\name{changepointDetection} \alias{changepointDetection} \title{ Change-Point Detection} \description{ Fits a two-component piecewise linear regression to the minimum distance between merged clusters vs the number of clusters for a list of merged cluster solutions. } \usage{ changepointDetection(vect, OrthagonalResiduals = FALSE, PlotFlag = FALSE) } \arguments{ \item{vect}{ A vector of minimum distances between clusters chosen to be merged at each iteration. } \item{OrthagonalResiduals}{ Boolean value, indicates if the residuals must be transformed to orthagonal distance or not. } \item{PlotFlag}{ Boolean value, indicating if the regression lines must be visualized. } } %\details{ %% ~~ If necessary, more details than the description above ~~ %} \value{ \item{MinIndex}{ Index of the merging step that produced the final results. } \item{l1}{ First regression line used for finding the changepoint for stopping the merging process. } \item{l2}{ Second regression line used for finding the changepoint for stopping the merging process. } } %\references{ %% ~put references to the literature/web site here ~ %} \author{ Nima Aghaeepour } %\note{ %% ~~further notes~~ %} %\seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ %} \examples{ library(flowMeans) data(x) res <- flowMeans(x, c("FL1.H", "FL2.H", "FL3.H", "FL4.H"), MaxN=10) ft<-changepointDetection(res@Mins) plot(res@Mins) abline(ft$l1) abline(ft$l2) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. %\keyword{ piecewise regression }