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1 Abstract

Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using
variable next-generation sequencing data[1]. Integral to this tool are the “seq2gene” and “gene2pathway” com-
ponents in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns
phenotype-associated significance of genomic regions to gene-level scores, where the significance could be
p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene
function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest
one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes
gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members
within a pathway with those outside a pathway. It implements an improved FAIME algorithm together with other
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three conventional gene-set enrichment analysis methods[3]. The output of seq2pathway is a general struc-
tured pathway scores, thus allowing one to functionally interpret phenotype-associated significance of genomic
regions derived by next generational sequencing experiments.

2 Package Installation

Currently, seq2pathway works in both Linux and Windows. It has wrapped python scripts to annotate loci
to genes, thus requires Python v3.8 running on the system. For Windows, the Python should be installed at
C:\Users\ <USERNAME> \AppData\Local\Programs\Python\Python38 (default). Make sure you click ’add
python to PATH’ when installing. Make sure supporting data package seq2pathway.data is installed with
seq2pathway package.

If you don’t have BiocManager::install() you can get it like this:

if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")

BiocManager::install("seq2pathway.data")
BiocManager::install("seq2pathway")

> library("seq2pathway.data")
> library("seq2pathway")

3 runseq2pathway

This function provides end-users a straightforward work-flow to implement the seq2pathway algorithms. It facili-
tates the screening of novel biological functions using just a few code lines, the main function to derive enriched
pathways from genomic regions. It uses the Gene Ontology (GO)-defined gene-sets by default and can be run
against either the MSigDB-defined[4] or customized gene-sets.

> head(runseq2pathway, n=8)

1 function (inputfile, search_radius = 150000, promoter_radius = 200,
2 promoter_radius2 = 100, genome = c("hg38", "hg19", "mm10",
3 "mm9"), adjacent = FALSE, SNP = FALSE, PromoterStop = FALSE,
4 NearestTwoDirection = TRUE, UTR3 = FALSE, DataBase = c("GOterm"),
5 FAIMETest = FALSE, FisherTest = TRUE, collapsemethod = c("MaxMean",
6 "function", "ME", "maxRowVariance", "MinMean", "absMinMean",
7 "absMaxMean", "Average"), alpha = 5, logCheck = FALSE,
8 B = 100, na.rm = FALSE, min_Intersect_Count = 5)

The inputs are almost the same as those introduced below for the the two main functions runseq2gene and
gene2pathway_test. We therefore only introduce the new parameters here.

Note that the wrapped function runseq2pathway supports the “FAIME” method only and performs empirical
test if the new parameter FAMETest equals to “TRUE”.

If setting FAIMETest=TRUE and/or calculating the empirical p-values, an end-user should provide the for-
matted input file (see following example).

Column 1 the unique IDs (labels) of genomic regions of interest

Column 2 the chromosome IDs (eg. chr5 or 5)

Column 3 the start of genomic regions of interest

Column 4 the end of genomic regions (for SNP and point mutations, the difference of start and end is 1bp)

Column 5 the scores or values of the sample(s) along with the genomic regions
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Column . . . other custom-defined information

Another new parameter collapsemethod is a character for determining which method to use when call the
function collapseRows in package WGCNA[5].

These are the options provided by WGCNA for the parameter collapsemethod(directly from WGCNA Vi-
gnette):

“MaxMean” (default) or “MinMean” = choose the row with the highest or lowest mean value, respectively

“maxRowVariance” = choose the row with the highest variance (across the columns of data)

“absMaxMean” or “absMinMean” = choose the row with the highest or lowest mean absolute value

“ME” = choose the eigenrow (first principal component of the rows in each group)

“Average” for each column, take the average value of the rows in each group

“function” use this method for a user-input function (see the description of the argument “methodFunction”)

4 Two main functions

The output of runseq2pathway can be achieved equally by running runseq2gene and gene2pathway_test
functions in series. These two functions facilitate end-users to track details on the gene-level. End-users can also
apply the gene2pathway_test function to analyze functional enrichment for customized gene lists independently.

Here we introduce these two main functions separately. For each function, we describe the significance, its
features with a flowchart, the inputs and parameters, then the output in details.

“runseq2gene” The first components in series to map genomic regions to coding and non-coding genes[2].

“gene2pathway_test” The second components in series to run pathway enrichment analysis for coding genes.
This function provides three alternative pathway estimating methods which are FAIME[3], Kolmogorov-
Smirnov test[6], and cumulative rank test[6].

4.1 seq2gene
Nearly 99% of human genome are non-coding nucleotides[7]. Identifying and delineating the function of all
coding genes and non-coding elements remains a considerable challenge. We developed the computational
function runseq2gene to link genomic regions of interest to genes in a many-to-many mapping, by considering
the possibility that genes within a search radius in both directions from intergenic regions may fall under control
of cis-regulation[2]. Using the seq2gene strategy with a search radius of 100k-base, our recent study in vivo
defined a transcription factor-mediated cis-regulatory element from both ChIP-seq and transcriptomic data[8].
We also identified an intronic locus of one gene regulates the transcript of its neighbor gene instead of its host
gene, suggesting the need to associate a functional genomic locus to broader candidate targets[9]. We thus
suggest a larger search radius for the seq2gene function, such as 100k -150k bases, given that the average
enhancer-promoter loop size is 120 kb in mammalian genomes[10] and enhancers act independently of their
orientation[11][12].
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4.1.1 seq2gene flowchart

Figure 1: Seq2gene flowchart. The inputs are on the left, and the outputs are on the right.

Figure 1 gives the flowchart for the seq2gene process. Built on our previous publication[2], the current seq2gene
uses the reference human genome annotation for the ENCODE project (GENCODE) [13] version 19 for human
genome and version M4 for mouse genome (Ensembl version 78 in GRCm38). ENCODE is a re-merge between
the Ensembl annotation and updates from HAVANA(http://www.gencodegenes.org/releases/). Table 1 lists the
statistics of the gene annotations that are used by seq2pathway.

Table 1: Statistics about the seq2pathway-used GENCODE annotation.

Species
GENCODE

Release

Corresponding

Ensembl

assembly

# of

coding

genes

# of

Long

non-

coding

RNAs

# of

Small

non-

coding

RNAs

# of

Pseudogenes

# of

all

genes

Human 19(Dec.2013) GRCh74/hg19 20345 13870 9013 14206 57820

Mouse M4(Aug.2014) GRCm38.p3/mm10 22032 6951 5853 7957 43346

Human 38(May 2021) GRCh38.p13/hg36 19955 17944 7567 14773 60649

Mouse M25(May 2021) GRCm38.p6/mm10 21834 13188 6105 13737 55359

The seq2gene algorithm uses a bisection strategy to search among exon and transcript annotations. Figure
2 is the pseudocode for the function[2]. To perform the basic bisect algorithm with respect to exon and transcript
separately, we have prepared for end users the internal “exon.table” and “transcript.table” files based on the
GENCODE general feature format. Both file use ENSEMBL IDs as the key index.
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Figure 2: Pseudo-code of the seq2gene algorithm.

4.1.2 runseq2gene inputs/parameters

inputfile An R object input file that records genomic region information (coordinates). This object could be a
data frame defined as:

column 1 the unique IDs of peaks/mutations/SNPs;

column 2 the chromosome ID (eg. chr5 or 5);

column 3 the start site of genomic regions;

column 4 the end site of genomic regions (for SNP and point mutations, the difference of start and end is
1bp);

column 5 . . . custom defined.

There is one demo data in data.frame format in our package.

> data(Chipseq_Peak_demo)
> class(Chipseq_Peak_demo)

[1] "data.frame"

> head(Chipseq_Peak_demo)

peakID chrom start end signalvalue
1 Peak_59951 chr14 19003706 19004370 6.611026
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2 Peak_59952 chr14 19003800 19024138 3.450042
3 Peak_59953 chr14 19005068 19005305 10.997456
4 Peak_59954 chr14 19006372 19006587 21.055350
5 Peak_59955 chr14 19013301 19013534 8.242503

Or, the input format could be a GRanges object (from R package GenomicRanges). There is a demo data
in GRanges formart in our package as well.

