Contents

library(BCalm)
library(dplyr)
library(ggplot2)
library(kableExtra) # for visually appealing tables

1 Introduction

The BCalm package provides a framework for analyzing data from Massively Parallel Reporter Assays (MPRA) and is built on top of the mpra package. BCalm adapts the existing mpralm method but enhances it by modeling individual barcode counts rather than aggregating counts per sequence. Furthermore, the package includes a set of pre-processing functions and plotting capabilities, facilitating the visualization and interpretation of results. BCalm is more robust to outlier MPRA counts. Variant and element analysis are both shown below together with a significance test of elements against a control group (e.g. negative controls).

1.1 Citing BCalm

The BCalm package is still unpublished, citing details will be provided later. When using BCalm, please cite the mpra package (Myint et al. 2019) and the limma-voom framework (Law et al. 2014).

1.2 Additional information for the installation

The package is currently available on GitHub and can be installed using remotes (Csárdi et al. 2024) or devtools (Wickham et al. 2022). The package requires R >= 3.5, <= 4.4.0. If you have any trouble with the provided package feel free to let us know by creating an issue directly in the BCalm GitHub repository. To display the vignette correctly, the kableExtra and ggplot2 packages are required.

2 Preprocessing data

The first dataframe contains as small subset of a lentiMPRA dataset performed within HepG2 cells with three technical replicates (IGVF accession identifier: IGVFSM9009DVDG). Sequences tested in this experiment aim to capture variant effects across tens of thousands of candidate cis-regulatory element (cCRE) sequences of 200 base pair (bp) length. The input files used here were obtained from MPRAsnakeflow, a Snakemake workflow produced as part of the Impact of Genomic Variation on Function (IGVF) Consortium. MPRAsnakeflow is a comprehensive pipeline which performs both the assignment of barcodes to the designed oligos and the preparation of count tables of DNA and RNA counts based on the observed number of barcodes within the targeted DNA and RNA sequencing (modified from (Gordon et al. 2020)).

data("BcSetExample")
nr_reps = 3
# show the data
kable(head(BcSetExample), "html") %>% kable_styling("striped") %>% scroll_box(width = "100%")
Barcode name dna_count_1 rna_count_1 dna_count_2 rna_count_2 dna_count_3 rna_count_3
AAAAAAAAAAGCTGC oligo_006364 11 10 8 6 1 3
AAAAAAAAATCACAG oligo_005641 8 7 1 2 1 29
AAAAAAAAATTGAGC oligo_005719 2 25 2 88 1 30
AAAAAAAAATTGTAT oligo_005725 4 12 4 2 2 6
AAAAAAAACACATGA oligo_005412 21 15 5 12 11 51
AAAAAAAACATAGTT oligo_006471 8 3 3 5 7 3

In general, any sequence can be tested using an MPRA. Possible analyses can be differentiated by whether they compare the activity of different conditions of the same region, such as variant testing, or whether they compare the activities of different regions. For element testing, the tested sequences in this vignette are compared to a group of negative control sequences (known to have low activity in HepG2) and the sequences to be tested. We show the usage of BCalm on a variant dataset as well as an element dataset in this vignette. First, we show how to correctly preprocess the data.

2.1 Variant testing

To prepare data for variant testing, we use the create_var_df function from BCalm. This function requires a mapping dataframe with information linking each reference allele to its corresponding alternative allele. Here, we use MapExample, a dataframe containing three essential columns: ID, REF, and ALT. This setup provides the necessary reference and alternative allele data to enable variant analysis.

# load the variant map
data("MapExample")
# show the data
kable(head(MapExample), "html") %>% kable_styling("striped") %>% scroll_box(width = "100%")
ID REF ALT
variant_1 oligo_005868 oligo_005870
variant_2 oligo_005299 oligo_005300
variant_3 oligo_006685 oligo_006687
variant_4 oligo_006919 oligo_006920
variant_5 oligo_006895 oligo_006897
variant_6 oligo_006675 oligo_006677
# create the variant dataframe by adding the variant ID to the DNA and RNA counts
var_df <- create_var_df(BcSetExample, MapExample)
# show the data
kable(head(var_df), "html") %>% kable_styling("striped") %>% scroll_box(width = "100%")
variant_id allele Barcode dna_count_1 rna_count_1 dna_count_2 rna_count_2 dna_count_3 rna_count_3
variant_820 ref TCTTAAGTAAGAAGG 2 3 1 2 9 15
variant_820 ref GTAAGAATGGTTGGG 7 1 2 10 7 5
variant_820 ref TTTAGAAGTACACTC 4 3 4 11 1 1
variant_820 ref TTCGTTTTGACTAGG 4 4 9 11 6 14
variant_820 ref TCCGTACATCGTGAA 1 2 2 2 1 4
variant_820 ref GGTTCAAGGAATACC 1 7 2 4 3 1

