # Creating data of a aclinicalProteomicsData class ################################################### data(liverdata) data(liver_pheno) OBJECT=new("aclinicalProteomicsData") OBJECT@rawSELDIdata=as.matrix(liverdata) OBJECT@covariates=c("tumor" , "sex") OBJECT@phenotypicData=as.matrix(liver_pheno) OBJECT@variableClass=c('numeric','factor','factor') OBJECT@no.peaks=53 Data=OBJECT ################################################################################# # Data manipulation carried out internally by the betweensampleVariance function ################################################################################# rawData <- proteomicsExprsData(Data) no.peaks <- Data@no.peaks JUNK_DATA <- sampleClusteredData(rawData,no.peaks) JUNK_DATA=negativeIntensitiesCorrection(JUNK_DATA) # we use the log-basetwo2 expression values LOG_DATA <- log2(JUNK_DATA) ####################################################################################### # compute biological variation, difference to be estimated, and the p-values ####################################################################################### BiovarDiffSig <- betweensampleVariance(OBJECT) BiovarDiffSig }