> data(GRanges_demo)
> class(GRanges_demo)

[1] "GRanges"
attr(,"package")
[1] "GenomicRanges"

> GRanges_demo[1:3,]

GRanges object with 3 ranges and 3 metadata columns:
seqnames ranges strand | name score GC

<Rle> <IRanges> <Rle> | <character> <integer> <numeric>
a chr1 1-7 - | peak1 1 1.000000
b chr2 2-8 + | peak2 2 0.888889
c chr2 3-9 + | peak3 3 0.777778
-------
seqinfo: 3 sequences from an unspecified genome; no seqlengths

Note that for this particular GRanges object, the seqnames, ranges, strand, and name columns are
necessary. And for a data frame object, the first four columns are orderly. Specifically, here are three more
examples.

example 1:

peakID chrom chromstart chromend name score strand thickstart thickend
peak2 chr7 127477031 127478198 Neg2 0 - 127477031 127478198
peak3 chr7 127478198 127479365 Neg3 0 - 127478198 127479365

example 2:

peakID Chr Start End
MACS_M_1210 chr9 21754771 21755152
MACS_M_1211 chr9 21753771 21754023
MACS_M_1212 chr9 21753901 21754023

example 3:

SNP chr Physical_position position_end
rs953509 9 81560347 81560348
rs719293 2 50516523 50516524
rs1394384 17 28813156 28813157
rs1609772 1 186820222 186820223

search_radius(unit bp) A non-negative integer, with which the input genomic regions can be assigned not only
to the matched/nearest gene, but also with all genes within a search radius. Default is 150000. Figure
3 illustrates the definition of search_radius, being calculated from the middle of a genomic region to both
sides.
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Figure 3: The illustration of parameter search_radius.(Modified from
genome.igi.doe.gov/help/brwser_viewer.jsp)

promoter_radius(unit bp) A non-negative integer. Default is 200.
Note that promoters are calculated from transcription start site (TSS) of genes (Figure 4). Promoters can
be about 100-2000 base pairs upstream of their TSSs[14]. User can assign the promoter_radius to defind
promoter regions in the genome.

Figure 4: The illustration of parameter promoter_radius.(Edited from the UCSC genome browser)

promoter_radius2(unit bp) A non-negative integer. Default is 100. User can as well use this parameter to
defined downstream regions of the TSSs as promoter.

genome A character specifies the genome type. Currently, “hg38”, “hg19”(human), and “mm10”, “mm9”(mouse)
are supported.

adjacent A Boolean. Default is FALSE to search all genes within the search_radius. Using “TRUE” to find the
adjacent genes only and ignore parameters “SNP” and “search_radius”.

SNP A Boolean specifies the input object type. By default is FALSE to keep on searching for intron and neigh-
boring genes. Otherwise, runseq2gene stops searching when the input genomic region is residing on a
coding gene exon.

PromoterStop A Boolean, “FALSE” by default to keep on searching neighboring genes using the parameter
“search_radius”. Otherwise, runseq2gene stops searching for neighboring genes. This parameter has
function only if an input genomic region map to promoter of coding gene(s).

NearestTwoDirection A boolean, “TRUE” by default to output the closest left and closest right coding genes
with directions. Otherwise, output only the nearest coding gene regardless of direction.
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UTR3 A boolean, “FALSE” by default to calculate the distance from genes’ 5UTR. Otherwsie, calculate the
distance from genes’ 3UTR.

4.1.3 runseq2gene outputs

The function runseq2gene outputs a matrix structured below.

Columns 1-4 The same as the first four columns in the input file.

Columns 5 PeakLength An integer gives the length of the input genomic region. It is the number of base pairs
between the start and end of the region.

Columns 6 PeakMtoStart_Overlap An integer gives the distance from the TSS of mapped gene to the middle
of the genomic region. A negative signal only shows TSS of the mapped gene is at the right of the
peak (Figure 5 A-B). Otherwise, PeakMtoStart_Overlap reports a numeric range showing the location of
overlapped coordinates (Figure 5 C).

Figure 5: The calculation of output PeakMtoStart_Overlap. Scenarios could be an intergenic region of interest
resides at the upstream (A) or downstream (B) of a coding gene, or a genomic region overlaps with intron or
exon of a coding gene (C).

Columns 7 type A character specifies the relationship between the genomic region and the mapped gene
(Figure 6)

“Exon” any part of a genomic region overlaps the exon region of the mapped gene;

“Intron” any part of a genomic region overlaps an intron region but not at exon region of the mapped
gene;

“cds” any part of a genomic region overlaps the CDS region;

“utr” any part of a genomic region overlaps a UTR region;

“promoter” any part of a genomic region overlaps the promoter region of the mapped gene based on an
intergenic region of mapped gene covers the input genomic region;

“promoter_internal” any part of a genomic region overlaps the promoter region of the mapped gene
when an adjacent TTS region of mapped gene covers the input genomic region;

“Neareast” the mapped gene is the nearest gene if the genomic region is located in an intergenic region.
“L” and “R” show the relative location of mapped genes;

“Neighbor” any mapped genes within the search radius but belongs to none of the prior types.
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Figure 6: Six output type values in several scenarios. In each scenario, we map the genomic region of
interest in green to the following types of a coding gene: exon (1), intron (2), the nearest (3), promoter (4),
Nearest_L and Nearest_R (5), or Promoter_R (6).

Columns 8 BidirectionalRegion A Boolean indicates whether or not the input genomic region is in bidirec-
tional region (Figure 7).
A “bidirectional gene pair” refers to two adjacent genes coded on opposite strands, with their 5’ UTRs
oriented toward one another. NA means the genomic region is at exon or intron region.
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Figure 7: The definition of output BidirectionalRegion in several scenarios. (1) Two adjacent genes code
on opposite strands, with their 5’ ends oriented toward one another: Bidirectional region=TRUE. (2) Both two
adjacent genes code on reverse strands: Bidirectional region=FALSE. (3) Both two adjacent genes code on
forward strands: Bidirectional region=FALSE. (4) Two adjacent genes code on opposite strands, with their 3’
ends oriented toward one another: Bidirectional region=FALSE.

Columns 9 Chr An integer gives chromosome number of mapped gene.

Columns 10 TSS An integer indicates transcription start site of mapped gene regardless of strand.

Columns 11 TTS An integer indicates transcription termination site of mapped gene regardless of strand.

Columns 12 strand a character indicates whether gene is in forward (+) or reverse (-) direction on chromo-
some.

Columns 13 gene_name A character gives official gene name of mapped genes.

Columns 14 source a character gives gene source (Ensembl classification) of mapped genes.

Columns 15 transID A character gives Ensemble transcript ID of mapped genes.

4.2 gene2pathway
The gene2pathway step integrates several featured GSA (geneset analysis) algorithms, characterized by the
improved FAIME method (Functional Analysis of Individual Microarray/RNAseq Expression)[3][19]. We initially
developed FAIME for transcriptomic analysis, which compares the cumulative quantitative effects of genes inside
an ontology (set of functional related genes) with those outside thus overcoming a number of difficulties in prior
GSA methods[3]. However, sensitivity of the FAIME algorithm remains a challenge as, at a significance level
of false discovery rate (FDR) of 0.05, FAIME could identify hundreds of gene-sets, an impractical number for
wet-lab validation. Therefore, we introduce in this package a new weighting parameter into the FAIME algorithm
to better control the type-I error, especially for large gene-sets. Additionally, we recently used gene2pathway to
integrate microarray and RNA-seq data for gene-set analysis (manuscript submitted).
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Here we develop the function gene2path_test as an improved tool for functionally analyzing versatile next gen-
eration sequencing data by taking account of quantitative sequence measurements. This function implements
the improved FAIME algorithm. This function can run the classical Fisher’s exact test or novel gene2pathway
tests.

4.2.1 gene2pathway flowchart

Figure 8 gives the flowchart for the gene2pathway process. Hereafter we use “pathway” to refer functional
gene-sets for simplification.