Optionally, downsampling can be performed to our dataframe var_df now. The function downsample_barcodes allows users to reduce the number of barcodes while retaining a representative subset. This way, the number of barcodes of oligos with many barcodes are reduced, which simplifies the data handling and reduces the sparseness of the data table (i.e. increased speed and reduced memory requirements). The degree of downsampling can be controlled by adjusting the sampling rate, which is expressed as a percentile value percentile, with a default of 0.975. The id_column_name argument specifies the column in the input data frame that contains the unique identifiers for each variant (here variant_id).

var_df <- downsample_barcodes(var_df, id_column_name="variant_id")

After downsampling the barcode counts in our dataset, we can prepare the data for analysis using the create_dna_df and create_rna_df functions. Only six rows are shown here (original size of the dataframe 996 × 474).

dna_var <- create_dna_df(var_df)
kable(head(dna_var), "html") %>% kable_styling("striped") %>% scroll_box(width = "100%")
sample_count_1_bc1_ref sample_count_1_bc2_ref sample_count_1_bc3_ref sample_count_1_bc4_ref sample_count_1_bc5_ref sample_count_1_bc6_ref sample_count_1_bc7_ref sample_count_1_bc8_ref sample_count_1_bc9_ref sample_count_1_bc10_ref sample_count_1_bc11_ref sample_count_1_bc12_ref sample_count_1_bc13_ref sample_count_1_bc14_ref sample_count_1_bc15_ref sample_count_1_bc16_ref sample_count_1_bc17_ref sample_count_1_bc18_ref sample_count_1_bc19_ref sample_count_1_bc20_ref sample_count_1_bc21_ref sample_count_1_bc22_ref sample_count_1_bc23_ref sample_count_1_bc24_ref sample_count_1_bc25_ref sample_count_1_bc26_ref sample_count_1_bc27_ref sample_count_1_bc28_ref sample_count_1_bc29_ref sample_count_1_bc30_ref sample_count_1_bc31_ref sample_count_1_bc32_ref sample_count_1_bc33_ref sample_count_1_bc34_ref sample_count_1_bc35_ref sample_count_1_bc36_ref sample_count_1_bc37_ref sample_count_1_bc38_ref sample_count_1_bc39_ref sample_count_1_bc40_ref sample_count_1_bc41_ref sample_count_1_bc42_ref sample_count_1_bc43_ref sample_count_1_bc44_ref sample_count_1_bc45_ref sample_count_1_bc46_ref sample_count_1_bc47_ref sample_count_1_bc48_ref sample_count_1_bc49_ref sample_count_1_bc50_ref sample_count_1_bc51_ref sample_count_1_bc52_ref sample_count_1_bc53_ref sample_count_1_bc54_ref sample_count_1_bc55_ref sample_count_1_bc56_ref sample_count_1_bc57_ref sample_count_1_bc58_ref sample_count_1_bc59_ref sample_count_1_bc60_ref sample_count_1_bc61_ref sample_count_1_bc62_ref sample_count_1_bc63_ref sample_count_1_bc64_ref sample_count_1_bc65_ref sample_count_1_bc66_ref sample_count_1_bc67_ref sample_count_1_bc68_ref sample_count_1_bc69_ref sample_count_1_bc70_ref sample_count_1_bc71_ref sample_count_1_bc72_ref sample_count_1_bc73_ref sample_count_1_bc74_ref sample_count_1_bc75_ref sample_count_1_bc76_ref sample_count_1_bc77_ref sample_count_1_bc78_ref sample_count_1_bc79_ref sample_count_1_bc1_alt sample_count_1_bc2_alt sample_count_1_bc3_alt sample_count_1_bc4_alt sample_count_1_bc5_alt sample_count_1_bc6_alt