\name{normDotProduct} \alias{normDotProduct} \title{Normalized Dot Product} \description{This function calculates the similarity of all pairs of peaks from 2 samples, using the spectra similarity} \usage{normDotProduct(x1,x2,t1=NULL,t2=NULL,df=max(ncol(x1),ncol(x2)),D=100000,timedf=NULL,verbose=FALSE)} \arguments{ \item{x1}{data matrix for sample 1} \item{x2}{data matrix for sample 2} \item{t1}{vector of retention times for sample 1} \item{t2}{vector of retention times for sample 2} \item{df}{distance from diagonal to calculate similarity} \item{D}{retention time penalty} \item{timedf}{matrix of time differences to normalize to. if \code{NULL}, 0 is used.} \item{verbose}{logical, whether to print out information} } \details{ Efficiently computes the normalized dot product between every pair of peak vectors and returns a similarity matrix. C code is called. } \value{ matrix of similarities } \author{Mark Robinson} \references{ Mark D Robinson (2008). Methods for the analysis of gas chromatography - mass spectrometry data \emph{PhD dissertation} University of Melbourne. } \seealso{ \code{\link{dp}}, \code{\link{peaksAlignment}} } \examples{ require(gcspikelite) # paths and files gcmsPath<-paste(.find.package("gcspikelite"),"data",sep="/") cdfFiles<-dir(gcmsPath,"CDF",full=TRUE) eluFiles<-dir(gcmsPath,"ELU",full=TRUE) # read data, peak detection results pd<-peaksDataset(cdfFiles[1:2],mz=seq(50,550),rtrange=c(7.5,8.5)) pd<-addAMDISPeaks(pd,eluFiles[1:2]) r<-normDotProduct(pd@peaksdata[[1]],pd@peaksdata[[2]]) } \keyword{manip}