
Introduction to customProDB

Xiaojing Wang, Bing Zhang

January 13, 2026

Contents

1 Introduction 1

2 Preparing annotation files 2
2.1 Refseq annotation from UCSC table brower . 3
2.2 ENSEMBL annotation from BIOMART . 4

3 Building database from a single sample 4
3.1 Filtering based on transcript expression . 4
3.2 Variation annotation . 5

3.2.1 SNVs . 8
3.2.2 INDELs . 9

3.3 Splice junction analysis . 9

4 Building database from multiple samples 12
4.1 Filtering based on transcript expression in multiple samples 13
4.2 Variations occured in multiple samples . 13
4.3 Junctions occured in multiple samples . 14

5 Two integrated functions 15

6 FASTA file format 15
6.1 Normal proteins passing the expression cutoff . 16
6.2 Variant Proteins induced by SNVs . 16
6.3 Aberrant proteins induced by INDELs . 16
6.4 Novel junction peptides . 16

7 Session Information 16

1 Introduction

Mass spectrometry (MS)-based proteomics technology is widely used in biological resarches. For peptide
and protein identification, sequence database search is the most popular method. We recently showed that a
sample-specific protein database derived from RNA-Seq data could better approximate the real protein pool

1

and thus improve protein identification. With continuously decreasing cost, more and more groups have
started multilayer experiment designs that profile both proteome and transcriptome of the same cohort of
samples in order to gain a comprehensive understanding of cellular systems. To facilitate such efforts, we
have developed this R package customProDB, which is dedicated to the generation of customized databases
from RNA-Sseq data for proteomics searches.

We designed this package based on a few assumptions (1) undetected or lowly expressed transcripts are
less likely to produce detectable proteins, thus excluding them would improve sensitivity and specificity;
(2)each sample has a unique set of SNPs, mutations, gene fusions, alternative splicing etc, including them in
them in the protein database would allow the identification of sample specific proteins. This is particularly
useful in cancer studies, in which tumors typically carry oncogenic genomic alterations.

To filter out undetected or lowly expressed transcripts, the package provides functions to either calculate
the RPKM (Reads Per Kilobase per Million mapped reads) values, or accept user-provided measurements
from other sources such as the FPKM (Fragments per kilobase of exon per million fragments mapped) from
cufflinks. Users may specify a expression threshold, subsequently a FASTA file is generated for proteins
that pass the threshold.

customProDB allows users to incorporate variations identified from RNA-seq data into the FASTA
database. It annotates all SNVs with their proper locations and functional consequences in transcripts.
Non-synonymous coding variations are introduced to protein sequences to create variant protein entries.
Aberrant proteins resulted from short INDELs are also predicted and added to the variation database.

One important application of RNA-Seq is to identify previously unannotated structures, such as novel
exons, alternative splice variants and gene fusions. The package provides a function to classify splice
junctions identified from RNA-Seq data, and then uses three-frame translation to generate peptides that
cross the novel junctions. Similarly, fusion genes can also be incorporated into the FASTA database.

This document provides a step by step tutorial of customized database generation.

2 Preparing annotation files

To map RNA-Seq information to the protein level, numerous pieces of genome annotation information are
needed, such as genome elements region boundary, protein coding sequence, protein sequence and known
SNPs et al. It is possible to manually download these data from different public resources (e.g. NCBI, UCSC
and ENSEMBL) and then parse them to an appropriate format. But to make the process more efficient and
autonomous, we provide two functions to prepare the gene/transcript annotation files. Users should use
the same version of annotations through the entire dataset(s) annalysis. All the annotations are saved to a
specified directory for latter use.

The dbSNP data is huge and is getting larger and larger. These two functions only download the data
in coding region for performance reasons. Use the code below to check the current dbSNP versions for a
specified genome provided by the UCSC table browser.

> library('rtracklayer')
> session <- browserSession()
> genome(session) <- 'hg19'
> dbsnps <- trackNames(session)[grep('snp', trackNames(session), fixed=T)]
> dbsnps

2

2.1 Refseq annotation from UCSC table brower

The PrepareAnnotationRefseq function downloads annotations from the UCSC table browser through
rtracklayer, extracts and derives the relevant information and then saves them as the required R data struc-
ture. However, this function is not totally the automatic, it requires users to download coding sequence and
protein sequence FASTA files from UCSC table brower. Since Refseq updates from time to time, we suggest
generating the FASTA file the same day as running this function.

The bullet list below summarizes the steps to download coding sequence FASTA files.

• Go to UCSC Table Browser

• Choose genome

• Choose assembly

• Group — Genes and Gene Prediction Tracks

• Track — RefSeq Genes

• Table — refGene

• Region — genome (If you only need some genes, choose paste list or upload list)

• Output format — sequence

• Then choose genomic — CDS exons — one FASTA record per gene

• Press ’get sequence’ button

Downloading protein seuqence FASTA file is the same as above, just choose ’protein’ instead of ’ge-
nomic’ after clicking the ’get output’ button.