sample_count_1_bc7_alt sample_count_1_bc8_alt sample_count_1_bc9_alt sample_count_1_bc10_alt sample_count_1_bc11_alt sample_count_1_bc12_alt sample_count_1_bc13_alt sample_count_1_bc14_alt sample_count_1_bc15_alt sample_count_1_bc16_alt sample_count_1_bc17_alt sample_count_1_bc18_alt sample_count_1_bc19_alt sample_count_1_bc20_alt sample_count_1_bc21_alt sample_count_1_bc22_alt sample_count_1_bc23_alt sample_count_1_bc24_alt sample_count_1_bc25_alt sample_count_1_bc26_alt sample_count_1_bc27_alt sample_count_1_bc28_alt sample_count_1_bc29_alt sample_count_1_bc30_alt sample_count_1_bc31_alt sample_count_1_bc32_alt sample_count_1_bc33_alt sample_count_1_bc34_alt sample_count_1_bc35_alt sample_count_1_bc36_alt sample_count_1_bc37_alt sample_count_1_bc38_alt sample_count_1_bc39_alt sample_count_1_bc40_alt sample_count_1_bc41_alt sample_count_1_bc42_alt sample_count_1_bc43_alt sample_count_1_bc44_alt sample_count_1_bc45_alt sample_count_1_bc46_alt sample_count_1_bc47_alt sample_count_1_bc48_alt sample_count_1_bc49_alt sample_count_1_bc50_alt sample_count_1_bc51_alt sample_count_1_bc52_alt sample_count_1_bc53_alt sample_count_1_bc54_alt sample_count_1_bc55_alt sample_count_1_bc56_alt sample_count_1_bc57_alt sample_count_1_bc58_alt sample_count_1_bc59_alt sample_count_1_bc60_alt sample_count_1_bc61_alt sample_count_1_bc62_alt sample_count_1_bc63_alt sample_count_1_bc64_alt sample_count_1_bc65_alt sample_count_1_bc66_alt sample_count_1_bc67_alt sample_count_1_bc68_alt sample_count_1_bc69_alt sample_count_1_bc70_alt sample_count_1_bc71_alt sample_count_1_bc72_alt sample_count_1_bc73_alt sample_count_1_bc74_alt sample_count_1_bc75_alt sample_count_1_bc76_alt sample_count_1_bc77_alt sample_count_1_bc78_alt sample_count_1_bc79_alt sample_count_2_bc1_ref sample_count_2_bc2_ref sample_count_2_bc3_ref sample_count_2_bc4_ref sample_count_2_bc5_ref sample_count_2_bc6_ref sample_count_2_bc7_ref sample_count_2_bc8_ref sample_count_2_bc9_ref sample_count_2_bc10_ref sample_count_2_bc11_ref sample_count_2_bc12_ref sample_count_2_bc13_ref sample_count_2_bc14_ref sample_count_2_bc15_ref sample_count_2_bc16_ref sample_count_2_bc17_ref sample_count_2_bc18_ref sample_count_2_bc19_ref sample_count_2_bc20_ref sample_count_2_bc21_ref sample_count_2_bc22_ref sample_count_2_bc23_ref sample_count_2_bc24_ref sample_count_2_bc25_ref sample_count_2_bc26_ref sample_count_2_bc27_ref sample_count_2_bc28_ref sample_count_2_bc29_ref sample_count_2_bc30_ref sample_count_2_bc31_ref sample_count_2_bc32_ref sample_count_2_bc33_ref sample_count_2_bc34_ref sample_count_2_bc35_ref sample_count_2_bc36_ref sample_count_2_bc37_ref sample_count_2_bc38_ref sample_count_2_bc39_ref sample_count_2_bc40_ref sample_count_2_bc41_ref sample_count_2_bc42_ref sample_count_2_bc43_ref sample_count_2_bc44_ref sample_count_2_bc45_ref sample_count_2_bc46_ref sample_count_2_bc47_ref sample_count_2_bc48_ref sample_count_2_bc49_ref sample_count_2_bc50_ref sample_count_2_bc51_ref sample_count_2_bc52_ref sample_count_2_bc53_ref sample_count_2_bc54_ref sample_count_2_bc55_ref sample_count_2_bc56_ref sample_count_2_bc57_ref sample_count_2_bc58_ref