Figure 8: gene2pathway flowchart.

4.2.2 gene2pathway_test inputs/parameters

dat A data frame of gene expression or a matrix of sequencing derived gene-level measurements. The rows
of dat correspond to genes, and the columns correspond to sample profile (eg. Chip-seq peak scores,
somatic mutation p-values, RNS-seq or microarray gene expression values).
Note that official gene symbols must label the dat rows. The values contained in dat should be either finite
or NA. For example:

Peak.Score
ARHGEF10 65.21356
ARHGAP31 50.42416
B4GALT4 50.42416

DataBase A character string assigns an R GSA.genesets object to define gene-set. User can call GSA.read.gmt
function in R GSA package to load customized gene-sets with a .gmt format. If not specified, GO defined
gene sets (BP, MF, CC) will be used. For example,

> data(MsigDB_C5,package="seq2pathway.data")
> class(MsigDB_C5)
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[1] "GSA.genesets"

FisherTest A Boolean value. By default is TRUE to execute the function of the Fisher’s exact test. Otherwise,
only executes the function of gene2pathway test.

EmpiricalTest A Boolean value. By default is FALSE for multiple-sample dat. When true, gene2pathway_test
calculates empirical p-values for gene-sets.

method A character string determines which method to calculate the pathway scores. Currently, “FAIME” (de-
fault), “KS-rank”, and “cumulative-rank” are supported.

genome A character specifies the genome type. Currently, choice of “hg38”, “hg19”, “mm10”, and “mm9” is
supported.

alpha A positive integer, 5 by default. This is a FAIME-specific parameter. A higher value puts more weights on
the most highly-expressed ranks than the lower expressed ranks[3] [15].

logCheck A Boolean value. By default is FALSE. When true, take the log-transformed values of all genes if the
maximum value of sample profile is larger than 20.

na.rm A Boolean value indicates whether to keep missing values or not when method=“FAIME”. By default is
FALSE.

B A positive integer assigns the total number of random sampling trials to calculate the empirical p values. By
default is 100.

min_Intersect_Count A number decides the cutoff of the minimum number of intersected genes when reporting
Fisher’s exact tested results.

4.2.3 gene2pathway_test outputs

A list or data frame. If the parameter FisherTest is true, the result is a list including both reports for Fisher’s exact
test and the gene2pathway test. Otherwise, only reports the gen2pathway test results. For example, below Table
4.2.3 is the head of result of gene2pathway test.
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Des TCGA TCGA TCGA TCGA TCGA Intersect Intersect

28412 28402 28432 28422 28452 Count gene

pathscore pathscore pathscore pathscore pathscore

Normalized Normalized Normalized Normalized Normalized

NUCLEOPLASM http://www.broadinstitute.
org/gsea/msigdb/cards
/NUCLEOPLASM

0.3800166 0.7017463 0.60702357 0.72972712 0.8866237 37 ACTB ACTL6A ACTL6B APPL1 APPL2 APTX ARID1A ARID1B
ARID4A ARNTL ASF1A ASH2L ATF6 ATXN1 ATXN3 BNIP3
C19ORF2 C1ORF124 CBX1 CCNO CD3EAP CDK8 CDK9
CDKN2A CDKN2AIP CHAF1A CHAF1B CHEK2 CIB1 CIR1
CLOCK COIL CPSF1 CPSF3 CPSF3L CPSF6 DKC1

ORGANELLE_PART http://www.broadinstitute.
org/gsea/msigdb/cards
/ORGANELLE_PART

0.7516177 0.8067336 0.82731623 0.86229571 0.8968370 272 A1CF AAAS AADAC ABCA2 ABCB6 ABCB7 ABCB8 ABCC4
ABCD3 ABCF2 ABL1 ACADM ACD ACN9 ACR ACTA1 ACTB
ACTC1 ACTL6A ACTL6B ACTN2 ACTN3 ACTR1A ACTR1B
ACTR2 ACTR3 ADAM10 ADAP2 AFTPH AGFG1 AIFM2 AIFM3
AKAP9 ALAS2 ALDH4A1 ALG3 ALMS1 ALS2 AMFR AMOT
ANAPC11 ANAPC4 ANAPC5 ANG ANKFY1 ANLN AP1G2
AP1S1 AP2S1 AP3B2 AP4B1 AP4M1 APC API5 APOBEC3F
APOBEC3G APPBP2 APPL1 APPL2 APTX ARCN1 ARFGEF2
ARFIP1 ARHGEF2 ARID1A ARID1B ARID4A ARL8A ARL8B
ARNTL ARPC1B ARPC2 ARPC3 ARPC4 ARPC5 ASF1A ASH2L
ASNA1 ASPH ATF6 ATG4A ATG4B ATG4C ATG4D ATP2C1
ATP5A1 ATP5B ATP5C1 ATP5D ATP5E ATP5F1 ATP5G1
ATP5G2 ATP5G3 ATP5J ATP5O ATP6V1B1 ATP7A ATP7B ATRX
ATXN1 ATXN2 ATXN3 AURKA AURKC AZI1 B3GALT6 B4GALT1
BARD1 BAX BBS4 BCAS2 BCKDHA BCKDHB BCKDK BCL2
BCL6 BCS1L BET1 BFSP2 BIRC5 BMF BNIP1 BNIP2 BNIP3
BNIP3L BRCA1 BRCA2 BRCC3 BRE BSCL2 BUB1 BUB1B
BUB3 C15ORF29 C19ORF2 C1ORF124 CABP1 CACNA1C
CALR CAPG CAPZA1 CAPZA2 CAPZB CASP7 CASQ1 CAV1
CBX1 CBX5 CBY1 CCNH CCNO CCNT1 CD2AP CD3EAP
CD63 CDC16 CDC20 CDC23 CDC26 CDC27 CDC40 CDCA5
CDK1 CDK5RAP2 CDK8 CDK9 CDKN2A CDKN2AIP CDT1
CENPA CENPC1 CENPE CENPF CEP250 CEP290 CEP57
CEP63 CETN1 CETN3 CHAF1A CHAF1B CHEK1 CHEK2
CHMP1A CHST2 CHST4 CIB1 CIR1 CIRH1A CKAP5 CLASP1
CLASP2 CLCN3 CLIP1 CLIP2 CLN3 CLN5 CLN6 CLOCK
CNTROB COG1 COG2 COG3 COG4 COG5 COG6 COG7
COG8 COIL COPA COPB1 COPB2 COPE COPG COPG2
COPS2 COPZ1 CORO1A COX15 COX18 COX6B2 CPSF1
CPSF3 CPSF3L CPSF6 CROCC CS CSPG5 CTAG2 CTD-
NEP1 CTNS CUZD1 CWC22 CYCS CYLC1 DAD1 DBT DCTN1
DCTN2 DCTN3 DCTN4 DCX DDOST DDX11 DDX19B DDX21
DDX23 DDX24 DDX47 DDX54 DDX56 DEDD DEDD2 DERL1
DERL2 DERL3 DHCR7 DHRS9 DHX15 DHX8 DKC1 DL-
GAP5 DMBT1 DMC1 DNAH9 DNAI2 DNAJA3 DNAJB9 DNALI1
DNM1L DNMT3A

CELL_PROJECTION
_PART

http://www.broadinstitute.
org/gsea/msigdb/cards
/CELL_PROJECTION_PART

-1.0863671 -1.1430708 -0.89560385 -0.76891405 -0.9987234 9 ACTN2 ATP6V0A4 B4GALT1 CABP4 CDK5R1 CROCC DNAH9
DNAI2 DNALI1

CYTOPLASMIC
_VESI-
CLE_MEMBRANE

http://www.broadinstitute.
org/gsea/msigdb/cards
/CYTOPLASMIC _VESI-
CLE_MEMBRANE

1.5531183 1.5750084 1.51152263 1.79550412 0.2484891 15 ABCC4 AFTPH AP1G2 AP1S1 AP2S1 ARCN1 COPA COPB1
COPB2 COPE COPG COPG2 COPZ1 CSPG5 CUZD1 DMBT1

GOLGI_MEMBRANE http://www.broadinstitute.
org/gsea/msigdb/cards
/GOLGI_MEMBRANE

0.1813367 0.1063748 0.03454226 0.29232424 0.2617705 8 AFTPH AP1G2 AP1S1 ARFGEF2 ARFIP1 ATP2C1 ATP7A BET1
BNIP3 CAV1 CLN3 COG2 COPB1 COX18 CSPG5

Table 2: result of gene2pathway

5 Examples

The most critical issue in functionally interpreting genomic loci is to bridge non-coding regions with gene func-
tion. Seq2pathway offers the capability to discover pathway enrichment caused by long-distance cis-regulation
of functional non-coding loci. Here we demonstrate the application on ChIP-seq and RNA-seq data analysis
respectively. For ChIP-seq data, we demonstrate a use of runseq2gene and gene2pathway_test in series.
To facilitate the comparison with conventional Fisher’s exact test, we demonstrated the use of two additional
functions below.