> library(customProDB)

> transcript_ids <- c("NM_001126112", "NM_033360", "NR_073499", "NM_004448",
+ "NM_000179", "NR_029605", "NM_004333", "NM_001127511")
> pepfasta <- system.file("extdata", "refseq_pro_seq.fasta",
+ package="customProDB")
> CDSfasta <- system.file("extdata", "refseq_coding_seq.fasta",
+ package="customProDB")
> annotation_path <- tempdir()
> PrepareAnnotationRefseq(genome='hg19', CDSfasta, pepfasta, annotation_path,
+ dbsnp = NULL, transcript_ids=transcript_ids,
+ splice_matrix=FALSE, ClinVar=FALSE)

3

2.2 ENSEMBL annotation from BIOMART

An alternative resource for annotation is ENSEMBL. The PrepareAnnotationEnsembl function
downloads the annotation from ENSEMBL through biomaRt. This process may take several hours if users
choose to download the whole dataset. The ENSEMBL version number can be specified in the host in
useMart function. Go to website http://useast.ensembl.org/info/website/archives/index.html to check the
currently available archives. It took about 1.5 hour to prepare all annotations for ENSEMBL v82 in our
tests.

> ensembl <- useMart("ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl",
+ host="may2015.archive.ensembl.org", path="/biomart/martservice",
+ archive=FALSE)
> annotation_path <- tempdir()
> transcript_ids <- c("ENST00000234420", "ENST00000269305", "ENST00000445888",
+ "ENST00000257430", "ENST00000508376", "ENST00000288602",
+ "ENST00000269571", "ENST00000256078", "ENST00000384871")
> PrepareAnnotationEnsembl(mart=ensembl, annotation_path=annotation_path,
+ splice_matrix=FALSE, dbsnp=NULL,
+ transcript_ids=transcript_ids, COSMIC=FALSE)

3 Building database from a single sample

After preparing all the annotation files, there are usually three steps to build a customized database. Users
could choose one or multiple steps according to the research interest.

3.1 Filtering based on transcript expression

For a given BAM file, the calculateRPKM function computes the RPKM for each transcript based on
reads mapped to the exon region. The output is a numeric vector. Users should make sure that the chromo-
some name in annotation and the BAM file are consistent, otherwise errors will be raised.

After getting RPKMs, users may check the distribution and choose a cutoff to retain relatively highly
expressed transcripts that are more likely to produce proteins that are detectable in shotgun proteomics.

> load(system.file("extdata/refseq", "exon_anno.RData", package="customProDB"))
> bamFile <- system.file("extdata/bams", "test1_sort.bam", package="customProDB")
> load(system.file("extdata/refseq", "ids.RData", package="customProDB"))
> RPKM <- calculateRPKM(bamFile, exon, proteincodingonly=TRUE, ids)

Alternatively, users could input the calculated RPKM/FPKM from other software output rather than
to calculate from BAM file, such as the cufflinks output. The cutoff can be defined based on a specific
RPKM/FPKM value or a specific percentile. The default cutoff is ’30%’, which means that only the top 70%
transcripts with the largest RPKM values are retained. Then the Outputproseq function could output a
FASTA format file containing protein sequences with corresponding transcript RPKM/FPKM values above
the cutoff.

> load(system.file("extdata/refseq", "proseq.RData", package="customProDB"))
> outf1 <- paste(tempdir(), '/test_rpkm.fasta', sep='')
> Outputproseq(RPKM, 1, proteinseq, outf1, ids)

4

3.2 Variation annotation

First, users can input variations from a single VCF file using InputVcf. The package generates a list of
GRanges object as output. It works for VCF file containing either one or multiple samples.

> # single sample
> vcffile <- system.file("extdata/vcfs", "test1.vcf", package="customProDB")
> vcf <- InputVcf(vcffile)
> length(vcf)

[1] 1

> vcf[[1]][1:3]

GRanges object with 3 ranges and 40 metadata columns:
seqnames ranges strand | REF

<Rle> <IRanges> <Rle> | <character>
chr1:32386425_T/C chr1 32386425 * | T
chr1:32507666_G/T chr1 32507666 * | G
chr1:32524459_A/C chr1 32524459 * | A

ALT QUAL FILTER DP
<character> <numeric> <character> <integer>

chr1:32386425_T/C C 24.00 . 3
chr1:32507666_G/T T 6.20 . 5
chr1:32524459_A/C C 3.54 . 5

DP4.DP4 DP4.DP4.1 DP4.DP4.2 DP4.DP4.3 MQ
<integer> <integer> <integer> <integer> <integer>

chr1:32386425_T/C 0 0 0 3 50
chr1:32507666_G/T 3 0 2 0 50
chr1:32524459_A/C 1 2 0 2 50

