Package 'mspms'

December 16, 2025

```
Type Package
Title Tools for the analysis of MSP-MS data
Version 1.2.0
Description This package provides functions for the analysis of data generated
      by the multiplex substrate profiling by mass spectrometry for proteases
      (MSP-MS) method. Data exported from upstream proteomics software is accepted
      as input and subsequently processed for analysis.
      Tools for statistical analysis, visualization, and interpretation of
      the data are provided.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 4.4.0)
biocViews Proteomics, MassSpectrometry, Preprocessing
LazyData true
Imports QFeatures, limma, SummarizedExperiment, magrittr, rlang,
      dplyr, purrr, stats, tidyr, stringr, ggplot2, ggseqlogo,
      heatmaply, readr, rstatix, tibble, ggpubr
Suggests knitr, testthat (>= 3.0.0), downloadthis, DT, rmarkdown,
      BiocStyle, imputeLCMD
Config/testthat/edition 3
URL https://github.com/baynec2/mspms
\pmb{BugReports} \ \text{https://github.com/baynec2/mspms/issues}
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/mspms
git_branch RELEASE_3_22
git_last_commit 04133d6
git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2025-12-15
Author Charlie Bayne [aut, cre] (ORCID:
      <https://orcid.org/0000-0003-1870-5298>)
Maintainer Charlie Bayne <br/> <br/>baynec2@gmail.com>
```

2 Contents

Contents

mspms-package	3
add_cleavages	3
add_peptide_data	4
all_possible_8mers_from_228_library	4
calculate_all_cleavages	5
calc_AA_count_of_motif	5
calc_AA_fc	6
calc_AA_motif_zscore	6
calc_AA_percent_difference	7
calc_AA_prop_of_motif	7
calc_limma_contrasts	8
calc_limma_design_matrix	8
calc_per_samples_library_nd	9
calc_sig_zscores	9
check_file_is_valid_fragpipe	10
	10
check_file_is_valid_peaks	11
check_peptide_library	11
colData	12
consolidate_cleavages	12
count_cleavages_per_pos	13
cterm_cleavage	13
generate_report	14
icelogo_col_scheme	15
limma_stats	15
load_colData	16
	16
log2fc_t_test	17
log2fc_t_test_data	17
mspms_log2fc	
mspms_tidy	18
mspms_tidy_data	18
mspms_t_tests	19
nterm_cleavage	19
peaks_prepared_data	
peptide_library	
plot_all_icelogos	
plot_cleavages_per_pos	22
plot_heatmap	23
plot_icelogo	24
plot_nd_peptides	25
plot_pca	25
plot_qc_check	26
plot_time_course	27
plot_volcano	27
prepared_to_qf	28
prepare_fc	29
prepare_for_PCA	29
prepare_fragpipe	30
prepare_icelogo_data	30
prepare_nd	31
nrenare nd	- 31

1	2
mspms-package	4
nispinis package	9

Index		37
	%>%	36
	rlog2	
	remaining_cd_names	35
	process_qf	34
	processed_qf	34
	prepare_sig_p_dif	33
	prepare_qc_check_data	33
	prepare_peaks	32

mspms-package

mspms: Tools for the analysis of MSP-MS data

Description

This package provides functions for the analysis of data generated by the multiplex substrate profiling by mass spectrometry for proteases (MSP-MS) method. Data exported from upstream proteomics software is accepted as input and subsequently processed for analysis. Tools for statistical analysis, visualization, and interpretation of the data are provided.

Author(s)

Maintainer: Charlie Bayne <baynec2@gmail.com> (ORCID)

See Also

Useful links:

- https://github.com/baynec2/mspms
- Report bugs at https://github.com/baynec2/mspms/issues

add_cleavages

add_cleavages

Description

Adds cleavage information to a tibble by wraping the n_term_cleavage and c_term_cleavage functions into a consolidated function.

Usage

```
add_cleavages(joined_with_library, n_residues = 4)
```

Arguments

joined_with_library

a tibble containing columns named "peptide", "library_match_sequence", and "library_real_sequence".

n_residues

the number of residues to the left and right of the cleavage site to include in the output.

Value

a tibble with cleavage information added.

add_peptide_data add_peptide_data

Description

adds peptide information for every peptide in the data.

Usage

```
add_peptide_data(tibble, qf)
```

Arguments

tibble you would like to add peptide info to. Must have column named peptide tibble qf

a QFeatures object with rowData for peptides. cleavage_seq, cleavage_pos, and

cleavage_type.

Value

a tibble with column named peptide.

```
all_possible_8mers_from_228_library
                        all_possible_8mers_from_228_library
                                                            All
                                                                   possible
                                                       26April2024)
                        from the standard (as of
                                                                     228
                                                                           MSP-MS
                        peptide library
                                        (This is equivalent to the
                                                                         result of
                        mspms::calculate_all_cleavages(mspms::peptide_library$real_cleavage_seq,n=4))
                        vector of the 14 AA peptides used in the library.
```

Description

all_possible_8mers_from_228_library All possible 8mers from the standard (as of 26April2024) 228 MSP-MS peptide library (This is equivalent to the result of mspms::calculate_all_cleavages(mspms::peptide_library) vector of the 14 AA peptides used in the library.