“FisherTest_GO_BP_MF_CC” The GO enrichment analysis for coding genes using Fisher’s exact test.

“FisherTest_MsigDB” The MSigDB[4] defined functional gene-set enrichment analysis for coding genes using
the Fisher’s exact test.

5.1 ChIP-seq data analysis

5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene

runseq2gene() is one of the key functions in the seq2pathway package. The runseq2gene links sequence-
level measurements of genomic regions (including ChIP-seq peaks, SNPs or point mutation coordinates) to
gene-level scores. The function has the option to assign non-exon regions to a broader range of neighboring
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genes than the nearest one, thus facilitating the study of functional non-coding elements. Currently, Seq2pathway
only works in Linux or windows with python3.8 environment, as it has wrapped python scripts to annotate loci to
genes.
To execute runseq2gene, we need to assign input file. An example of inputfile, Chipseq_Peak_demo, is included
in the package.

> data(Chipseq_Peak_demo)
> head(Chipseq_Peak_demo)

peakID chrom start end signalvalue
1 Peak_59951 chr14 19003706 19004370 6.611026
2 Peak_59952 chr14 19003800 19024138 3.450042
3 Peak_59953 chr14 19005068 19005305 10.997456
4 Peak_59954 chr14 19006372 19006587 21.055350
5 Peak_59955 chr14 19013301 19013534 8.242503

Then user can run demo data below:

> Chipseq_anno <- runseq2gene(
+ inputfile=Chipseq_Peak_demo,
+ genome="hg19", adjacent=FALSE, SNP=FALSE, search_radius=1000,
+ PromoterStop=FALSE,NearestTwoDirection=TRUE)

[1] "system python outdated, checking directly"
[1] "python3 found: /usr/bin/python3"
[1] "python process start: 2026-01-13 20:07:05.495278"
[2] "Load Reference"
[3] "Check Reference files"
[4] "fixed reference done: 2026-01-13 20:07:30.982746"
[5] "Start Annotation"
[6] "Finish Annotation"
[7] "python process end: 2026-01-13 20:07:30.984312"

> class(Chipseq_anno)

[1] "list"

> head(Chipseq_anno[[1]])

peakID chrom start end PeakLength peakMtoStart_Overlap type
1 Peak_59951 chr14 19003706 19004370 664 373484.0 Nearest
2 Peak_59952 chr14 19003800 19024138 20338 363553.0 Nearest
3 Peak_59953 chr14 19005068 19005305 237 372335.5 Nearest
4 Peak_59954 chr14 19006372 19006587 215 371042.5 Nearest
5 Peak_59955 chr14 19013301 19013534 233 364104.5 Nearest

BidirenctionalRegion Chr TSS TTS strand gene_name source
1 N chr14 19377522 19378606 + OR11H12 protein_coding
2 N chr14 19377522 19378606 + OR11H12 protein_coding
3 N chr14 19377522 19378606 + OR11H12 protein_coding
4 N chr14 19377522 19378606 + OR11H12 protein_coding
5 N chr14 19377522 19378606 + OR11H12 protein_coding

transID
1 ENSG00000257115.1
2 ENSG00000257115.1
3 ENSG00000257115.1
4 ENSG00000257115.1
5 ENSG00000257115.1
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5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores

After mapping peaks to genes, we will practice gene2pathway_test function. This function summarizes gene
scores to pathway-scores for each sample. The function gene2pathway_test includes rungene2pathway
function, which summarizes gene scores to pathway-scores for each sample, and is another main function in our
package. The rungene2pathway function provides different methods (“FAIME”, “KS-rank”, and “cumulative-
rank”) to convert gene-level measurements to pathway-level scores. The function gene2pathway_test also
includes FisherTest function to perform conventional Fisher’s exact test (FET). The FisherTest function
uses the corrected, common gene background for selected pathways. Hereafter we use “pathway” to refer func-
tional gene-sets including GO for simplification. Following are R exampling codes.

#Example1:
Running FAIME and FET against MSigDB defined gene-sets with empirical p-values

> ## give the previously defined gene-sets
> data(MsigDB_C5,package="seq2pathway.data")
> class(MsigDB_C5)

[1] "GSA.genesets"

> ## load the gene-level measurements, here is an example of ChIP-seq scores
> data(dat_chip)
> head(dat_chip)

peakscore
ABCD4 8.433123
ABHD12B 9.526305
ABHD4 9.988747
AC004817.1 10.086676
AC005477.1 10.086676
AC007375.1 10.186544

> result_FAIME<-gene2pathway_test(dat= dat_chip, DataBase= MsigDB_C5,
FisherTest=TRUE, EmpiricalTest=FALSE, method="FAIME",
alpha=5, logCheckALSE, na.rm=FALSE)

The output will be a list, which include two data frame. One data set is the result of Fisher’s exact test, with
the geneset from MSigDB[4], the other is the result of rungene2pathway function with method “FAIME”. We
calculated empirical p-values for a single sample.

#Example2:
Running FAIME and FET against GO defined gene-sets with empirical p-values. For a true test, B must be at least 100. For demo purposes, we set B = 2.

> result_FAIME<-gene2pathway_test(dat= dat_chip,
FisherTest=TRUE, EmpiricalTest=TRUE, method="FAIME",
alpha=5, logCheck=FALSE, na.rm=FALSE, B=2)

In our package, there is an R resultant object dat_gene2path_chip as demo of result_FAIME.

> data(dat_gene2path_chip,package="seq2pathway.data")
> names(dat_gene2path_chip)

[1] "gene2pathway_result.2" "gene2pathway_result.FET"

> class(dat_gene2path_chip$gene2pathway_result.2)
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[1] "list"

> names(dat_gene2path_chip$gene2pathway_result.2)

[1] "GO_BP" "GO_CC" "GO_MF"

> dat_gene2path_chip$gene2pathway_result.2$GO_BP[1:3,]

Des
GO:0000082 The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
GO:0000086 The mitotic cell cycle transition by which a cell in G2 commits to M phase. The process begins when the kinase activity of M cyclin/CDK complex reaches a threshold high enough for the cell cycle to proceed. This is accomplished by activating a positive feedback loop that results in the accumulation of unphosphorylated and active M cyclin/CDK complex.
GO:0000122 Any process that stops, prevents, or reduces the frequency, rate or extent of transcription from an RNA polymerase II promoter.

peakscore2pathscore_Normalized peakscore2pathscore_Pvalue
GO:0000082 0.3201774 0.12
GO:0000086 -0.3358601 0.49
GO:0000122 -0.1153585 0.16

Intersect_Count
GO:0000082 11
GO:0000086 5
GO:0000122 20

Intersect_gene
GO:0000082 CDKN3 GPR132 MNAT1 POLE2 PSMA3 PSMA6 PSMB5 PSMC1 PSMC6 PSME1 PSME2
GO:0000086 AJUBA DYNC1H1 HSP90AA1 LIN52 MNAT1
GO:0000122 AJUBA BMP4 DACT1 DICER1 ESR2 FOXA1 GSC JDP2 NKX2-1 PPM1A PRMT5 PSEN1 RCOR1 SALL2 SIX1 SNW1 STRN3 YY1 ZBTB1 ZBTB42