FQ AF1 AC1 G3.G3 G3.G3.1
<numeric> <numeric> <numeric> <numeric> <numeric>

chr1:32386425_T/C -36.00 1.0000 2 NA NA
chr1:32507666_G/T 8.65 0.4999 1 NA NA
chr1:32524459_A/C 5.47 0.4998 1 NA NA

G3.G3.2 HWE CLR UGT
<numeric> <numeric> <integer> <character>

chr1:32386425_T/C NA NA <NA> <NA>
chr1:32507666_G/T NA NA <NA> <NA>
chr1:32524459_A/C NA NA <NA> <NA>

CGT PV4.PV4 PV4.PV4.1 PV4.PV4.2
<character> <numeric> <numeric> <numeric>

chr1:32386425_T/C <NA> NA NA NA
chr1:32507666_G/T <NA> 1 0.0620 1
chr1:32524459_A/C <NA> 1 0.0021 1

PV4.PV4.3 INDEL PC2.PC2 PC2.PC2.1 PCHI2

5

<numeric> <logical> <integer> <integer> <numeric>
chr1:32386425_T/C NA FALSE <NA> <NA> NA
chr1:32507666_G/T 0.36 FALSE <NA> <NA> NA
chr1:32524459_A/C 1.00 FALSE <NA> <NA> NA

QCHI2 PR GT GQ
<integer> <integer> <character> <character>

chr1:32386425_T/C <NA> <NA> 1/1 15
chr1:32507666_G/T <NA> <NA> 0/1 36
chr1:32524459_A/C <NA> <NA> 0/1 30

DP.1 SP PL PL.1
<character> <character> <character> <character>

chr1:32386425_T/C <NA> <NA> 56 9
chr1:32507666_G/T <NA> <NA> 35 0
chr1:32524459_A/C <NA> <NA> 31 0

PL.2 PL.3 PL.4 PL.5
<character> <character> <character> <character>

chr1:32386425_T/C 0 56 9 0
chr1:32507666_G/T 78 35 0 78
chr1:32524459_A/C 98 31 0 98

seqinfo: 7 sequences from an unspecified genome; no seqlengths

> # multiple samples in one VCF file
> vcffile <- system.file("extdata", "test_mul.vcf", package="customProDB")
> vcfs <- InputVcf(vcffile)

After reading the VCF file, users should choose the functions corresponding to different variation types,
SNVs or INDELs. Although the package focuses on protein coding transcripts, we intentionally imple-
mented several functions to examine where the SNVs are located, how many of them are located in the
protein coding transcript regions, etc. The Varlocation functions classifies variations into eight cate-
gories, see Table 1.

Label Description
Intergenic Out of transcripts boundary

Intron_nonprocoding Located in introns of non-coding transcripts
Exon_nonprocoding Located in exons of non-coding transcripts

Intron Located in introns of protein coding transcripts
5’UTR Located in 5utr region of protein coding transcripts
3’UTR Located in 3utr region of protein coding transcripts
Coding Located in coding region of protein coding transcripts

Unknown No annotation for this chromosome

Table 1: Definition of genomic locations of variations

> table(values(vcf[[1]])[['INDEL']])

6

FALSE TRUE
54 7

> index <- which(values(vcf[[1]])[['INDEL']]==TRUE)
> indelvcf <- vcf[[1]][index]
> index <- which(values(vcf[[1]])[['INDEL']]==FALSE)
> SNVvcf <- vcf[[1]][index]
> load(system.file("extdata/refseq", "ids.RData", package="customProDB"))
> txdb <- loadDb(system.file("extdata/refseq", "txdb.sqlite", package="customProDB"))
> SNVloc <- Varlocation(SNVvcf,txdb,ids)
> indelloc <- Varlocation(indelvcf,txdb,ids)
> table(SNVloc[,'location'])

3'UTR Coding Intergenic
11 11 25

Intron Intron_nonprocoding
5 2

For those variations labeled with ’Coding’, the Positionincoding function computes the position
of variation in the coding sequence of each transcript. The dbSNP rsid and COSMIC_id can also be retrived
if they are available.

> load(system.file("extdata/refseq", "exon_anno.RData", package="customProDB"))
> load(system.file("extdata/refseq", "dbsnpinCoding.RData", package="customProDB"))
> load(system.file("extdata/refseq", "cosmic.RData", package="customProDB"))
> postable_snv <- Positionincoding(SNVvcf, exon, dbsnpinCoding, COSMIC=cosmic)
> postable_snv

genename txname txid proname chr strand pos
1 KRAS NM_033360 6 NP_203524 chr12 - 25368462
2 ERBB2 NM_004448 7 NP_004439 chr17 + 37866082
3 MSH6 NM_000179 2 NP_000170 chr2 + 48010558
4 MSH6 NM_000179 2 NP_000170 chr2 + 48018081
5 MSH6 NM_000179 2 NP_000170 chr2 + 48018221
6 MSH6 NM_000179 2 NP_000170 chr2 + 48027990
7 APC NM_001127511 3 NP_001120983 chr5 + 112162854
8 APC NM_001127511 3 NP_001120983 chr5 + 112164561
9 APC NM_001127511 3 NP_001120983 chr5 + 112175639
10 APC NM_001127511 3 NP_001120983 chr5 + 112176559
11 APC NM_001127511 3 NP_001120983 chr5 + 112176756

refbase varbase pincoding rsid COSMIC_id
1 C T 483 rs4362222 <NA>
2 G A 591 <NA> COSM260714
3 C A 186 rs1042820 <NA>
4 A G 276 rs1800932 <NA>
5 C T 416 <NA> <NA>