Usage

```
all_possible_8mers_from_228_library
```

Format

```
## 'all_possible_8mers_from_228_library' A vector with 2964 entries
```

Source

<standard peptide library used with MSP-MS method in the O'Donoghue lab as of 26April2024>

calculate_all_cleavages 5

```
calculate_all_cleavages
```

calculate_all_cleavages calculate all possible cleavages for a defined peptide library containing peptides of the same length.

Description

calculate_all_cleavages calculate all possible cleavages for a defined peptide library containing peptides of the same length.

Usage

```
calculate_all_cleavages(peptide_library_seqs, n_AA_after_cleavage = 4)
```

Arguments

```
peptide_library_seqs
```

The sequences of each peptide in the peptide library. They should all be the same length.

```
n_AA_after_cleavage
```

The number of AA after (and before) the cleavage site to consider.

Value

a vector of all the possible cleavages for the peptide library sequences

Examples

```
calculate_all_cleavages(mspms::peptide_library$library_real_sequence,
    n_AA_after_cleavage = 4
)
```

```
calc_AA_count_of_motif
```

calc_AA_count_of_motif

Description

Calculate the counts of amino acids at each position of a motif for all the sequences in a vector.

Usage

```
calc_AA_count_of_motif(cleavage_motif)
```

Arguments

cleavage_motif a vector of cleavage motifs

Value

a matrix of counts

calc_AA_fc

calc_AA_fc

Description

Calculate the fold change of each amino acid by position.

Usage

```
calc_AA_fc(experimental_prop_matrix, background_prop_matrix, sig_zscores)
```

Arguments

```
experimental_prop_matrix
```

a matrix of the experimental proportions (from your vector of cleavage sequences) at each position.

background_prop_matrix

a matrix of the background proportions of AAs at each position

sig_zscores a tibble of the significant zscores.

Value

a matrix

```
calc_AA_motif_zscore calc_AA_motif_zscore
```

Description

Calculate the Z score for the amino acids at each position

Usage

```
calc_AA_motif_zscore(
  background_count_matrix,
  background_prop_matrix,
  experimental_count_matrix,
  experimental_prop_matrix
)
```

Arguments

```
{\tt background\_count\_matrix}
```

the count matrix from the background sequences

background_prop_matrix

the proportion matrix from the background sequences

experimental_count_matrix

the count matrix from the experimental sequences

experimental_prop_matrix

the proportion matrix from the experimental sequences

Value

a data frame of Zscores for each amino acid at each position.

```
calc\_AA\_percent\_difference \\ calc\_AA\_percent\_difference
```

Description

Calculate the percent difference between a matrix of background proportions and a matrix of experimentally observed proportions.

Usage

```
calc_AA_percent_difference(background_prop_matrix, experimental_prop_matrix)
```

Arguments

background_prop_matrix

a proportion matrix of amino acids per position from background cleavage sequences

experimental_prop_matrix

a proportion matrix of amino acids per position from experimental cleavage sequences

Value

a data frame of percent differences

```
calc_AA_prop_of_motif calc_AA_prop_of_motif
```

Description

Calculate the proportion of amino acids at each position in a vector of motifs.

Usage

```
{\tt calc\_AA\_prop\_of\_motif(count\_matrix)}
```

Arguments

count_matrix this is a matrix of the counts of cleavage motifs

Value

a matrix with proportions of counts.

calc_limma_contrasts calc_limma_contrasts

Description

Calculates limma contrasts given colData. The contrasts returned are pairwise relative to T0 for each timepoint assayed.

Usage

```
{\tt calc\_limma\_contrasts(colData,\ design\_mat)}
```

Arguments

colData colData from mspms experiment

design_mat as returned by calc_limma_design_matrix

Value

a contrast matrix

Description

Calculates a limma compatible design matrix for mspms data.

Usage

```
calc_limma_design_matrix(colData, norm_data)
```

Arguments

colData colData with condition and time variables as factors norm_data normalized data from QFeatures object to use

Value

a model matrix

```
calc_per_samples_library_nd
                          calc_per_samples_library_nd Calculate the percentage of samples
                          each library_id peptide was not detected in.
```

Description

calc_per_samples_library_nd Calculate the percentage of samples each library_id peptide was not detected in.