> class(dat_gene2path_chip$gene2pathway_result.FET)

[1] "list"

> names(dat_gene2path_chip$gene2pathway_result.FET)

[1] "GO_BP" "GO_CC" "GO_MF"

> colnames(dat_gene2path_chip$gene2pathway_result.FET$GO_BP)

[1] "GOID" "Description" "Fisher_Pvalue"
[4] "Fisher_odds" "FDR" "Intersect_Count"
[7] "GO_gene_inBackground" "GO_gene_raw_Count" "Intersect_gene"

> dat_gene2path_chip$gene2pathway_result.FET$GO_BP[1:3,-2]

GOID Fisher_Pvalue Fisher_odds FDR Intersect_Count
1 GO:0030162 0.0000001173994 11.80262 0.00001361833 10
2 GO:0090501 0.0000136148154 15.12201 0.00078965929 6
3 GO:0006521 0.0001252247923 6.11356 0.00338658460 8

GO_gene_inBackground GO_gene_raw_Count
1 38 39
2 19 19
3 51 51

Intersect_gene
1 SERPINA3 SERPINA6 SERPINA5 SERPINA1 SERPINA4 TRAF3 SERPINA10 SERPINA12 SERPINA11 SERPINA9
2 ANG RNASE2 RNASE3 RNASE6 DICER1 RNASE7
3 PSMA3 PSMA6 PSMB5 PSMC1 PSMC6 PSME1 PSME2 PSMB11

#Example 3:
Running FAIME and FET against GO defined gene-sets without empirical p-values
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> result_FAIME<-gene2pathway_test(dat= dat_chip, FisherTest=TRUE, EmpiricalTest=FALSE,
method="FAIME", alpha=5, logCheck=FALSE, na.rm=FALSE)

#Example 4:
Running FAIME only against GO defined gene-sets with empirical p-values. For a true test, B must be at least 100. For demo purposes, we set B = 2.

> result_FAIME<-gene2pathway_test(dat= dat_chip, FisherTest=FALSE,EmpiricalTest=TRUE,
method="FAIME", alpha=5, logCheck=FALSE, na.rm=FALSE, B=2)

5.1.3 Discover enriched GO terms using Fisher’s Exact test without gene scores

There are two functions to run FET in the package seq2pathway. Both perform conditional FET with modi-
fied gene background that is the common genes between genome and the gene-set database, e.g., MSigDB
(Figure 9)[2]. The FisherTest_GO_BP_MF_CC function uses GO (GO.db_2.14.0) defined gene-sets, and the
FisherTest_MsigDB function requires MsidDB defined gene-sets as input.

Figure 9: Conditional Fisher’s exact test with corrected common background. The common background
between genome and the gene-set database, e.g., MSigDB, is illustrated as a grey region, which contains around
22,000 human coding genes or 15,546 mouse coding genes.

FisherTest_MsigDB function:

• Inputs/parameters:

gsmap An R GSA.genesets object defined by the package “GSA” for functional gene-set (or termed as
pathway for simplification). For example,

> data(MsigDB_C5,package="seq2pathway.data")
> class(MsigDB_C5)

[1] "GSA.genesets"

gs A characteristic vector of gene symbols of interest.
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genome A character specifies the genome type. Currently, choice of “hg38”, “hg19”, “mm10”, and “mm9”
is supported.

min_Intersect_Count A number decides the cutoff of the minimum number of intersected genes when
reporting Fisher’s exact tested results.

• Output:
A data frame of Fisher’s exact tested result with the following columns:

GeneSet MsigDB gene-set names (ID)

Description MSigDB definition and description for the gene-sets

Fisher_Pvalue the raw P values

Fisher_odds estimate of the odds ratios

FDR the multi-test adjusted P values using the Benjamini and Hochberg method[16]

Intersect_Count the sizes of the overlap between gene-set genes and the input gene list

MsigDB_gene_inBackground the counts of genes among each MSigDB gene-set that are also within
the given genome background

MsigDB_gene_raw_Count the original counts of genes in each MSigDB geneset

Intersect_gene the intersecting genes’ symbols

• An example:

> data(dat_chip)
> head(dat_chip)

peakscore
ABCD4 8.433123
ABHD12B 9.526305
ABHD4 9.988747
AC004817.1 10.086676
AC005477.1 10.086676
AC007375.1 10.186544

> FS_test<-FisherTest_MsigDB(gsmap=MsigDB_C5, gs=as.vector(rownames(dat_chip)))
> head(FS_test)

GeneSet Description Fisher Fisher FDR Intersect MsigDB MsigDB Intersect

_Pvalue _odds _Count _gene _gene _gene

_inBackground _raw

_Count

RIBONUCLEASE_ACTIVITY http://www.broadinstitute.
org/gsea/msigdb/
cards/RIBONUCLEASE_ACTIVITY

1.881465e-08 19.268873 3.988705e-06 9 25 25 DICER1 ANG RNASE7 RNASE8
APEX1 RNASE1 RNASE2 RNASE3
RNASE6

NUCLEASE_ACTIVITY http://www.broadinstitute.
org/gsea/msigdb/
cards/NUCLEASE_ACTIVITY

2.713796e-05 6.682127 2.876623e-03 9 55 55 DICER1 ANG RNASE7 RNASE8
APEX1 RNASE1 RNASE2 RNASE3
RNASE6

ENDONUCLEASE_ACTIVITY http://www.broadinstitute.
org/gsea/msigdb/
cards/ENDONUCLEASE_ACTIVITY

6.848601e-04 8.419752 4.839678e-02 5 25 25 DICER1 ANG RNASE8 APEX1
RNASE1

TRANSCRIPTION
_COACTIVA-
TOR_ACTIVITY

http://www.broadinstitute.
org/gsea/msigdb/
cards/TRANSCRIPTION_COACTIVATOR_
ACTIVITY

3.226841e-03 3.010833 1.710226e-01 10 123 123 YY1 RIPK3 SNW1 MAX GTF2A1
ESR2 MED6 NFATC4 TRIP11 APEX1

SEXUAL_REPRODUCTION http://www.broadinstitute.
org/gsea/msigdb/
cards/SEXUAL_REPRODUCTION

2.006048e-02 2.358725 4.252823e-01 9 138 139 JAG2 REC8 PNMA1 BCL2L2 RPL10L
ADAM20 ADAM21 SERPINA5 HSPA2

ACTIN_FILAMENT
_BASED_PROCESS

http://www.broadinstitute.
org/gsea/msigdb/
cards/ACTIN_FILAMENT_BASED_PROCESS

1.866597e-02 2.548107 4.252823e-01 8 114 115 MYH7 MYH6 ARF6 EVL CDC42BPB
RHOJ ANG PLEK2
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FisherTest_GO_BP_MF_CC function:

• Inputs/parameters:

gs A characteristic vector of gene symbols, the input genelist.
Note that the seq2pathway package has prepared an internal R object
GO_MF_CC_BP_term_gene_lists_Fromorg.Hs.egGO2EG.rData, which is formatted from biomaRt_2.20.0
and org.Hs.eg.db_2.14.0 gene symbols and GO.db_2.14.0 gene ontologies.

genome A character specifies the genome type. Currently, choice of “hg38”, “hg19”, “mm10”, and “mm9”
is supported.

min_Intersect_Count A number decides the cutoff of the minimum number of intersected genes when
reporting Fisher’s exact test results.

OntologyA character specifies the Gene Ontology, choice of "GOterm", "BP","MF", "CC" and "newOntol-
ogy" is supported.

newOntologyA list of two lists with the same ontology IDs. or each ontology ID, the 1st list is the lists of
defined genes and the 2nd list is the desceiption.

• Outputs:
A list of 3 data frames, each is a result of Fisher’s exact test, using GO CC, BP, MF respectively. Each data
frame reports FET results with the following columns.