7

6 G T 2868 <NA> COSM172960
7 T C 1404 rs2229992 <NA>
8 G A 1581 rs351771 <NA>
9 C T 4294 rs121913332 COSM19149
10 T G 5214 rs866006 <NA>
11 T A 5411 rs459552 <NA>

> postable_indel <- Positionincoding(indelvcf, exon)
> postable_indel

genename txname txid proname chr strand pos
1 APC NM_001127511 3 NP_001120983 chr5 + 112154737
2 APC NM_001127511 3 NP_001120983 chr5 + 112175897
refbase varbase pincoding

1 CT C 954
2 GAA GA 4552

3.2.1 SNVs

Variations can be divided into SNVs and INDELs. There are different consequences for SNVs. By taking
outputs of function Positionincoding, function aaVariation is used to predict the consequences
of the SNVs in a protein sequence, i.e. synonymous or non-synonymous.

The non-synonymous variations are labeled as either AposB (A is the reference codon and B is the
var-iation codon, e.g., E13V) or nonsense.

> load(system.file("extdata/refseq", "procodingseq.RData", package="customProDB"))
> txlist <- unique(postable_snv[, 'txid'])
> codingseq <- procodingseq[procodingseq[, 'tx_id'] %in% txlist,]
> mtab <- aaVariation (postable_snv, codingseq)
> mtab

txid genename txname proname chr strand pos
1 2 MSH6 NM_000179 NP_000170 chr2 + 48010558
2 2 MSH6 NM_000179 NP_000170 chr2 + 48018081
3 2 MSH6 NM_000179 NP_000170 chr2 + 48018221
4 2 MSH6 NM_000179 NP_000170 chr2 + 48027990
5 3 APC NM_001127511 NP_001120983 chr5 + 112162854
6 3 APC NM_001127511 NP_001120983 chr5 + 112164561
7 3 APC NM_001127511 NP_001120983 chr5 + 112175639
8 3 APC NM_001127511 NP_001120983 chr5 + 112176559
9 3 APC NM_001127511 NP_001120983 chr5 + 112176756
10 6 KRAS NM_033360 NP_203524 chr12 - 25368462
11 7 ERBB2 NM_004448 NP_004439 chr17 + 37866082

refbase varbase pincoding rsid COSMIC_id refcode varcode
1 C A 186 rs1042820 <NA> CGC CGA
2 A G 276 rs1800932 <NA> CCA CCG

8

3 C T 416 <NA> <NA> ACA ATA
4 G T 2868 <NA> COSM172960 GAG GAT
5 T C 1404 rs2229992 <NA> TAT TAC
6 G A 1581 rs351771 <NA> GCG GCA
7 C T 4294 rs121913332 COSM19149 CGA TGA
8 T G 5214 rs866006 <NA> TCT TCG
9 T A 5411 rs459552 <NA> GTC GAC
10 C T 483 rs4362222 <NA> AGG AGA
11 G A 591 <NA> COSM260714 CCG CCA

vartype aaref aapos aavar
1 synonymous R 62 R
2 synonymous P 92 P
3 non-synonymous T 139 I
4 non-synonymous E 956 D
5 synonymous Y 468 Y
6 synonymous A 527 A
7 non-synonymous R 1432 *
8 synonymous S 1738 S
9 non-synonymous V 1804 D
10 synonymous R 161 R
11 synonymous P 197 P

Then OutputVarproseq function replace the reference amino acid with the variation, and output a
FASTA file containing those variant proteins. There are several options for output, users could choose either
put all the SNVs of a protein into the sequence or put one SNVs each time.

> outfile <- paste(tempdir(), '/test_snv.fasta', sep='')
> load(system.file("extdata/refseq", "proseq.RData", package="customProDB"))
> OutputVarproseq(mtab, proteinseq, outfile, ids)

3.2.2 INDELs

Short insertion/deletion may led to frame shift thus produce aberrant proteins. We provide a function
OutputabrrentPro to generate a FASTA file containing such proteins.