Usage

```
calc_per_samples_library_nd(
  processed_qf,
  peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

a QFeatures object with a SummarizedExperiment named "peptides". Intended processed_qf to be prepared by one of the pre-processing prepare_x_data functions of the mspms R package. peptide_library_ids

a character vector containing the names of the library_ids

Value

a tibble containing percentage of samples each library id was detected in, both as full length, and as cleavage products.

calc_sig_zscores

calc_sig_zscores Determine which Zscores are significant at the given alpha for a matrix of scores

Description

calc_sig_zscores Determine which Zscores are significant at the given alpha for a matrix of scores

Usage

```
calc_sig_zscores(zscores, pval = 0.05)
```

Arguments

```
= a data frame of zscores
zscores
                   = p value threshold for significance. Default is 0.05
pval
```

Value

a tibble of significant zscores

check_file_is_valid_fragpipe

check_file_is_valid_fragpipe Check to make sure the input data looks like the expected FragPipe file.

Description

check_file_is_valid_fragpipe Check to make sure the input data looks like the expected FragPipe file.

Usage

```
check_file_is_valid_fragpipe(fragpipe_data)
```

Arguments

fragpipe_data combined_peptide.tsv file generated by FragPipe read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

```
check_file_is_valid_pd
```

check_file_is_valid_pd Check to make sure the input data looks like the expected ProteomeDiscoverer file.

Description

check_file_is_valid_pd Check to make sure the input data looks like the expected ProteomeDiscoverer file.

Usage

```
check_file_is_valid_pd(pd_data)
```

Arguments

pd_data

PeptideGroups.txt file generated by ProteomeDiscover and read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

```
check_file_is_valid_peaks
```

check_file_is_valid_peaks Check to make sure the input data looks like the expected PEAKS file.

Description

check_file_is_valid_peaks Check to make sure the input data looks like the expected PEAKS file.

Usage

```
check_file_is_valid_peaks(peaks_data)
```

Arguments

peaks_data

protein-peptides-lfq.csv file generated by PEAKS read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

```
check_peptide_library
```

Description

```
check_peptide_library
```

Usage

```
check_peptide_library(peptide_library)
```

Arguments

```
peptide_library
```

Value

an informative error if the column names of the peptide library are unexpected. Otherwise nothing.

12 consolidate_cleavages

colData

colData A tibble containing the colData associated with an experiment to proc

Description

colData A tibble containing the colData associated with an experiment to proc

Usage

colData

Format

```
## 'colData' A tibble: 42 \times 4
```

Source

colData corresponding to cathepsin A-D MSP-MS experiment

```
consolidate_cleavages
```

Description

Consolidate the n term and c term cleavage data. The nterm and cterm cleavage information are consolidated into a single column and rows

Usage

```
consolidate_cleavages(cleavage_added_data)
```

Arguments

```
cleavage_added_data
```

a tibble where cleavage information has been added by add_cleavages()

Value

a tibble with the cleavage information combined into a single column and rows with no cleavage information or double information removed.

```
count\_cleavages\_per\_pos \\ count\_cleavages\_per\_pos
```

Description

Count the number of cleavages per position

Usage

```
count_cleavages_per_pos(data, peptide_library = mspms::peptide_library)
```

Arguments

data

a tibble containing columns named peptide, cleavage_pos, condition, and time. Other column names can be included.

Value

a ggplot2 object

cterm_cleavage

cterm_cleavage

Description

Finding the cleavage sequences on the C terminus of a given peptide in reference to the peptide library it was derived from

Usage

```
cterm_cleavage(
  peptide_sequence,
  library_match_sequence,
  library_real_sequence,
  n_residues = 4
)
```

Arguments

```
peptide_sequence
```

the peptide sequence represented in single letter code. "_" denotes cleavage site. library_match_sequence

the sequence the peptide matches to with the proteomics search software used. Note, this may not be the true sequence of the peptide depending on how the library was constructed. For example, in the standard MSP-MS 228 member library, methionine has been replaced with norleucine (n). This was done because norleucine looks like methionine to a protease, but it cannot be oxidized. Norleucine's (n) mass is the same as leucine (L), so it is recognized by the proteomics software as L.

14 generate_report

```
library_real_sequence
```

the sequence the peptide truly is. In the standard MSP_MS 228 member library, some of the amino acids recognize as leucine (L) are truly Norleucine (n).

n_residues the

the number of residues to the left and right of the cleavage event to return

Value

a tibble with the peptide sequence, cleavage sequences (converted from the matching to real sequence), with n number of amino acids to the left and right of the c term cleavage, and the position of the c-term cleavage in the library sequence

generate_report

generate_report

Description

wrapper function to generate an automatic .html report of a basic mspms analysis.

Usage

```
generate_report(
  prepared_data,
  peptide_library = mspms::peptide_library,
  n_residues = 4,
  outdir = getwd(),
  output_file = paste0(Sys.Date(), "_mspms_report.html")
)
```

Arguments

```
prepared_data a QFeatures object containing a SummarizedExperiment named "peptides".

peptide_library

peptide library used with experiment. Contains columns "library_id", "library_match_sequence",
and "library_real_sequence".

n_residues the number of amino acid residues before and after the cleavage site to generate
```

a cleavage seq for.

outdir the output directory you would like to render the report to.

output_file the file name to export.

Value

a knited .html report of the mspms analysis.