GOID GO term ID

Description GO definition and description for the gene-sets based on the R object GO.db_2.14.0

Fisher_Pvalue the raw P values

Fisher_odds estimate of the odds ratios

FDR the multi-test adjusted P values using the Benjamini and Hochberg method[16]

Intersect_Count the sizes of the overlap between GO gene members and the input gene list

GO_gene_inBackground the counts of genes among each GO term that are also within a given genome
background

GO_gene_raw_Count the original counts of genes in each GO term

Intersect_gene the intersecting genes’ symbols

• An example:

> data(dat_chip)
> head(dat_chip)

peakscore
ABCD4 8.433123
ABHD12B 9.526305
ABHD4 9.988747
AC004817.1 10.086676
AC005477.1 10.086676
AC007375.1 10.186544

> FS_test<- FisherTest_GO_BP_MF_CC(gs=as.vector(rownames(dat_chip)),Ontology="BP")
[1] "Fisher's exact test done"
> head(FS_test$GO_BP)
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GOID Description Fisher Fisher FDR Intersect GO GO Intersect

_Pvalue _odds _Count _gene _gene _gene

_inBackground _raw

_Count

GO:0030162 Any process that modulates the frequency, rate or
extent of the hydrolysis of a peptide bond or bonds
within a protein.

1.173994e-07 11.802616 1.361833e-05 10 38 39 SERPINA3 SERPINA6 SERPINA5 SERPINA1
SERPINA4 TRAF3 SERPINA10 SERPINA12 SER-
PINA11 SERPINA9

GO:0090501 The RNA metabolic process in which the phospho-
diester bonds between ribonucleotides are cleaved
by hydrolysis.

1.361482e-05 15.122011 7.896593e-04 6 19 19 ANG RNASE2 RNASE3 RNASE6 DICER1
RNASE7

GO:0006521 Any process that modulates the frequency, rate or
extent of the chemical reactions and pathways in-
volving amino acids.

1.252248e-04 6.113560 3.386585e-03 8 51 51 PSMA3 PSMA6 PSMB5 PSMC1 PSMC6 PSME1
PSME2 PSMB11

GO:0006977 A cascade of processes induced by the cell cycle
regulator phosphoprotein p53, or an equivalent pro-
tein, in response to the detection of DNA damage
and resulting in the stopping or reduction in rate of
the cell cycle.

1.459735e-04 5.195514 3.386585e-03 9 66 66 PPP2R5C PSMA3 PSMA6 PSMB5 PSMC1 PSMC6
PSME1 PSME2 PSMB11

GO:0034641 The chemical reactions and pathways involving var-
ious organic and inorganic nitrogenous compounds,
as carried out by individual cells.

1.439655e-04 3.141606 3.386585e-03 16 185 185 ARG2 CKB DIO2 DIO3 DLST GSTZ1 ALDH6A1
PSMA3 PSMA6 PSMB5 PSMC1 PSMC6 PSME1
PSME2 SLC25A21 PSMB11

GO:0010951 Any process that decreases the frequency, rate or
extent of endopeptidase activity, the endohydrolysis
of peptide bonds within proteins.

2.437280e-04 4.333480 4.712075e-03 10 86 87 SERPINA3 AKT1 SERPINA6 SERPINA5 SER-
PINA1 SERPINA4 SERPINA10 SERPINA12 SER-
PINA11 SERPINA9

5.1.4 Add description for genes

The function addDescription is wrapped from R package “biomaRt” [17][18] to converts gene hgnc_symbol to
gene description.

• Inputs/parameters:

genome A character specifies the genome type. Currently, choice “hg19”, “hg38”, “mm10”, and “mm9”
are supported.

genevector A characteristic vector or list of gene symbols.

• Output:
A data frame with two columns, first is the input genelist and second is the biomaRt gene description in
details.

• An example:

> gene_description<-addDescription(genome="hg38",genevector=as.vector(rownames(dat_chip)))
> head(gene_description)

hgnc_symbol description

ABCD4 ATP-binding cassette, sub-family D (ALD), member 4 [Source:HGNC Symbol;Acc:68 ]

ABHD12B abhydrolase domain containing 12B [Source:HGNC Symbol;Acc:19837]

ABHD4 abhydrolase domain containing 4 [Source:HGNC Symbol;Acc:20154]

ACIN1 apoptotic chromatin condensation inducer 1 [Source:HGNC Symbol;Acc:17066]

ACOT1 acyl-CoA thioesterase 1 [Source:HGNC Symbol;Acc:33128]

ACOT2 acyl-CoA thioesterase 2 [Source:HGNC Symbol;Acc:18431]

5.2 RNA-seq data analysis
RNA-seq is increasingly used for measuring gene expression levels. Normally, RNA-seq measures multi-
ple samples from more than one sample-groups. Base on expressions on the gene-level, user can run the
gene2pathway_test function and skip the runseq2gene() function.

Here is an example to run gene2pathway_test function for RNA-seq data, using an example data in the
package.
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> data(dat_RNA)
> head(dat_RNA)

TCGA_2841 TCGA_2840 TCGA_2843 TCGA_2842 TCGA_2845

A1BG 6.3606 10.2275 1.7113 1.7367 4.7184

A1BG-AS 8.7010 10.7700 2.5394 2.8203 7.8670

A1CF 0.0000 0.0000 0.0000 0.0000 0.0000

A2LD1 1.2489 1.3508 2.1397 1.9969 1.0495

A2M 0.2507 2.4767 3.3813 0.6906 1.7197

A2ML1 0.0710 0.0473 0.2541 0.0538 0.1098

Using the inputs similar to the example coding for ChIPseq data, the output of the gene2pathway_test
function running RNAseq data will be a matrix of pathway scores for multiple samples.

> dat_gene2path_RNA <- gene2pathway_test(dat=dat_RNA, DataBase=MsigDB_C5,
EmpiricalTest=FALSE, alpha=5, logCheck=FALSE, method="FAIME", na.rm=TRUE)

> head(dat_gene2path_RNA$gene2pathway_result.2)

Des TCGA TCGA TCGA TCGA TCGA Intersect Intersect

28412 28402 28432 28422 28452 Count gene

pathscore pathscore pathscore pathscore pathscore

Normalized Normalized Normalized Normalized Normalized

NUCLEOPLASM http://www.broadinstitute.
org/gsea/msigdb/cards
/NUCLEOPLASM

0.3800166 0.7017463 0.60702357 0.72972712 0.8866237 37 ACTB ACTL6A ACTL6B APPL1 APPL2 APTX ARID1A ARID1B
ARID4A ARNTL ASF1A ASH2L ATF6 ATXN1 ATXN3 BNIP3
C19ORF2 C1ORF124 CBX1 CCNO CD3EAP CDK8 CDK9
CDKN2A CDKN2AIP CHAF1A CHAF1B CHEK2 CIB1 CIR1
CLOCK COIL CPSF1 CPSF3 CPSF3L CPSF6 DKC1

