\name{inverseLogicleTransform} \alias{inverseLogicleTransform} \title{ Computes the inverse of the transform defined by the 'invLogicle_transform' function} \description{ inverseLogicleTransform can be use to compute the inverse of the Logicle transformation. The parameters w,t,m,a passed as inputs should match those applied to transform the data using the logicleTransform function. } \usage{ inverseLogicleTransform(transformationId="defaultInvLogicleTransform", w = 0, t = 262144, m = 4.5,a=0) } \arguments{ \item{transformationId}{ A name to assigned to the inverse transformation. Used by the transform routines. } \item{w}{w is the linearization width in asymptotic decades. W should be >= 0 and determines the slope of transformation at zero} \item{t}{Top of the scale data value, e.g, 10000 for common 4 decade data or 262144 for a 18 bit data range. t should be greater than zero.} \item{m}{m is the full width of the transformed display in asymptotic decades. m should be greater than zero.} \item{a}{Additional negative range to be included in the display in asymptotic decades. Positive values of the argument brings additional negative input values into the transformed display viewing area. Default value is zero corresponding to a Standard logicle function.} } \references{Parks D.R., Roederer M., Moore W.A.(2006) A new "logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. CytometryA, 96(6):541-51.} \author{N. Gopalakrishnan} \seealso{\code{\link[flowCore]{logicleTransform}} } \examples{ data(GvHD) samp <- GvHD[[1]] logicle <- logicleTransform(w=2, "logicle") transFormedData <- transform(samp, `FSC-H`=logicle(`FSC-H`)) invLogicle <- inverseLogicleTransform(w=2,"InvLogicle") untransFormedData <- transform(transFormedData, `FSC-H`=invLogicle(`FSC-H`)) all.equal(exprs(samp)[,"FSC-H"], exprs(untransFormedData)[,"FSC-H"]) } \keyword{methods}