```
generate_report(mspms::peaks_prepared_data)
```

icelogo_col_scheme 15

icelogo_col_scheme

icelogo_col_scheme Defining a color scheme for our iceLogos

Description

icelogo_col_scheme Defining a color scheme for our iceLogos

Usage

```
icelogo_col_scheme()
```

Value

a ggseqlogo color scheme function

limma_stats

limma_stats

Description

Calculates statistics for each condition relative to time 0 using limma for differential analysis. Results are then formatted to be consistent with results produced by other statistic approaches used in the mspms package (log2fc_t_test).

Usage

```
limma_stats(processed_qf)
```

Arguments

```
processed_qf mspms data in a QFeatures object.
```

Value

a tibble containing statistics

```
mspms_limma_results <- limma_stats(mspms::processed_qf)</pre>
```

log2fc_t_test

load_colData

load_colData

Description

load a .csv file containing sample colData. Check for errors

Usage

```
load_colData(colData_filepath)
```

Arguments

```
colData_filepath
```

filepath to .csv file containing colData.

Value

a tibble

log2fc_t_test

log2fc_t_test

Description

Calculates the log2 fold change and t-test statistics given a user specified reference variable and value.

Usage

```
log2fc_t_test(processed_qf, reference_variable = "time", reference_value = 0)
```

Arguments

Value

a tibble containing log2fc and t test statistics

```
log2fc\_and\_t\_test <- \ log2fc\_t\_test(mspms::processed\_qf)
```

log2fc_t_test_data 17

 $log2fc_t_test_data$

 $log2fc_t_test_data~A~tibble~containing~the~results~of~t_tests~and~log2fc~compared~to~time~0~14,497~\times~19$

Description

 $log2fc_t_test_data$ A tibble containing the results of t-tests and log2fc compared to time 0 14,497 × 19

Usage

```
log2fc_t_test_data
```

Format

```
## 'peaks_prepared_data' A tibble: 14,497 × 19
```

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

mspms_log2fc

mspms_log2fc

Description

calculates the log2fc for each time point within each condition relative to a specified value for a specified reference variable.

Usage

```
mspms_log2fc(processed_qf, reference_variable = "time", reference_value = 0)
```

Arguments

```
\label{lem:processed_qf} \mbox{ a QFeatures object with a SummarizedExperiment named "peptides\_norm".} \\ \mbox{reference\_variable}
```

the variable to used as a reference (denominator of log2 fold change).

reference_value

the value of the reference variable to use as the reference

Value

a tibble with the t test statistics for each peptide within each group with the supplied value at the supplied variable as reference.

18 mspms_tidy_data

mspms_tidy	mspms_tidy Convert a SummarizedExperiment object within a QFeatures object into a tidy tibble.

Description

mspms_tidy Convert a SummarizedExperiment object within a QFeatures object into a tidy tibble.

Usage

```
mspms_tidy(processed_qf, se_name = "peptides_norm")
```

Arguments

processed_qf a QFeature object containing rowData and colData.

se_name the name of the SummarizedExperiment you would like to extract

Value

a tibble containing all the rowData, colData, and assay data for the specified SummarizedExperiment.

Examples

```
mspms_data <- mspms_tidy(mspms::processed_qf)</pre>
```

mspms_tidy_data

mspms_tidy_data A tibble containing tidy data derived from QFeatures object

Description

mspms_tidy_data A tibble containing tidy data derived from QFeatures object

Usage

```
mspms_tidy_data
```

Format

```
## 'mspms_tidy_data' A tibble:
```

Source

```
processed_qf
```

mspms_t_tests 19

 ${\tt mspms_t_tests}$

 $mspms_t_tests$

Description

performs t-tests for each peptide within each group for the user specified. FDR adjustment is performed.

Usage

```
mspms_t_tests(processed_qf, reference_variable = "time", reference_value = "0")
```

Arguments

Value

a tibble with the t test statistics for each peptide within each group with the supplied value at the supplied variable as reference.

nterm_cleavage

nterm_cleavage

Description

Finding the cleavage sequences on the N terminus of a given peptide in reference to the peptide library it was derived from.

Usage

```
nterm_cleavage(
  peptide_sequence,
  library_match_sequence,
  library_real_sequence,
  n_residues = 4
)
```

20 peaks_prepared_data

Arguments

peptide_sequence

the peptide sequence represented in single letter code. "_" denotes cleavage site.

library_match_sequence

the sequence the peptide matches to with the proteomics search software used. Note, this may not be the true sequence of the peptide depending on how the library was constructed. For example, in the standard MSP-MS 228 member library, methionine has been replaced with norleucine (n). This was done because norleucine looks like methionine to a protease, but it cannot be oxidized. Norleucine's (n) mass is the same as leucine (L), so it is recognized by the proteomics software as L.

library_real_sequence

the sequence the peptide truly is. In the standard MSP_MS 228 member library, some of the amino acids recognize as leucine (L) are truly Norleucine (n).

n_residues the number of residues to the left and right of the cleavage event to return.

Value

a tibble with the peptide sequence, cleavage sequences n specified number of AA on the left and right of the n term cleavage, and the position of the n term cleavage in the library sequence.

peaks_prepared_data

peaks_prepared_data A QFeatures object prepared from PEAKS data of cathepsin data/.

Description

peaks_prepared_data A QFeatures object prepared from PEAKS data of cathepsin data/.

Usage

peaks_prepared_data

Format

'peaks_prepared_data' An instance of class QFeatures containing 1 assays: [1] peptides: SummarizedExperiment with 2071 rows and 42 columns

peptides Peptide Sequence Detected ...

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

peptide_library 21

peptide_library

Description

This is the 228 peptide library used by the O'Donoghue lab as of 26April2024.

Usage