ORGANELLE_PART http://www.broadinstitute.
org/gsea/msigdb/cards
/ORGANELLE_PART

0.7516177 0.8067336 0.82731623 0.86229571 0.8968370 272 A1CF AAAS AADAC ABCA2 ABCB6 ABCB7 ABCB8 ABCC4
ABCD3 ABCF2 ABL1 ACADM ACD ACN9 ACR ACTA1 ACTB
ACTC1 ACTL6A ACTL6B ACTN2 ACTN3 ACTR1A ACTR1B
ACTR2 ACTR3 ADAM10 ADAP2 AFTPH AGFG1 AIFM2 AIFM3
AKAP9 ALAS2 ALDH4A1 ALG3 ALMS1 ALS2 AMFR AMOT
ANAPC11 ANAPC4 ANAPC5 ANG ANKFY1 ANLN AP1G2
AP1S1 AP2S1 AP3B2 AP4B1 AP4M1 APC API5 APOBEC3F
APOBEC3G APPBP2 APPL1 APPL2 APTX ARCN1 ARFGEF2
ARFIP1 ARHGEF2 ARID1A ARID1B ARID4A ARL8A ARL8B
ARNTL ARPC1B ARPC2 ARPC3 ARPC4 ARPC5 ASF1A ASH2L
ASNA1 ASPH ATF6 ATG4A ATG4B ATG4C ATG4D ATP2C1
ATP5A1 ATP5B ATP5C1 ATP5D ATP5E ATP5F1 ATP5G1
ATP5G2 ATP5G3 ATP5J ATP5O ATP6V1B1 ATP7A ATP7B ATRX
ATXN1 ATXN2 ATXN3 AURKA AURKC AZI1 B3GALT6 B4GALT1
BARD1 BAX BBS4 BCAS2 BCKDHA BCKDHB BCKDK BCL2
BCL6 BCS1L BET1 BFSP2 BIRC5 BMF BNIP1 BNIP2 BNIP3
BNIP3L BRCA1 BRCA2 BRCC3 BRE BSCL2 BUB1 BUB1B
BUB3 C15ORF29 C19ORF2 C1ORF124 CABP1 CACNA1C
CALR CAPG CAPZA1 CAPZA2 CAPZB CASP7 CASQ1 CAV1
CBX1 CBX5 CBY1 CCNH CCNO CCNT1 CD2AP CD3EAP
CD63 CDC16 CDC20 CDC23 CDC26 CDC27 CDC40 CDCA5
CDK1 CDK5RAP2 CDK8 CDK9 CDKN2A CDKN2AIP CDT1
CENPA CENPC1 CENPE CENPF CEP250 CEP290 CEP57
CEP63 CETN1 CETN3 CHAF1A CHAF1B CHEK1 CHEK2
CHMP1A CHST2 CHST4 CIB1 CIR1 CIRH1A CKAP5 CLASP1
CLASP2 CLCN3 CLIP1 CLIP2 CLN3 CLN5 CLN6 CLOCK
CNTROB COG1 COG2 COG3 COG4 COG5 COG6 COG7
COG8 COIL COPA COPB1 COPB2 COPE COPG COPG2
COPS2 COPZ1 CORO1A COX15 COX18 COX6B2 CPSF1
CPSF3 CPSF3L CPSF6 CROCC CS CSPG5 CTAG2 CTD-
NEP1 CTNS CUZD1 CWC22 CYCS CYLC1 DAD1 DBT DCTN1
DCTN2 DCTN3 DCTN4 DCX DDOST DDX11 DDX19B DDX21
DDX23 DDX24 DDX47 DDX54 DDX56 DEDD DEDD2 DERL1
DERL2 DERL3 DHCR7 DHRS9 DHX15 DHX8 DKC1 DL-
GAP5 DMBT1 DMC1 DNAH9 DNAI2 DNAJA3 DNAJB9 DNALI1
DNM1L DNMT3A

CELL_PROJECTION
_PART

http://www.broadinstitute.
org/gsea/msigdb/cards
/CELL_PROJECTION_PART

-1.0863671 -1.1430708 -0.89560385 -0.76891405 -0.9987234 9 ACTN2 ATP6V0A4 B4GALT1 CABP4 CDK5R1 CROCC DNAH9
DNAI2 DNALI1

CYTOPLASMIC
_VESI-
CLE_MEMBRANE

http://www.broadinstitute.
org/gsea/msigdb/cards
/CYTOPLASMIC _VESI-
CLE_MEMBRANE

1.5531183 1.5750084 1.51152263 1.79550412 0.2484891 15 ABCC4 AFTPH AP1G2 AP1S1 AP2S1 ARCN1 COPA COPB1
COPB2 COPE COPG COPG2 COPZ1 CSPG5 CUZD1 DMBT1

GOLGI_MEMBRANE http://www.broadinstitute.
org/gsea/msigdb/cards
/GOLGI_MEMBRANE

0.1813367 0.1063748 0.03454226 0.29232424 0.2617705 8 AFTPH AP1G2 AP1S1 ARFGEF2 ARFIP1 ATP2C1 ATP7A BET1
BNIP3 CAV1 CLN3 COG2 COPB1 COX18 CSPG5

> head(dat_gene2path_RNA$gene2pathway_result.FET)
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GeneSet Description Fisher Fisher FDR Intersect MsigDB MsigDB Intersect

_Pvalue _odds _Count _gene _gene _gene

_inBackground _raw

_Count

HYDROLASE_ACTIVITY
_ACTING_ON_ACID
_ANHYDRIDESCAT-
ALYZING _TRANSMEM-
BRANE_MOVEMENT_OF
_SUBSTANCES

http://www.broadinstitute.org/gsea/
msigdb/cards/HYDROLASE _AC-
TIVITY_ACTING_ON_ACID
_ANHYDRIDESCATALYZ-
ING_TRANSMEMBRANE_MOVEMENT
_OF_SUBSTANCES

1.606744e-20 56.6790665 1.584249e-17 37 39 39 ABCF1 ABCA8 ATP6V0E1 ATP1B1
ATP1B3 ATP1B2 ATP6V1B2 ABCA3
ATP2B1 ATP6V0C ATP2B3 ATP2B4
ATP8B1 ABCD3 ABCD4 ATP4A
ABCB11 ATP4B ATP11B ATP1A3
ATP1A4 ATP1A1 ATP1A2 ABCB7
ABCG1 ABCG2 ATP6V1C1 ATP7A
ATP2A2 ATP2A3 ATP2C1 ATP2A1
ABCC3 ABCC1 ABCC2 ATP7B
ABCC6

CHEMOKINE_RECEPTOR
_BINDING

http://www.broadinstitute.org/gsea/
msigdb/cards/CHEMOKINE _RECEP-
TOR_BINDING

9.352298e-20 29.8938093 4.016531e-17 39 43 43 CXCL1 CCL1 CCL3 CCL2 CXCL5
CXCL3 CXCL2 C5 CXCL9 CCL8
CXCL6 CX3CL1 CXCL11 CCL5 CCL4
CCL28 CXCL12 CCL27 CCL7 CCL26
CXCL10 CCL24 CCL25 CCL22
CCL23 CCL20 CCL21 CKLF CCL19
CCL16 CCL15 CCL18 CCL17 CCL11
CCL13 CXCL14 CXCL13 CXCL16
CCR2

PRIMARY_ACTIVE
_TRANSMEM-
BRANE_TRANSPORTER
_ACTIVITY

http://www.broadinstitute.org/gsea/
msigdb/cards/PRIMARY_ACTIVE
_TRANSMEM-
BRANE_TRANSPORTER_ACTIVITY

1.629424e-19 37.7811394 4.016531e-17 37 40 40 ABCA8 ABCF1 ATP6V0E1 ATP1B1
ATP1B3 ATP1B2 ATP6V1B2 ABCA3
ATP2B1 ATP6V0C ATP2B3 ATP2B4
ATP8B1 ABCD3 ABCD4 ATP4A
ATP4B ABCB11 ATP11B ATP1A3
ATP1A4 ATP1A1 ATP1A2 ABCB7
ABCG1 ABCG2 ATP7A ATP6V1C1
ATP2A2 ATP2C1 ATP2A3 ATP2A1
ABCC3 ABCC1 ABCC2 ATP7B
ABCC6

ATPASE_ACTIVITY
_COUPLED_TO _MOVE-
MENT_OF_SUBSTANCES

http://www.broadinstitute.org/gsea/
msigdb/cards/ATPASE_ACTIVITY
_COUPLED_TO_MOVEMENT_OF
_SUBSTANCES

1.629424e-19 37.7811394 4.016531e-17 37 40 40 ABCA8 ABCF1 ATP1B1 ATP6V0E1
ATP1B3 ATP1B2 ATP6V1B2 ABCA3
ATP2B1 ATP6V0C ATP2B3 ATP2B4
ATP8B1 ABCD3 ABCD4 ATP4A
ABCB11 ATP4B ATP11B ATP1A3
ATP1A4 ATP1A1 ATP1A2 ABCB7
ABCG1 ABCG2 ATP7A ATP6V1C1
ATP2A2 ATP2C1 ATP2A3 ATP2A1
ABCC3 ABCC1 ABCC2 ABCC6
ATP7B