sample_count_2_bc59_ref sample_count_2_bc60_ref sample_count_2_bc61_ref sample_count_2_bc62_ref sample_count_2_bc63_ref sample_count_2_bc64_ref sample_count_2_bc65_ref sample_count_2_bc66_ref sample_count_2_bc67_ref sample_count_2_bc68_ref sample_count_2_bc69_ref sample_count_2_bc70_ref sample_count_2_bc71_ref sample_count_2_bc72_ref sample_count_2_bc73_ref sample_count_2_bc74_ref sample_count_2_bc75_ref sample_count_2_bc76_ref sample_count_2_bc77_ref sample_count_2_bc78_ref sample_count_2_bc79_ref sample_count_2_bc1_alt sample_count_2_bc2_alt sample_count_2_bc3_alt sample_count_2_bc4_alt sample_count_2_bc5_alt sample_count_2_bc6_alt sample_count_2_bc7_alt sample_count_2_bc8_alt sample_count_2_bc9_alt sample_count_2_bc10_alt sample_count_2_bc11_alt sample_count_2_bc12_alt sample_count_2_bc13_alt sample_count_2_bc14_alt sample_count_2_bc15_alt sample_count_2_bc16_alt sample_count_2_bc17_alt sample_count_2_bc18_alt sample_count_2_bc19_alt sample_count_2_bc20_alt sample_count_2_bc21_alt sample_count_2_bc22_alt sample_count_2_bc23_alt sample_count_2_bc24_alt sample_count_2_bc25_alt sample_count_2_bc26_alt sample_count_2_bc27_alt sample_count_2_bc28_alt sample_count_2_bc29_alt sample_count_2_bc30_alt sample_count_2_bc31_alt sample_count_2_bc32_alt sample_count_2_bc33_alt sample_count_2_bc34_alt sample_count_2_bc35_alt sample_count_2_bc36_alt sample_count_2_bc37_alt sample_count_2_bc38_alt sample_count_2_bc39_alt sample_count_2_bc40_alt sample_count_2_bc41_alt sample_count_2_bc42_alt sample_count_2_bc43_alt sample_count_2_bc44_alt sample_count_2_bc45_alt sample_count_2_bc46_alt sample_count_2_bc47_alt sample_count_2_bc48_alt sample_count_2_bc49_alt sample_count_2_bc50_alt sample_count_2_bc51_alt sample_count_2_bc52_alt sample_count_2_bc53_alt sample_count_2_bc54_alt sample_count_2_bc55_alt sample_count_2_bc56_alt sample_count_2_bc57_alt sample_count_2_bc58_alt sample_count_2_bc59_alt sample_count_2_bc60_alt sample_count_2_bc61_alt sample_count_2_bc62_alt sample_count_2_bc63_alt sample_count_2_bc64_alt sample_count_2_bc65_alt sample_count_2_bc66_alt sample_count_2_bc67_alt sample_count_2_bc68_alt sample_count_2_bc69_alt sample_count_2_bc70_alt sample_count_2_bc71_alt sample_count_2_bc72_alt sample_count_2_bc73_alt sample_count_2_bc74_alt sample_count_2_bc75_alt sample_count_2_bc76_alt sample_count_2_bc77_alt sample_count_2_bc78_alt sample_count_2_bc79_alt sample_count_3_bc1_ref sample_count_3_bc2_ref sample_count_3_bc3_ref sample_count_3_bc4_ref sample_count_3_bc5_ref sample_count_3_bc6_ref sample_count_3_bc7_ref sample_count_3_bc8_ref sample_count_3_bc9_ref sample_count_3_bc10_ref sample_count_3_bc11_ref sample_count_3_bc12_ref sample_count_3_bc13_ref sample_count_3_bc14_ref sample_count_3_bc15_ref sample_count_3_bc16_ref sample_count_3_bc17_ref sample_count_3_bc18_ref sample_count_3_bc19_ref sample_count_3_bc20_ref sample_count_3_bc21_ref sample_count_3_bc22_ref sample_count_3_bc23_ref sample_count_3_bc24_ref sample_count_3_bc25_ref sample_count_3_bc26_ref sample_count_3_bc27_ref sample_count_3_bc28_ref sample_count_3_bc29_ref sample_count_3_bc30_ref sample_count_3_bc31_ref