```
peptide_library
```

Format

'peptide_library' A data frame with 228 rows and 3 columns:

library_reference_id reference id of the detected peptide as put in upstream software

library_match_sequence the sequence match to the peptide library, methionine is replaced with norleucine, which should function the same as methionine for proteases but has the same mass as L

library_real_sequence Ls corresponding to norleucine are replaced back with n (for norleucine)

Source

<O'Donoghue lab as of 26April2024 >

```
plot_all_icelogos plot_all_icelogos
```

Description

Easily plot a iceLogo corresponding to peptides of interest across each condition of an experiment.

Usage

```
plot_all_icelogos(
    sig_cleavage_data,
    type = "percent_difference",
    pval = 0.05,
    background_universe = mspms::all_possible_8mers_from_228_library)
```

Arguments

sig_cleavage_data

a tibble of data of interest containing a column labeled peptide, cleavage_seq,

and condition

type this is the type of iceLogo you would like to generate, can be either "per-

cent_difference" or "fold_change".

pval this is the pvalue threshold (<=) to consider significant when determining the

significance of the sig_cleavages relative to the background at each position of

the iceLogo.

background_universe

this is a list cleavages you would like to compare to as background of the iceL-

ogo

Value

a ggplot object that shows the motif of the cleavage sequences

Examples

```
# Determining cleavages of interest
sig_cleavage_data <- mspms::log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3)
# Plotting a iceLogo for each condition.
plot_all_icelogos(sig_cleavage_data)
```

```
plot_cleavages_per_pos
```

plot_cleavages_per_pos

Description

plot the number of cleavages at each

Usage

```
plot_cleavages_per_pos(sig_cleavage_data, ncol = NULL)
```

Arguments

sig_cleavage_data

a tibble of data of interest containing a column labeled peptide, cleavage_seq,

condition, and cleavage_pos.

ncol the number of columns to plot.

Value

a ggplot2 object

plot_heatmap 23

Examples

```
# Defining the significant peptides
sig_cleavage_data <- log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3)
# Plotting
p1 <- mspms::plot_cleavages_per_pos(sig_cleavage_data)
p1</pre>
```

plot_heatmap

plot_heatmap

Description

This produces a heatmaply interactive heatmap of the QFeatures object with color bars representing the condition and time for each sample in each row.

Usage

```
plot_heatmap(
   mspms_tidy_data,
   value_colname = "peptides_norm",
   scale = "column",
   plot_method = "plotly",
   show_dendrogram = c(TRUE, TRUE)
)
```

Arguments

mspms_tidy_data

tidy mspms data (prepared from QFeatures object by mspms_tidy())

value_colname the name of the column containing values.

scale how would you like the data scaled? default is none, but can also be "row",

"column", or "none"

plot_method what plot method would you like to use, can use plotly or ggplot2.

show_dendrogram

Logical vector of length two, controlling whether the row and/or column dendrograms are displayed. If a logical scalar is provided, it is repeated to become a logical vector of length two.

Details

Each column has a colored bar representing whether the peptide is a cleavage product or a full length member of the peptide library.

Value

a heatmaply interactive heatmap

```
plot_heatmap(mspms::mspms_tidy_data)
```

24 plot_icelogo

plot_icelogo

plot_icelogo

Description

This function plots the cleavage motifs that were enriched relative to background as implemented in the iceLogo method. https://iomics.ugent.be/icelogoserver/resources/manual.pdf

Usage

```
plot_icelogo(
  cleavage_seqs,
  background_universe = mspms::all_possible_8mers_from_228_library,
  pval = 0.05,
  type = "percent_difference"
)
```

Arguments

cleavage_seqs these are the cleavage sequences of interest

background_universe

this is a list of cleavage sequences to use as the background in building the

iceLogo.

pval this is the pvalue threshold (<=) to consider significant when determining the

significance of the sig_cleavages relative to the background at each position of

the iceLogo.

type this is the type of visualization you would like to perform, accepted values are

either "percent_difference" or "fold_change".

Value

a ggplot2 object

```
# Determining significant cleavages for catA
catA_sig_cleavages <- mspms::log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3) %>%
    dplyr::filter(condition == "CatA") %>%
    dplyr::pull(cleavage_seq) %>%
    unique()