> txlist_indel <- unique(postable_indel[, 'txid'])
> codingseq_indel <- procodingseq[procodingseq[, 'tx_id'] %in% txlist_indel,]
> outfile <- paste(tempdir(), '/test_indel.fasta', sep='')
> Outputaberrant(postable_indel, coding=codingseq_indel, proteinseq=proteinseq,
+ outfile=outfile, ids=ids)

3.3 Splice junction analysis

One important application of RNA-Seq is the identification of previously unannotated structures, such as
novel exons, alternative splicing and gene fusions. Bed2Range is used to input a BED file. Based on a
BED file that contains splice junctions from RNA-Seq data, the function JunctionType classifies all the

9

junctions into six categories, Table 2. The category ’connect two known exon’ is further divided into known
junction, novel alternative splicing and gene fusion. Users need to set the parameter splice_matrix to TRUE
when preparing the annotation files if planning to do junction analysis in this section.

Label sub-label
connect two known exon known junction
connect two known exon alternative splicing
connect two known exon gene fusion
connect one known exon and one region overlap with known exon
connect one known exon and one non-exon region
connect two regions both overlaped with known exons
connect one region overlap with known exon and one non-exon region
connect two non-exon region

Table 2: Junction Type

A complete BED file is required for this function. The output of function JunctionType provides
more detailed information of the junction, such as transcript source et al.

> bedfile <- system.file("extdata/beds", "junctions1.bed", package="customProDB")
> jun <- Bed2Range(bedfile,skip=1,covfilter=5)
> jun

GRanges object with 56 ranges and 8 metadata columns:
seqnames ranges strand | id cov

<Rle> <IRanges> <Rle> | <character> <integer>
[1] chr1 32479978-32495899 + | JUNC00002865 8
[2] chr1 32496023-32497125 + | JUNC00002866 13
[3] chr1 32497241-32498789 + | JUNC00002868 20
[4] chr1 32498935-32502511 + | JUNC00002869 29
[5] chr1 32502644-32503436 + | JUNC00002871 48
...

[52] chr17 7578554-7579312 - | JUNC00041584 19
[53] chr17 7579590-7579700 - | JUNC00041585 35
[54] chr17 7579721-7579839 - | JUNC00041586 25
[55] chr17 7579940-7590695 - | JUNC00041587 29
[56] chr17 7591879-7591966 + | JUNC00041588 6

part1_len part2_len part1_sta part1_end part2_sta part2_end
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

[1] 69 44 32479910 32479978 32495899 32495942
[2] 73 72 32495951 32496023 32497125 32497196
[3] 66 66 32497176 32497241 32498789 32498854
[4] 68 74 32498868 32498935 32502511 32502584
[5] 73 72 32502572 32502644 32503436 32503507
...

[52] 74 58 7578481 7578554 7579312 7579369

10

[53] 75 25 7579516 7579590 7579700 7579724
[54] 22 56 7579700 7579721 7579839 7579894
[55] 66 67 7579875 7579940 7590695 7590761
[56] 54 62 7591826 7591879 7591966 7592027

seqinfo: 6 sequences from an unspecified genome; no seqlengths

> load(system.file("extdata/refseq", "splicemax.RData", package="customProDB"))
> load(system.file("extdata/refseq", "ids.RData", package="customProDB"))
> junction_type <- JunctionType(jun, splicemax, txdb, ids)
> junction_type[10:19,]

seqnames start end width strand id cov
10 chr2 48032846 48033343 498 + JUNC00057364 12
11 chr2 48033497 48033591 95 + JUNC00057365 10
12 chr2 48035386 48035468 83 - JUNC00057367 9
13 chr5 112200429 112203101 2673 + JUNC00080007 23
14 chr7 140706335 140710219 3885 - JUNC00096159 15
15 chr9 86584295 86585077 783 - JUNC00101237 14
16 chr9 86585246 86585652 407 - JUNC00101239 171
17 chr9 86585734 86585812 79 - JUNC00101240 80
18 chr9 86585827 86586188 362 - JUNC00101241 121
19 chr17 37856564 37863243 6680 + JUNC00043382 57

part1_len part2_len part1_sta part1_end part2_sta part2_end
10 65 28 48032782 48032846 48033343 48033370
11 43 64 48033455 48033497 48033591 48033654
12 75 53 48035312 48035386 48035468 48035520
13 74 67 112200356 112200429 112203101 112203167
14 53 66 140706283 140706335 140710219 140710284
15 60 72 86584236 86584295 86585077 86585148
16 69 73 86585178 86585246 86585652 86585724
17 68 16 86585667 86585734 86585812 86585827
18 16 75 86585812 86585827 86586188 86586262
19 74 74 37856491 37856564 37863243 37863316

part1_type part2_type part1_exon
10 known exon (same end) known exon (same start) 18
11 known exon (same end) known exon (same start) 19
12 non-exon region non-exon region NA
13 non-exon region non-exon region NA
14 non-exon region non-exon region NA
15 non-exon region non-exon region NA
16 non-exon region non-exon region NA
17 non-exon region non-exon region NA
18 non-exon region non-exon region NA
19 known exon (same end) known exon (same start) 61