sample_count_3_bc32_ref sample_count_3_bc33_ref sample_count_3_bc34_ref sample_count_3_bc35_ref sample_count_3_bc36_ref sample_count_3_bc37_ref sample_count_3_bc38_ref sample_count_3_bc39_ref sample_count_3_bc40_ref sample_count_3_bc41_ref sample_count_3_bc42_ref sample_count_3_bc43_ref sample_count_3_bc44_ref sample_count_3_bc45_ref sample_count_3_bc46_ref sample_count_3_bc47_ref sample_count_3_bc48_ref sample_count_3_bc49_ref sample_count_3_bc50_ref sample_count_3_bc51_ref sample_count_3_bc52_ref sample_count_3_bc53_ref sample_count_3_bc54_ref sample_count_3_bc55_ref sample_count_3_bc56_ref sample_count_3_bc57_ref sample_count_3_bc58_ref sample_count_3_bc59_ref sample_count_3_bc60_ref sample_count_3_bc61_ref sample_count_3_bc62_ref sample_count_3_bc63_ref sample_count_3_bc64_ref sample_count_3_bc65_ref sample_count_3_bc66_ref sample_count_3_bc67_ref sample_count_3_bc68_ref sample_count_3_bc69_ref sample_count_3_bc70_ref sample_count_3_bc71_ref sample_count_3_bc72_ref sample_count_3_bc73_ref sample_count_3_bc74_ref sample_count_3_bc75_ref sample_count_3_bc76_ref sample_count_3_bc77_ref sample_count_3_bc78_ref sample_count_3_bc79_ref sample_count_3_bc1_alt sample_count_3_bc2_alt sample_count_3_bc3_alt sample_count_3_bc4_alt sample_count_3_bc5_alt sample_count_3_bc6_alt sample_count_3_bc7_alt sample_count_3_bc8_alt sample_count_3_bc9_alt sample_count_3_bc10_alt sample_count_3_bc11_alt sample_count_3_bc12_alt sample_count_3_bc13_alt sample_count_3_bc14_alt sample_count_3_bc15_alt sample_count_3_bc16_alt sample_count_3_bc17_alt sample_count_3_bc18_alt sample_count_3_bc19_alt sample_count_3_bc20_alt sample_count_3_bc21_alt sample_count_3_bc22_alt sample_count_3_bc23_alt sample_count_3_bc24_alt sample_count_3_bc25_alt sample_count_3_bc26_alt sample_count_3_bc27_alt sample_count_3_bc28_alt sample_count_3_bc29_alt sample_count_3_bc30_alt sample_count_3_bc31_alt sample_count_3_bc32_alt sample_count_3_bc33_alt sample_count_3_bc34_alt sample_count_3_bc35_alt sample_count_3_bc36_alt sample_count_3_bc37_alt sample_count_3_bc38_alt sample_count_3_bc39_alt sample_count_3_bc40_alt sample_count_3_bc41_alt sample_count_3_bc42_alt sample_count_3_bc43_alt sample_count_3_bc44_alt sample_count_3_bc45_alt sample_count_3_bc46_alt sample_count_3_bc47_alt sample_count_3_bc48_alt sample_count_3_bc49_alt sample_count_3_bc50_alt sample_count_3_bc51_alt sample_count_3_bc52_alt sample_count_3_bc53_alt sample_count_3_bc54_alt sample_count_3_bc55_alt sample_count_3_bc56_alt sample_count_3_bc57_alt sample_count_3_bc58_alt sample_count_3_bc59_alt sample_count_3_bc60_alt sample_count_3_bc61_alt sample_count_3_bc62_alt sample_count_3_bc63_alt sample_count_3_bc64_alt sample_count_3_bc65_alt sample_count_3_bc66_alt sample_count_3_bc67_alt sample_count_3_bc68_alt sample_count_3_bc69_alt sample_count_3_bc70_alt sample_count_3_bc71_alt sample_count_3_bc72_alt sample_count_3_bc73_alt sample_count_3_bc74_alt sample_count_3_bc75_alt sample_count_3_bc76_alt sample_count_3_bc77_alt sample_count_3_bc78_alt sample_count_3_bc79_alt