# Plotting icelogo
plot_icelogo(catA_sig_cleavages,
    background_universe = all_possible_8mers_from_228_library)
```

plot_nd_peptides 25

```
plot_nd_peptides
```

plot_nd_peptides

Description

plot the percentage of samples each peptide from library was undetected in (if the percentage is > 0).

Usage

```
plot_nd_peptides(
   processed_qf,
   peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

```
processed_qf a QFeatures object containing a SummarizedExperiment named "peptides" peptide_library_ids a vector of all peptide library ids in the experiment.
```

Value

```
a ggplot2 object
```

Examples

```
plot_nd_peptides(mspms::processed_qf)
```

```
plot_pca
```

plot_pca

Description

Easily create a PCA plot from a QFeatures object containing mspms data. Ellipses are drawn around the points at a 95 Shape and colors are user specified.

Usage

```
plot_pca(
   mspms_tidy_data,
   value_colname = "peptides_norm",
   color = "time",
   shape = "condition"
)
```

26 plot_qc_check

Arguments

```
mspms_tidy_data
```

tidy mspms data (prepared from QFeatures object by mspms_tidy)

value_colname the name of the column containing values.

color the name of the variable you would like to color by.

shape the name of the variable that you would like to determine shape by.

Value

```
a ggplot2 object
```

Examples

```
plot_pca(mspms::mspms_tidy_data)
```

plot_qc_check

plot_qc_check plot the percentage of the peptide library undetected in each sample per each sample group.

Description

plot_qc_check plot the percentage of the peptide library undetected in each sample per each sample group.

Usage

```
plot_qc_check(
  processed_qf,
  peptide_library = mspms::peptide_library$library_id,
  full_length_threshold = NULL,
  cleavage_product_threshold = NULL,
  ncol = 2
)
```

Arguments

a vector of all peptide library ids in the experiment.

full_length_threshold

percent to use as threshold visualized as a vertical blue dashed line

cleavage_product_threshold

percent to use as a threshold visualized as a red dashed line

ncol n columns.

Value

```
a ggplot2 object.
```

```
plot_qc_check(mspms::processed_qf)
```

plot_time_course 27

plot_time_course

plot_time_course

Description

Easily plot a time course of all peptides in a QFeatures object by peptide.

Usage

```
plot_time_course(
  mspms_tidy_data,
  value_colname = "peptides_norm",
  summarize_by_mean = FALSE
)
```

Arguments

Value

a ggplot2 object

Examples

```
# Determining peptide of interest
max_log2fc_pep <- mspms::log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3) %>%
    dplyr::filter(log2fc == max(log2fc)) %>%
    dplyr::pull(peptide)

# Defining QFeatures filter
filtered <- mspms::mspms_tidy_data %>%
    dplyr::filter(peptide == max_log2fc_pep) %>%
    plot_time_course()
```

plot_volcano

plot_volcano

Description

create a volcano plot to generate log2fc and adjusted p values for experimental conditions

28 prepared_to_qf

Usage

```
plot_volcano(
  log2fc_t_test_data,
  log2fc_threshold = 3,
  padj_threshold = 0.05,
  facets = "grid",
  ncol = 1
)
```

Arguments

```
log2fc_t_test_data
a tibble containing the log2fc and adjusted p values
log2fc_threshold
the log2fc threshold that you want displayed on plot
padj_threshold the padj threshold that you want displayed on plot
facets how facets should be displayed. Accepted values are grid and wrap
ncol ncol to include if facets = "wrap"
```

Value

a ggplot2 object

Examples

```
p1 <- mspms::plot_volcano(mspms::log2fc_t_test_data, log2fc_threshold = 3)
p1</pre>
```

prepared_to_qf

convert prepared data to a QFeatures object

Description

convert prepared data to a QFeatures object

Usage

```
prepared_to_qf(
  prepared_data,
  colData,
  peptide_library = mspms::peptide_library,
  n_residues = 4
)
```

Arguments

```
prepared_data data prepared within one of the prepare functions

colData sample metadata

peptide_library

the peptide library used.

n_residues the number of residues reported in the cleavage site
```

prepare_fc 29

Value

a QFeatures object

prepare_fc

prepare_fc

Description

Prepare fold changes of amino acids by position for Icelogo visualization.

Usage

```
prepare_fc(fold_change, sig_zscores)
```

Arguments

fold_change a matrix of the fold changes of the AA by position.

sig_zscores a tibble of the significant zscores.

Value

a matrix of the fold changes of the significant AAs at each position.

```
prepare_for_PCA
```

prepare_for_PCA()

Description

```
prepare QFeatures object for PCA analysis
```

Usage

```
prepare_for_PCA(mspms_tidy_data, value_colname = "peptides_norm")
```

Arguments

```
{\tt mspms\_tidy\_data}
```

tidy mspms data (prepared from QFeatures object by mspms_tidy())

value_colname the name of the column containing values.

