\name{plot} %\Rdversion{1.1} \alias{plot.DependencyModel} \alias{plot.ChromosomeArmModels} \alias{plot.ChromosomeModels} \alias{plot.GenomeModels} \alias{dependency score plotting} \title{ Dependency score plotting } \description{ Plot the contribution of the samples and variables to the dependency model or dependency model fitting scores of chromosomal arm, chromosome or genome. } \usage{ plot.DependencyModel(x, X, Y, ann.types = NULL, ann.cols = NULL, legend.x = 0, legend.y = 1, legend.xjust = 0, legend.yjust = 1, order = FALSE, cex.z = 0.6, cex.WX = 0.6, cex.WY = 0.6, ...) plot.ChromosomeArmModels(x, hilightGenes = NULL, showDensity = FALSE, showTop = 0, topName = FALSE, type = 'l', xlab = 'gene location (Mbp)', ylab = 'dependency score', main = paste('Dependency score for chromosome ', chr, arm, sep = ''), pch = 20, cex = 0.75, tpch = 3, tcex = 1, ylim = NA, ...) plot.ChromosomeModels(x, hilightGenes = NULL, showDensity = FALSE, showTop = 0, topName = FALSE, type = 'l', xlab = 'gene location (Mbp)', ylab = 'dependency score', main = paste('Dependency score for chromosome ', chr, sep = ''), pch = 20, cex = 0.75, tpch = 3, tcex = 1, xlim = NA, ylim = NA,...) plot.GenomeModels(x, hilightGenes = NULL, showDensity = FALSE, showTop = 0, topName = FALSE, onePlot = FALSE, type = 'l', ylab = "Dependency Scores", xlab = "Gene location (chromosome)", main = "Dependency Scores in All Chromosomes", pch = 20, cex = 0.75, tpch = 20, tcex = 0.7, mfrow = c(5,5), mar = c(3,2.5,1.3,0.5), ps = 5, mgp = c(1.5,0.5,0),ylim=NA,...) } \arguments{ \item{x}{ \code{\link{DependencyModel-class}}, \code{\link{ChromosomeArmModels-class}}, \code{\link{ChromosomeModels-class}}, \code{\link{GenomeModels-class}}; models to be plotted. } \item{X, Y}{ data sets used in dependency modeling. } \item{ann.types}{ a factor for annotation types for samples. Each value corresponds one sample in datasets. Colors are used to indicate different types. } \item{ann.cols}{ colors used to indicate different annotation types. Gray scale is used if 'NULL' given. } \item{legend.x, legend.y}{ the x and y co-ordinates to be used to position the legend for annotation types. } \item{legend.xjust, legend.yjust}{ how the legend is to be justified relative to the legend x and y location. A value of 0 means left or top justified, 0.5 means centered and 1 means right or bottom justified. } \item{order}{ logical; if 'TRUE', values for sample contributions are ordered according to their values. } \item{cex.z, cex.WX, cex.WY}{ Text size for variable names. } \item{hilightGenes}{ vector of strings; Name of genes to be hilighted with dots. } \item{showDensity}{ logical; if 'TRUE' small vertical lines are drwan in the bottom of the plot under each gene. } \item{showTop}{ numeric; Number of models with highest dependencies to be hilighted. A horizontal dashed line is drawn to show threshold value. With \code{0} no line is drawn. } \item{topName}{ logical; If \code{TRUE}, gene names are printed to hilighted models with highest dependecies. Otherwise hilighted models are numbered according to their rank in dependency score. } \item{type, xlab, ylab, main}{ plot type and labels. See \code{\link{plot}} for details. In \code{plot.GenomeModels} these affet only if \code{onePlot} is \code{TRUE}. } \item{onePlot}{ If \code{TRUE}, all dependency scores are plotted in one plot window. Otherwise one plot window is used for each chromosome. } \item{pch, cex}{ symbol type and size for hilightGenes. See \code{\link{points}} for details. } \item{tpch, tcex}{ symbol type and size for genes with highest scores. See \code{\link{points}} for details. } \item{ylim, xlim}{ axis limits. Default values are calculated from data. Lower limit for y is 0 and upper limit is either 1 or maximum score value. X limits are gene location range. See \code{\link{plot}} for details. } \item{mfrow, mar, ps, mgp}{ chromosome plots' layout, marginals, text size and margin line. See \code{\link{par}} for details. } \item{...}{ optional plotting parameters } } \details{ Function plots scores of each dependency model of a gene for the whole chromosomal arm, chromosome or genome according to used method. \code{plot(x, cancerGenes = NULL, showDensity = FALSE, ...)} is also usable and chosen according to class of \code{models}. } \references{ Dependency Detection with Similarity Constraints Lahti et al., MLSP'09. See \url{http://www.cis.hut.fi/lmlahti/publications/mlsp09_preprint.pdf} } \author{ Olli-Pekka Huovilainen \email{ohuovila@gmail.com} } \seealso{ \code{\link{DependencyModel-class}}, \code{\link{ChromosomeArmModels-class}}, \code{\link{ChromosomeModels-class}}, \code{\link{GenomeModels-class}}, \code{\link{screen.cgh.mrna}}, \code{\link{screen.cgh.mir}} } \examples{ data(chromosome17) ## Dependency model around 150th gene window <- fixed.window(geneExp, geneCopyNum, 150, 10) model <- fit.dependency.model(window$X, window$Y) ## example annnotation types ann.types <- factor(c(rep("Samples 1 - 10", 10), rep("Samples 11 - 51", 41))) plot(model, geneExp, geneCopyNum, ann.types, legend.x = 40, legend.y = -4, order = TRUE) ## pSimCCA model on chromosome 17p models17ppSimCCA <- screen.cgh.mrna(geneExp, geneCopyNum, 10, 17, 'p') plot(models17ppSimCCA, hilightGenes=c("ENSG00000108342", "ENSG00000108298"), showDensity = TRUE) } \keyword{hplot}