variant_10 8 4 2 5 3 8 9 6 2 7 4 3 6 2 5 2 4 4 5 4 1 8 1 1 5 5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 4 7 8 2 1 1 3 1 2 2 4 1 1 2 3 2 1 3 3 1 1 3 5 2 1 3 1 3 7 3 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 3 1 2 1 1 4 3 4 6 1 1 2 1 7 2 2 4 1 2 3 2 4 2 2 5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 7 3 1 3 3 6 3 4 4 3 3 2 1 1 1 1 1 1 6 2 5 2 1 3 1 1 4 8 1 6 2 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 11 7 3 1 4 4 2 9 2 14 1 7 1 4 2 2 6 3 3 1 1 5 2 3 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 3 7 8 7 1 2 4 5 5 6 6 4 4 2 12 1 6 6 4 1 3 2 1 3 5 4 13 3 6 2 13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100 12 11 2 3 2 3 2 11 6 3 19 3 4 4 7 2 4 5 8 3 3 1 3 3 3 5 10 4 6 6 11 2 8 4 4 2 4 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 3 10 5 8 3 4 1 6 3 2 4 3 7 9 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 7 1 4 2 3 4 3 3 3 7 6 2 3 1 12 5 7 6 2 1 4 2 9 2 3 7 3 5 5 12 9 9 3 5 1 1 9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 2 9 7 6 2 3 5 14 5 4 8 5 4 2 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6 7 6 5 2 2 3 3 1 4 5 4 6 10 7 3 4 2 4 1 3 2 2 2 1 7 2 2 1 3 7 4 2 5 1 1 4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5 2 10 6 1 2 2 1 3 1 8 3 2 1 1 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100314 9 5 1 5 12 2 12 10 10 3 7 16 4 8 2 8 2 4 13 3 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 7 10 4 5 4 3 12 10 5 4 11 17 1 5 5 7 5 5 13 10 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 1 6 1 5 9 3 3 10 12 9 24 2 1 2 10 3 2 3 14 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100463 7 8 3 1 1 7 2 3 8 1 6 3 5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 3 3 1 3 3 6 1 3 2 6 1 5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 4 4 2 3 3 1 2 3 6 1 4 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_101 18 16 3 9 4 1 4 3 14 5 3 7 1 1 7 5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 2 4 7 7 1 3 3 4 1 6 2 12 2 10 4 1 6 2 6 3 3 1 8 3 1 2 10 4 5 10 6 3 1 3 3 4 5 5 2 5 6 5 11 5 7 3 2 2 3 5 11 13 10 7 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 13 6 7 2 2 1 1 8 1 3 2 3 6 12 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 5 1 2 2 16 12 1 10 3 2 2 4 4 9 5 6 1 6 2 3 2 7 2 1 2 6 3 1 2 3 3 1 4 8 1 1 4 4 5 1 4 9 5 4 2 7 9 1 9 11 4 7 12 9 6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 10 11 2 6 6 1 4 1 2 1 2 3 7 7 6 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 7 1 2 8 6 5 5 1 6 5 2 3 3 2 2 3 2 2 3 3 4 5 2 5 2 2 1 5 15 1 5 4 2 1 1 1 4 4 1 2 1 3 14 12 2 1 2 7 2 2 5 8 12 4 7 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_101165 2 8 9 7 7 5 5 2 2 21 2 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 2 4 3 4 5 3 4 2 10 7 10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 6 2 4 3 2 1 1 7 10 1 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
rna_var <- create_rna_df(var_df)
kable(head(rna_var), "html") %>% kable_styling("striped") %>% scroll_box(width = "100%")