Value

a tibble

prepare_fragpipe
prepare_fragpipe

Description

Prepare a label free quantification file exported from Fragpipe for subsequent mspms analysis.

Usage

```
prepare_fragpipe(
  combined_peptide_filepath,
  colData_filepath,
  peptide_library = mspms::peptide_library,
  n_residues = 4
)
```

Arguments

```
combined_peptide_filepath
file path the combined_peptide.tsv file generated by FragPipe.

colData_filepath
file path to .csv file containing colData. Must have columns named "quant-Cols", "group", "condition", and "time".

peptide_library
peptide library used with experiment. Contains columns "library_id", "library_match_sequence", and "library_real_sequence".

n_residues
the number of amino acid residues before and after the cleavage site to generate a cleavage seq for.
```

Value

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
fragpipe_combined_peptide <- system.file("extdata/fragpipe_combined_peptide.tsv", package = "mspms")
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")
# Prepare the data
fragpipe_prepared_data <- mspms::prepare_fragpipe(fragpipe_combined_peptide, colData_filepath)</pre>
```

Description

Prepare the final matrix containing iceLogo data for plotting.

prepare_pd 31

Usage

```
prepare_icelogo_data(
  cleavage_seqs,
  background_universe = mspms::all_possible_8mers_from_228_library,
  pval = 0.05,
  type = "percent_difference"
)
```

Arguments

cleavage_seqs the cleavage sequences that are observed in the experiment background_universe

a vector of the cleavage sequences to use as the background.

pval the p-value threshold to consdier

type the type of iceLogo calculation to perform. Accepted values are "percent_difference"

or "fold_change".

Value

a matrix of enriched amino acids per position

prepare_pd

prepare_pd Prepare a label free quantification file exported from Proteome Discoverer for subsequent mspms analysis.

Description

prepare_pd Prepare a label free quantification file exported from Proteome Discoverer for subsequent mspms analysis.

Usage

```
prepare_pd(
  peptide_groups_filepath,
  colData_filepath,
  peptide_library = mspms::peptide_library,
  n_residues = 4
)
```

Arguments

```
peptide_groups_filepath
```

filepath to PeptideGroups.txt file exported from proteome discoverer.

colData_filepath

file path to .csv file containing colData. Must have columns named "quant-Cols", "group", "condition", and "time".

peptide_library

peptide library used with experiment. Contains columns "library_id", "library_match_sequence",

and "library_real_sequence".

n_residues

the number of amino acid residues before and after the cleavage site to generate

a cleavage seq for.

32 prepare_peaks

Value

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
peptide_groups_filepath <- system.file(
   "extdata/proteome_discoverer_PeptideGroups.txt",
   package = "mspms"
)
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")</pre>
```

prepare_peaks

prepare_peaks Prepare a label free quantification file exported from PEAKS for subsequent mspms analysis.

Description

prepare_peaks Prepare a label free quantification file exported from PEAKS for subsequent mspms analysis.

Usage

```
prepare_peaks(
    lfq_filepath,
    colData_filepath,
    quality_threshold = 0.3,
    peptide_library = mspms::peptide_library,
    n_residues = 4
)
```

Arguments

Value

a QFeatures object containing a summarizedExperiment named "peptides"

```
lfq_filepath <- system.file("extdata/peaks_protein-peptides-lfq.csv", package = "mspms")
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")
# Prepare the data
peaks_prepared_data <- mspms::prepare_peaks(lfq_filepath, colData_filepath)</pre>
```

prepare_qc_check_data prepare_qc_check Run simple quality control checks on the data. This checks to see how many peptides belonging to the library were identified in the data in each sample. Computes full length, and cleavage products independantly.

Description

prepare_qc_check Run simple quality control checks on the data. This checks to see how many peptides belonging to the library were identified in the data in each sample. Computes full length, and cleavage products independantly.

Usage

```
prepare_qc_check_data(
  processed_qf,
  peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

processed_qf a QFeatures object with a SummarizedExperiment named "peptides". Intended to be prepared by one of the pre-processing prepare_x_data functions of the mspms R package.

peptide_library_ids

a character vector containing the names of the library_ids

Value

a tibble containing percentage of library_ids detected per sample, both as full length, and as cleavage products.