part2_exon jun_type tx_id_part1 tx_name_part1

11

10 19 known junction 2 NM_000179
11 20 known junction 2 NM_000179
12 NA connect two non-exon region <NA> <NA>
13 NA connect two non-exon region <NA> <NA>
14 NA connect two non-exon region <NA> <NA>
15 NA connect two non-exon region <NA> <NA>
16 NA connect two non-exon region <NA> <NA>
17 NA connect two non-exon region <NA> <NA>
18 NA connect two non-exon region <NA> <NA>
19 62 known junction 7 NM_004448

ge_name_part1 tx_id_part2 tx_name_part2 ge_name_part2
10 MSH6 2 NM_000179 MSH6
11 MSH6 2 NM_000179 MSH6
12 <NA> <NA> <NA> <NA>
13 <NA> <NA> <NA> <NA>
14 <NA> <NA> <NA> <NA>
15 <NA> <NA> <NA> <NA>
16 <NA> <NA> <NA> <NA>
17 <NA> <NA> <NA> <NA>
18 <NA> <NA> <NA> <NA>
19 ERBB2 7 NM_004448 ERBB2

> table(junction_type[, 'jun_type'])

connect a known exon and a region overlap with known exon
1

connect two non-exon region
9

known junction
46

Except for ’known junction’, all others are treated as putative novel junctions. Then all putative novel
junctions are three-frame translated into peptides using the function OutputNovelJun. The reference
genome sequence is required when using this function.

> outf_junc <- paste(tempdir(), '/test_junc.fasta',sep='')
> library('BSgenome.Hsapiens.UCSC.hg19')
> OutputNovelJun <- OutputNovelJun(junction_type, Hsapiens, outf_junc,
+ proteinseq)

4 Building database from multiple samples

We provide two functions to help generate a consensus database from multiple samples, especially for a
group of similar samples. Even though deep sequencing reveals large scales of heterogeneity, concensus
protein database consisting of the commonly expressed proteins and SNVs from a group of samples with
similar genetic background will help identify subtype specific proteins.

12

4.1 Filtering based on transcript expression in multiple samples

The function OutputsharedPro outputs proteins with expression level above the cutoff in multiple sam-
ples. Unlike Outputproseq that uses vector as input, the function Outputsharedpro uses expression matrix
as input. Users need to specify both the value of sample number and the RPKM cutoff when calling this
function. Users could generate RPKM matrix from multiple BAM files as follows, or use RPKM matrix
generated by other programs.

> path <- system.file("extdata/bams", package="customProDB")
> bamFile<- paste(path, '/', list.files(path,pattern="*bam$"), sep='')
> rpkms <- sapply(bamFile, function(x)
+ calculateRPKM(x, exon, proteincodingonly=TRUE, ids))
> #colnames(rpkms) <- c('1', '2', '3')
> #rpkms
> outfile <- paste(tempdir(), '/test_rpkm_share.fasta', sep='')
> pro <- OutputsharedPro(rpkms, cutoff=1, share_sample=2, proteinseq,
+ outfile, ids)

4.2 Variations occured in multiple samples

The function Multiple_VCF outputs variations occured in more than k samples, with the k specified by a
user input parameter. When recurrent variations are identified, the following analysis is the same as shown
in the ’Variation annotation’ section.

> path <- system.file("extdata/vcfs", package="customProDB")
> vcfFiles<- paste(path, '/', list.files(path, pattern="*vcf$"), sep='')
> vcfs <- lapply(vcfFiles, function(x) InputVcf(x))
> shared <- Multiple_VCF(vcfs, share_num=2)
> shared

GRanges object with 62 ranges and 3 metadata columns:
seqnames ranges strand |

<Rle> <IRanges> <Rle> |
test.chr1:32386425_T/C chr1 32386425 * |
test.chr1:32507666_G/T chr1 32507666 * |
test.chr1:32524459_A/C chr1 32524459 * |
test.chr1:32622505_G/A chr1 32622505 * |

test.chr12:25357574_CAA/C chr12 25357574-25357576 * |
...

test.chr9:86593314_G/C chr9 86593314 * |
test.chr9:86595070_C/T chr9 86595070 * |
test.chr9:86595498_G/A chr9 86595498 * |

test.chr5:112154737_T/A chr5 112154737 * |
test.chr5:112175897_G/T chr5 112175897 * |

REF ALT INDEL
<character> <character> <logical>

13

test.chr1:32386425_T/C T C FALSE
test.chr1:32507666_G/T G T FALSE
test.chr1:32524459_A/C A C FALSE
test.chr1:32622505_G/A G A FALSE

test.chr12:25357574_CAA/C CAA C TRUE
...

test.chr9:86593314_G/C G C FALSE
test.chr9:86595070_C/T C T FALSE
test.chr9:86595498_G/A G A FALSE

test.chr5:112154737_T/A T A FALSE
test.chr5:112175897_G/T G T FALSE

seqinfo: 7 sequences from an unspecified genome; no seqlengths

4.3 Junctions occured in multiple samples

The function SharedJunc outputs splice junctions occured in more than k samples, with the k specified
by a user input parameter. When recurrent junctions are ready, the following analysis is the same as shown
in the ’Splice junction analysis’ section.