CHEMOKINE_ACTIVITY http://www.broadinstitute.org/gsea/
msigdb/cards/CHEMOKINE_ACTIVITY

3.451615e-19 29.1130402 6.806585e-17 38 42 42 CXCL1 CCL1 CCL3 CCL2 CXCL5
CXCL3 CXCL2 C5 CXCL9 CCL8
CXCL6 CX3CL1 CCL5 CXCL11
CXCL12 CCL28 CCL4 CCL27 CCL7
CXCL10 CCL26 CCL24 CCL25
CCL22 CCL23 CCL20 CCL21 CKLF
CCL19 CCL16 CCL15 CCL18 CCL17
CCL11 CCL13 CXCL14 CXCL13
CXCL16

BIOPOLYMER_METABOLIC
_PROCESS

http://www.broadinstitute.org/gsea/
msigdb/cards/BIOPOLYMER
_METABOLIC_PROCESS

1.206876e-15 0.5818938 1.983299e-13 294 1673 1684 BTK DHX38 BRAF ARIH1 DHX8
CELF1 ATR C19ORF2 ATM
CDC42BPG CDC42BPA CDC42BPB
CWC15 AUH BRD7 BRD8 ATF7IP
BRF1 AIFM1 ARHGEF11 DHX15
DHX16 ATRX CSNK1D CSNK1E
CDKN2A CDKN2D ATG7 BCL10
CSDA BICD1 CCL2 CXXC1 AIMP1
ATG3 ATF6 ATF5 ATF4 ATF7 ADRA1D
DDB1 DDB2 DMC1 BRSK2 BRSK1
CEBPZ DCLK1 CEBPA CEBPB
CEBPD CEBPG CBL BAX ALKBH1
DDX17 ANAPC2 BCR ANAPC5
ANAPC4 CD37 CAMK4 CAMK1
AMFR DEAF1 ACD CIDEA CCNO
CTBP1 CCNK CCNH APTX CDK16
CDK17 AGA CSNK1A1 COG3 COG7
COG2 APOBEC3G APOBEC3F
ATOH1 CSNK1G2 AHR CSNK1G3
CSTA BLM BMX BRCA2 BRCA1
DGCR8 ANG ALX1 ALK CD3EAP
CD80 CD81 CDK11A CDK11B
CAMK2B CAMK2A ATXN3 BMPR1B
BMPR1A CRNKL1 CDC6 CCND1
CCND3 CCND2 CLOCK CREM
CDC45 CCL11 B3GALNT1 ARID1A
DDIT3 ACHE CNBP CCRN4L
B4GALT7 ARID4A ALG1 ALG2
ALG5 ALG6 DEK ALG8 CLCF1
ARID5B ARID5A CDK9 CDK7 CDK2
CHRM3 CHRM1 APH1A ADAMTS13
APH1B A4GNT DBP CDX2 B3GALT5
B3GALT4 COL4A3BP CSGALN-
ACT1 AGGF1 BMP4 BMP2 AD-
PRH BMP6 ADAR CCNT2 COPS2
COPS5 CCNT1 DMAP1 CAMKK2
CDT1 ASH2L ADAM10 CTNNBIP1
ASH1L CHM BCAS2 CIR1 CRABP2
DMPK DARS ARNTL DERL2 DERL1
ANAPC10 ANAPC11 CSTF3 CSTF2
AKTIP CSTF1 AKT1 CSK AKT3 AKT2
DAPK2 DAPK3 DAPK1 B3GALT2
DIS3 CRK BACE2 CPSF3L CRTC1
BNIP3 CUZD1 DAXX CARD14 ABI3
ABI2 ABI1 ARAF DBF4 CSNK2A1
CIB1 DFFA DFFB ABCA2 ASF1A
BRIP1 DNASE2 ABL1 ABL2 DKC1
CYCS AGER CHIA AURKC AU-
RKA CDK12 ABT1 AFAP1L2 CALR
BCOR ALG12 ACVRL1 ART1 ART3
CTDP1 ATG12 BCL6 DNMT1 DBR1
CHUK CHST4 CHST5 CHST1 BPTF
CHST7 CUX1 CITED1 CITED2
DNMT3B ARHGEF10L DNMT3A
CREG1 BATF3 CSGALNACT2 CIAO1
CAND1 BTRC CBFB DDX23 CPA2
DDX20 CECR2 AIPL1 DDX54 CTCF
CDK2AP1 CPSF6 CPSF3 CARM1
CPSF1 ACVR1 ADAT1 CHD2 CHD1
CHD4 CHD3 ANXA1 CREB5 AARS
CD40LG CHEK1 CDC40 CREBBP
CDC23 CDC20 CBLC BLZF1 ABCE1
CHMP1A AFF4 CDKL3 CDKL5
ADRM1 CDKL1 CHIT1 B3GNT8
B3GNT5 BTF3 BUD31 ACVR1B
CCDC88A CCDC88C BTG2 APEX1
CBY1
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6 R environment session
> require(seq2pathway)

> sessionInfo();

R Under development (unstable) (2025-12-22 r89219)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] seq2pathway_1.43.0 seq2pathway.data_1.43.0

loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 WGCNA_1.73 dplyr_1.1.4
[4] farver_2.1.2 blob_1.2.4 filelock_1.0.3
[7] Biostrings_2.79.4 S7_0.2.1 fastmap_1.2.0

[10] BiocFileCache_3.1.0 digest_0.6.39 rpart_4.1.24
[13] lifecycle_1.0.5 cluster_2.1.8.1 survival_3.8-3
[16] KEGGREST_1.51.1 RSQLite_2.4.5 magrittr_2.0.4
[19] compiler_4.6.0 progress_1.2.3 rlang_1.1.7
[22] Hmisc_5.2-5 tools_4.6.0 data.table_1.18.0
[25] knitr_1.51 prettyunits_1.2.0 htmlwidgets_1.6.4
[28] curl_7.0.0 bit_4.6.0 RColorBrewer_1.1-3
[31] foreign_0.8-90 BiocGenerics_0.57.0 nnet_7.3-20
[34] dynamicTreeCut_1.63-1 grid_4.6.0 stats4_4.6.0
[37] preprocessCore_1.73.0 colorspace_2.1-2 fastcluster_1.3.0
[40] GO.db_3.22.0 ggplot2_4.0.1 scales_1.4.0
[43] iterators_1.0.14 dichromat_2.0-0.1 biomaRt_2.67.1
[46] cli_3.6.5 rmarkdown_2.30 crayon_1.5.3
[49] generics_0.1.4 otel_0.2.0 rstudioapi_0.17.1
[52] httr_1.4.7 DBI_1.2.3 cachem_1.1.0
[55] stringr_1.6.0 splines_4.6.0 parallel_4.6.0
[58] AnnotationDbi_1.73.0 impute_1.85.0 XVector_0.51.0
[61] matrixStats_1.5.0 base64enc_0.1-3 vctrs_0.6.5
[64] Matrix_1.7-4 hms_1.1.4 IRanges_2.45.0
[67] S4Vectors_0.49.0 bit64_4.6.0-1 Formula_1.2-5
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[70] htmlTable_2.4.3 foreach_1.5.2 glue_1.8.0
[73] GSA_1.03.3 codetools_0.2-20 stringi_1.8.7
[76] gtable_0.3.6 GenomicRanges_1.63.1 tibble_3.3.1
[79] pillar_1.11.1 rappdirs_0.3.3 htmltools_0.5.9
[82] Seqinfo_1.1.0 httr2_1.2.2 dbplyr_2.5.1
[85] R6_2.6.1 doParallel_1.0.17 evaluate_1.0.5
[88] lattice_0.22-7 Biobase_2.71.0 png_0.1-8
[91] backports_1.5.0 memoise_2.0.1 Rcpp_1.1.1
[94] gridExtra_2.3 checkmate_2.3.3 xfun_0.55
[97] pkgconfig_2.0.3
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