```
prepare_sig_p_dif
prepare_sig_p_dif
```

Description

Prepare significant percent difference data frame for iceLogo

Usage

```
prepare_sig_p_dif(percent_difference, sig_zscores)
```

Arguments

Value

a tibble

process_qf

Description

processed_qf A QFeatures object prepared from PEAKS data of Cathepsin data that has been processed (imputation/normalization)

Usage

processed_qf

Format

'peaks_prepared_data' An instance of class QFeatures containing 5 assays: [1] peptides: SummarizedExperiment with 2071 rows and 42 columns [2] peptides_log: SummarizedExperiment with 2071 rows and 42 columns [3] peptides_log_norm: SummarizedExperiment with 2071 rows and 42 columns [4] peptides_log_impute_norm: SummarizedExperiment with 2071 rows and 42 columns [5] peptides_norm: SummarizedExperiment with 2071 rows and 42 columns

peptides Peptide Sequence Detected ...

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

process_qf

process_qf

Description

```
process_qf
```

Usage

```
process_qf(prepared_qf)
```

Arguments

prepared_qf

this is a QFeatures object containing a SummarizedExperiment named "peptides"

Value

a QFeatures object containing a SummarizedExperiments named "peptides", "peptides_log", "peptides_log_norm", "peptides_log_impute_norm", and "peptides_norm"

```
processed_qf <- process_qf(mspms::peaks_prepared_data)</pre>
```

remaining_cd_names 35

remaining_cd_names

 $remaining_cd_names$

Description

determine what the remaining colData names are when removing the reference variable.

Usage

```
remaining_cd_names(processed_qf, reference_variable)
```

Arguments

```
processed_qf a QFeatures object
reference_variable
name of reference variable
```

Value

a vector of the remaining names in the colData

rlog2

rlog2 Reverse log2 transformation

Description

```
rlog2 Reverse log2 transformation
```

Usage

```
rlog2(x)
```

Arguments

Χ

a numeric value

Value

```
a reverse log2 transformed value
```

36 %>%

%>%

Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

1hs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.

Value

The result of calling 'rhs(lhs)'.

Index

```
* datasets
                                                add_peptide_data, 4
    all_possible_8mers_from_228_library,
                                                all_possible_8mers_from_228_library, 4
                                                calc_AA_count_of_motif, 5
    colData, 12
                                                calc_AA_fc, 6
    log2fc_t_test_data, 17
                                                calc_AA_motif_zscore, 6
    mspms_tidy_data, 18
                                                calc_AA_percent_difference, 7
    peaks_prepared_data, 20
                                                calc_AA_prop_of_motif, 7
    peptide_library, 21
                                                calc_limma_contrasts, 8
    processed_qf, 34
                                                {\tt calc\_limma\_design\_matrix}, 8
* internal
                                                calc_per_samples_library_nd, 9
    %>%, 36
                                                calc_sig_zscores, 9
    add_cleavages, 3
                                                calculate_all_cleavages, 5
    add_peptide_data, 4
                                                check_file_is_valid_fragpipe, 10
    calc_AA_count_of_motif, 5
                                                check_file_is_valid_pd, 10
    calc_AA_fc, 6
                                                check_file_is_valid_peaks, 11
    calc_AA_motif_zscore, 6
                                                check_peptide_library, 11
    calc_AA_percent_difference, 7
                                                colData, 12
    calc_AA_prop_of_motif, 7
                                                consolidate_cleavages, 12
    calc_limma_contrasts, 8
                                                count_cleavages_per_pos, 13
    calc_limma_design_matrix, 8
                                                cterm_cleavage, 13
    calc_per_samples_library_nd, 9
    calc_sig_zscores, 9
                                                generate_report, 14
    check_file_is_valid_peaks, 11
    check_peptide_library, 11
                                                icelogo_col_scheme, 15
    consolidate_cleavages, 12
    count_cleavages_per_pos, 13
                                                limma_stats, 15
    cterm_cleavage, 13
                                                load_colData, 16
    icelogo_col_scheme, 15
                                                log2fc_t_test, 16
    load_colData, 16
                                                log2fc_t_test_data, 17
    mspms-package, 3
    mspms_log2fc, 17
                                                mspms (mspms-package), 3
    mspms_t_tst, 19
                                                mspms-package, 3
    nterm_cleavage, 19
                                                mspms_log2fc, 17
    prepare_fc, 29
                                                mspms_t_tests, 19
    prepare_for_PCA, 29
                                                mspms_tidy, 18
    {\tt prepare\_icelogo\_data}, 30
                                                mspms_tidy_data, 18
    prepare_qc_check_data, 33
    prepare_sig_p_dif, 33
                                                nterm_cleavage, 19
    prepared_to_qf, 28
                                                peaks_prepared_data, 20
    \texttt{remaining\_cd\_names}, 35
                                                peptide_library, 21
    rlog2, 35
                                                plot_all_icelogos, 21
%>%, 36, 36
                                                plot_cleavages_per_pos, 22
add_cleavages, 3
                                                plot_heatmap, 23
```

INDEX

```
plot_icelogo, 24
plot\_nd\_peptides, 25
plot_pca, 25
plot_qc_check, 26
plot_time_course, 27
plot_volcano, 27
prepare_fc, 29
{\tt prepare\_for\_PCA}, \textcolor{red}{\textbf{29}}
prepare_fragpipe, 30
{\tt prepare\_icelogo\_data}, 30
prepare_pd, 31
prepare_peaks, 32
prepare_qc_check_data, 33
prepare_sig_p_dif, 33
prepared_to_qf, 28
process\_qf, 34
processed_qf, 34
remaining_cd_names, 35
rlog2, 35
```