\name{addNBSignificance} \alias{addNBSignificance} \alias{estimateNBParams} \title{assess significance of sliding-window read counts} \description{ This function can be used to assess the significance of sliding-window read counts. The background distribution of read counts in windows is assumed to be a Negative-Binomial (NB) one. The two parameters of the NB distribution, mean \sQuote{mu} and dispersion \sQuote{size}, are estimated using any of the methods described below (see details). The estimated NB distribution is used to assign a \emph{p}-value to each window based on the number of aligned reads in the window. The \emph{p}-values can be corrected for multiple testing using any of the correction methods implemented for \code{p.adjust}. } \usage{ addNBSignificance(x, estimate="NB.012", correct = "none", max.n=10L) } \arguments{ \item{x}{ A \code{data.frame} of class \code{slidingWindowSummary}, as returned by the function \code{\link{perWindow}}.} \item{estimate}{ string; which method to use to estimate the parameters of the NB background distribution; see below for details} \item{correct}{ string; which method to use for \emph{p}-value adjustment; can be any method that is implemented for \code{p.adjust} including \dQuote{none} if no correction is desired.} \item{max.n}{integer; only relevant if \code{estimate=="NB.ML"}; in that case specifies that windows with up to this number of aligned reads should be considered for estimating the background distribution.} } \details{ The two parameters of the Negative-Binomial (NB) distribution are: mean \sQuote{\eqn{\lambda}{lambda}} (or \sQuote{mu}) and size \sQuote{\eqn{r}} (or \sQuote{size}).\cr The function knowns a number of methods to estimate the parameters of the NB distribution. \describe{ \item{\dQuote{NB.012}}{Solely the windows with only 0, 1, or 2 aligned reads are used for estimating {\eqn{\lambda}{lambda}} and \sQuote{\eqn{r}}. From the probability mass function \eqn{g(k)=P(X=k)} of the NB distribution, it follows that the ratios \deqn{q_1 = \frac{g(1)}{g(0)} = \frac{\lambda \cdot r}{\lambda + r}}{q_1 = g(1)/g(0) = lambda r/(lambda+r)} and \deqn{q_2= \frac{g(2)}{g(1)}= \frac{\lambda \cdot (r+1)}{2 \cdot (\lambda + r)}~.}{q_2 = g(2)/g(1) = lambda (r+1)/(2 (lambda+r)).} The observed numbers of windows with 0-2 aligned reads are used to estimate \deqn{\widehat{q_1}=\frac{n_1}{n_0}}{q_1 = n_1/n_0} and \deqn{\widehat{q_2}=\frac{n_2}{n_1}}{q_2 = n_2/n_1} and from these estimates, one can obtain estimates for \eqn{\widehat{\lambda}}{'lambda'} and \eqn{\widehat{r}}{'r'}.} \item{\dQuote{NB.ML}}{This estimation method uses the function \code{fitdistr} from package \sQuote{MASS}. Windows with up to \code{n.max} aligned reads are considered for this estimate.} \item{\dQuote{Poisson}}{This estimate also uses the windows the 0-2 aligned reads, but uses these numbers to estimates the parameter {\eqn{\lambda}{lambda}} of a Poisson distribution. The parameter \sQuote{\eqn{r}} is set to a very large number, such that the estimated NB distribution actually is a Poisson distribution with mean and variance equal to \eqn{\lambda}{lambda}.} } } \value{ A \code{data.frame} of class \code{slidingWindowSummary}, which is the the supplied argument \code{x} extended by an additional column \code{p.value} which holds the \emph{p}-value for each window. The attribute \code{NBparams} of the result contains the list of the estimated parameters of the Negative-Binomial background distribution. } \references{ Such an estimation of the Negative-Binomial parameters has also been described in the paper:\cr Ji et al.(2008) An integrated system CisGenome for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol. 26(11):1293-1300. } \author{Joern Toedling} \seealso{ \code{\link{perWindow}}, \code{\link[stats]{p.adjust}} } \examples{ exDir <- system.file("extdata", package="girafe") exA <- readAligned(dirPath=exDir, type="Bowtie", pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap") exAI <- as(exA, "AlignedGenomeIntervals") exPX <- perWindow(exAI, chr="chrX", winsize=1e5, step=0.5e5) exPX <- addNBSignificance(exPX, correct="bonferroni") str(exPX) exPX[exPX$p.value <= 0.05,] } \keyword{manip}