> path <- system.file("extdata/beds", package="customProDB")
> bedFiles<- paste(path, '/', list.files(path, pattern="*bed$"), sep='')
> juncs <- lapply(bedFiles, function(x) Bed2Range(x, skip=1, covfilter=5))
> sharedjun <- SharedJunc(juncs, share_num=2, ext_up=100, ext_down=100)
> sharedjun

GRanges object with 55 ranges and 8 metadata columns:
seqnames ranges strand | id cov

<Rle> <IRanges> <Rle> | <character> <numeric>
[1] chr1 32479978-32495899 + | JUNC1 8
[2] chr1 32496023-32497125 + | JUNC2 13
[3] chr1 32497241-32498789 + | JUNC3 20
[4] chr1 32498935-32502511 + | JUNC4 29
[5] chr1 32502644-32503436 + | JUNC5 48
...

[51] chr17 7578554-7579312 - | JUNC51 19
[52] chr17 7579590-7579700 - | JUNC52 35
[53] chr17 7579721-7579839 - | JUNC53 25
[54] chr17 7579940-7590695 - | JUNC54 29
[55] chr17 7591879-7591966 + | JUNC55 6

part1_len part2_len part1_sta part1_end part2_sta part2_end
<numeric> <numeric> <numeric> <integer> <integer> <numeric>

[1] 69 44 32479910 32479978 32495899 32495944
[2] 73 72 32495951 32496023 32497125 32497198
[3] 66 66 32497176 32497241 32498789 32498856
[4] 68 74 32498868 32498935 32502511 32502586

14

[5] 73 72 32502572 32502644 32503436 32503509
...

[51] 74 58 7578481 7578554 7579312 7579371
[52] 75 25 7579516 7579590 7579700 7579726
[53] 22 56 7579700 7579721 7579839 7579896
[54] 66 67 7579875 7579940 7590695 7590763
[55] 54 62 7591826 7591879 7591966 7592029

seqinfo: 6 sequences from an unspecified genome; no seqlengths

5 Two integrated functions

We provide two integrated functions for the one-step generation of customized databases.
easyrun generates a customized database from single sample.

> bamFile <- system.file("extdata/bams", "test1_sort.bam",
+ package="customProDB")
> vcffile <- system.file("extdata/vcfs", "test1.vcf", package="customProDB")
> bedfile <- system.file("extdata", "junctions.bed", package="customProDB")
> annotation_path <- system.file("extdata/refseq", package="customProDB")
> outfile_path <- tempdir()
> outfile_name='test'
> easyRun(bamFile, RPKM=NULL, vcffile, annotation_path, outfile_path,
+ outfile_name, rpkm_cutoff=1, INDEL=TRUE, lablersid=TRUE, COSMIC=TRUE,
+ nov_junction=FALSE)

easyrun_mul generates a consensus database from multiple samples.

> bampath <- system.file("extdata/bams", package="customProDB")
> vcfFile_path <- system.file("extdata/vcfs", package="customProDB")
> annotation_path <- system.file("extdata/refseq", package="customProDB")
> outfile_path <- tempdir()
> outfile_name <- 'mult'
> easyRun_mul(bampath, RPKM_mtx=NULL, vcfFile_path, annotation_path, rpkm_cutoff=1,
+ share_num=2, var_shar_num=2, outfile_path, outfile_name, INDEL=TRUE,
+ lablersid=TRUE, COSMIC=TRUE, nov_junction=FALSE)

6 FASTA file format

The primary outputs of this package are FASTA files. Related information, such as gene symbol, gene
description, variation position, change status, and corresponding dbSNP ID (if required and available), are
included in the sequence header for interpretation of the search result. There are four types of headers in the
FASTA file.

15

6.1 Normal proteins passing the expression cutoff

The header starts with RefSeq protein id, followed by RPKM/FPKM value in each sample (separated by ’;’)
and the average RPKM/FPKM , RefSeq transcript id, gene symbol and description.

> outfile_path <- system.file("extdata/tmp", package="customProDB")
> readLines(file(paste(outfile_path, '/test_rpkm.fasta', sep=''), 'rt'), 1)

[1] ">NP_004439 |148172.2567|NM_004448|ERBB2|receptor tyrosine-protein kinase erbB-2 isoform a precursor"

6.2 Variant Proteins induced by SNVs

The variation information, including variation position, amino acid change status and corresponding dbSNP
ID (if available), is added to the RefSeq protein id followed by ’_’. Different variations are separated by ’,’.