sample_count_1_bc1_ref sample_count_1_bc2_ref sample_count_1_bc3_ref sample_count_1_bc4_ref sample_count_1_bc5_ref sample_count_1_bc6_ref sample_count_1_bc7_ref sample_count_1_bc8_ref sample_count_1_bc9_ref sample_count_1_bc10_ref sample_count_1_bc11_ref sample_count_1_bc12_ref sample_count_1_bc13_ref sample_count_1_bc14_ref sample_count_1_bc15_ref sample_count_1_bc16_ref sample_count_1_bc17_ref sample_count_1_bc18_ref sample_count_1_bc19_ref sample_count_1_bc20_ref sample_count_1_bc21_ref sample_count_1_bc22_ref sample_count_1_bc23_ref sample_count_1_bc24_ref sample_count_1_bc25_ref sample_count_1_bc26_ref sample_count_1_bc27_ref sample_count_1_bc28_ref sample_count_1_bc29_ref sample_count_1_bc30_ref sample_count_1_bc31_ref sample_count_1_bc32_ref sample_count_1_bc33_ref sample_count_1_bc34_ref sample_count_1_bc35_ref sample_count_1_bc36_ref sample_count_1_bc37_ref sample_count_1_bc38_ref sample_count_1_bc39_ref sample_count_1_bc40_ref sample_count_1_bc41_ref sample_count_1_bc42_ref sample_count_1_bc43_ref sample_count_1_bc44_ref sample_count_1_bc45_ref sample_count_1_bc46_ref sample_count_1_bc47_ref sample_count_1_bc48_ref sample_count_1_bc49_ref sample_count_1_bc50_ref sample_count_1_bc51_ref sample_count_1_bc52_ref sample_count_1_bc53_ref sample_count_1_bc54_ref sample_count_1_bc55_ref sample_count_1_bc56_ref sample_count_1_bc57_ref sample_count_1_bc58_ref sample_count_1_bc59_ref sample_count_1_bc60_ref sample_count_1_bc61_ref sample_count_1_bc62_ref sample_count_1_bc63_ref sample_count_1_bc64_ref sample_count_1_bc65_ref sample_count_1_bc66_ref sample_count_1_bc67_ref sample_count_1_bc68_ref sample_count_1_bc69_ref sample_count_1_bc70_ref sample_count_1_bc71_ref sample_count_1_bc72_ref sample_count_1_bc73_ref sample_count_1_bc74_ref sample_count_1_bc75_ref sample_count_1_bc76_ref sample_count_1_bc77_ref sample_count_1_bc78_ref sample_count_1_bc79_ref sample_count_1_bc1_alt sample_count_1_bc2_alt sample_count_1_bc3_alt sample_count_1_bc4_alt sample_count_1_bc5_alt sample_count_1_bc6_alt sample_count_1_bc7_alt sample_count_1_bc8_alt sample_count_1_bc9_alt sample_count_1_bc10_alt sample_count_1_bc11_alt sample_count_1_bc12_alt sample_count_1_bc13_alt sample_count_1_bc14_alt sample_count_1_bc15_alt sample_count_1_bc16_alt sample_count_1_bc17_alt sample_count_1_bc18_alt sample_count_1_bc19_alt sample_count_1_bc20_alt sample_count_1_bc21_alt sample_count_1_bc22_alt sample_count_1_bc23_alt sample_count_1_bc24_alt sample_count_1_bc25_alt sample_count_1_bc26_alt sample_count_1_bc27_alt sample_count_1_bc28_alt sample_count_1_bc29_alt sample_count_1_bc30_alt sample_count_1_bc31_alt sample_count_1_bc32_alt sample_count_1_bc33_alt sample_count_1_bc34_alt sample_count_1_bc35_alt sample_count_1_bc36_alt sample_count_1_bc37_alt sample_count_1_bc38_alt sample_count_1_bc39_alt sample_count_1_bc40_alt sample_count_1_bc41_alt sample_count_1_bc42_alt sample_count_1_bc43_alt sample_count_1_bc44_alt sample_count_1_bc45_alt sample_count_1_bc46_alt sample_count_1_bc47_alt sample_count_1_bc48_alt sample_count_1_bc49_alt sample_count_1_bc50_alt sample_count_1_bc51_alt sample_count_1_bc52_alt sample_count_1_bc53_alt sample_count_1_bc54_alt sample_count_1_bc55_alt sample_count_1_bc56_alt sample_count_1_bc57_alt sample_count_1_bc58_alt sample_count_1_bc59_alt sample_count_1_bc60_alt sample_count_1_bc61_alt sample_count_1_bc62_alt