> readLines(file(paste(outfile_path, '/test_snv.fasta', sep=''), 'rt'), 1)

[1] ">NP_000170_T139I,E956D |15810.2686|NM_000179|MSH6|DNA mismatch repair protein Msh6"

6.3 Aberrant proteins induced by INDELs

The INDEL information is added to protein id followed by ’_’. Here the INDELs position represents the
position where this INDELs occurrs in a coding sequence, not the position in protein sequence, which is
different from proteins whith SNVs.

> readLines(file(paste(outfile_path, '/test_indel.fasta', sep=''), 'rt'), 1)

[1] ">NP_004439_3508:CCC>C |148172.2567|NM_004448|ERBB2|receptor tyrosine-protein kinase erbB-2 isoform a precursor|"

6.4 Novel junction peptides

The junction id, genomic position, coverage (For single sample, it’s the reads coverage. For multiple sam-
ples, it’s the sample coverage), ORF, the source of left/right part and the junction type are added to the ID
line of the FASTA file.

> readLines(file(paste(outfile_path, '/test_junc.fasta', sep=''), 'rt'), 1)

[1] ">JUNC00041588|6|ORF1|Junpos:18-19|+|NA|NA|connect two non-exon region"

7 Session Information

R Under development (unstable) (2025-12-22 r89219)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so

16

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets
[7] methods base

other attached packages:
[1] BSgenome.Hsapiens.UCSC.hg19_1.4.3
[2] BSgenome_1.79.1
[3] rtracklayer_1.71.3
[4] BiocIO_1.21.0
[5] Biostrings_2.79.4
[6] XVector_0.51.0
[7] GenomicFeatures_1.63.1
[8] GenomicRanges_1.63.1
[9] Seqinfo_1.1.0
[10] customProDB_1.51.0
[11] biomaRt_2.67.1
[12] AnnotationDbi_1.73.0
[13] Biobase_2.71.0
[14] IRanges_2.45.0
[15] S4Vectors_0.49.0
[16] BiocGenerics_0.57.0
[17] generics_0.1.4

loaded via a namespace (and not attached):
[1] KEGGREST_1.51.1 SummarizedExperiment_1.41.0
[3] AhoCorasickTrie_0.1.3 rjson_0.2.23
[5] httr2_1.2.2 lattice_0.22-7
[7] vctrs_0.6.5 tools_4.6.0
[9] bitops_1.0-9 curl_7.0.0
[11] parallel_4.6.0 tibble_3.3.1
[13] RSQLite_2.4.5 blob_1.2.4
[15] pkgconfig_2.0.3 Matrix_1.7-4

17

[17] dbplyr_2.5.1 cigarillo_1.1.0
[19] lifecycle_1.0.5 compiler_4.6.0
[21] stringr_1.6.0 Rsamtools_2.27.0
[23] progress_1.2.3 codetools_0.2-20
[25] GenomeInfoDb_1.47.2 yaml_2.3.12
[27] RCurl_1.98-1.17 pillar_1.11.1
[29] crayon_1.5.3 BiocParallel_1.45.0
[31] DelayedArray_0.37.0 cachem_1.1.0
[33] abind_1.4-8 tidyselect_1.2.1
[35] stringi_1.8.7 VariantAnnotation_1.57.1
[37] restfulr_0.0.16 dplyr_1.1.4
[39] grid_4.6.0 fastmap_1.2.0
[41] SparseArray_1.11.10 cli_3.6.5
[43] magrittr_2.0.4 S4Arrays_1.11.1
[45] XML_3.99-0.20 prettyunits_1.2.0
[47] filelock_1.0.3 UCSC.utils_1.7.1
[49] rappdirs_0.3.3 bit64_4.6.0-1
[51] httr_1.4.7 matrixStats_1.5.0
[53] bit_4.6.0 otel_0.2.0
[55] png_0.1-8 hms_1.1.4
[57] memoise_2.0.1 BiocFileCache_3.1.0
[59] txdbmaker_1.7.3 rlang_1.1.7
[61] Rcpp_1.1.1 glue_1.8.0
[63] DBI_1.2.3 jsonlite_2.0.0
[65] plyr_1.8.9 R6_2.6.1
[67] MatrixGenerics_1.23.0 GenomicAlignments_1.47.0

18

	Introduction
	Preparing annotation files
	Refseq annotation from UCSC table brower
	ENSEMBL annotation from BIOMART

	Building database from a single sample
	Filtering based on transcript expression
	Variation annotation
	SNVs
	INDELs

	Splice junction analysis

	Building database from multiple samples
	Filtering based on transcript expression in multiple samples
	Variations occured in multiple samples
	Junctions occured in multiple samples

	Two integrated functions
	FASTA file format
	Normal proteins passing the expression cutoff
	Variant Proteins induced by SNVs
	Aberrant proteins induced by INDELs
	Novel junction peptides

	Session Information