sample_count_1_bc63_alt sample_count_1_bc64_alt sample_count_1_bc65_alt sample_count_1_bc66_alt sample_count_1_bc67_alt sample_count_1_bc68_alt sample_count_1_bc69_alt sample_count_1_bc70_alt sample_count_1_bc71_alt sample_count_1_bc72_alt sample_count_1_bc73_alt sample_count_1_bc74_alt sample_count_1_bc75_alt sample_count_1_bc76_alt sample_count_1_bc77_alt sample_count_1_bc78_alt sample_count_1_bc79_alt sample_count_2_bc1_ref sample_count_2_bc2_ref sample_count_2_bc3_ref sample_count_2_bc4_ref sample_count_2_bc5_ref sample_count_2_bc6_ref sample_count_2_bc7_ref sample_count_2_bc8_ref sample_count_2_bc9_ref sample_count_2_bc10_ref sample_count_2_bc11_ref sample_count_2_bc12_ref sample_count_2_bc13_ref sample_count_2_bc14_ref sample_count_2_bc15_ref sample_count_2_bc16_ref sample_count_2_bc17_ref sample_count_2_bc18_ref sample_count_2_bc19_ref sample_count_2_bc20_ref sample_count_2_bc21_ref sample_count_2_bc22_ref sample_count_2_bc23_ref sample_count_2_bc24_ref sample_count_2_bc25_ref sample_count_2_bc26_ref sample_count_2_bc27_ref sample_count_2_bc28_ref sample_count_2_bc29_ref sample_count_2_bc30_ref sample_count_2_bc31_ref sample_count_2_bc32_ref sample_count_2_bc33_ref sample_count_2_bc34_ref sample_count_2_bc35_ref sample_count_2_bc36_ref sample_count_2_bc37_ref sample_count_2_bc38_ref sample_count_2_bc39_ref sample_count_2_bc40_ref sample_count_2_bc41_ref sample_count_2_bc42_ref sample_count_2_bc43_ref sample_count_2_bc44_ref sample_count_2_bc45_ref sample_count_2_bc46_ref sample_count_2_bc47_ref sample_count_2_bc48_ref sample_count_2_bc49_ref sample_count_2_bc50_ref sample_count_2_bc51_ref sample_count_2_bc52_ref sample_count_2_bc53_ref sample_count_2_bc54_ref sample_count_2_bc55_ref sample_count_2_bc56_ref sample_count_2_bc57_ref sample_count_2_bc58_ref sample_count_2_bc59_ref sample_count_2_bc60_ref sample_count_2_bc61_ref sample_count_2_bc62_ref sample_count_2_bc63_ref sample_count_2_bc64_ref sample_count_2_bc65_ref sample_count_2_bc66_ref sample_count_2_bc67_ref sample_count_2_bc68_ref sample_count_2_bc69_ref sample_count_2_bc70_ref sample_count_2_bc71_ref sample_count_2_bc72_ref sample_count_2_bc73_ref sample_count_2_bc74_ref sample_count_2_bc75_ref sample_count_2_bc76_ref sample_count_2_bc77_ref sample_count_2_bc78_ref sample_count_2_bc79_ref sample_count_2_bc1_alt sample_count_2_bc2_alt sample_count_2_bc3_alt sample_count_2_bc4_alt sample_count_2_bc5_alt sample_count_2_bc6_alt sample_count_2_bc7_alt sample_count_2_bc8_alt sample_count_2_bc9_alt sample_count_2_bc10_alt sample_count_2_bc11_alt sample_count_2_bc12_alt sample_count_2_bc13_alt sample_count_2_bc14_alt sample_count_2_bc15_alt sample_count_2_bc16_alt sample_count_2_bc17_alt sample_count_2_bc18_alt sample_count_2_bc19_alt sample_count_2_bc20_alt sample_count_2_bc21_alt sample_count_2_bc22_alt sample_count_2_bc23_alt sample_count_2_bc24_alt sample_count_2_bc25_alt sample_count_2_bc26_alt sample_count_2_bc27_alt sample_count_2_bc28_alt sample_count_2_bc29_alt sample_count_2_bc30_alt sample_count_2_bc31_alt sample_count_2_bc32_alt sample_count_2_bc33_alt sample_count_2_bc34_alt sample_count_2_bc35_alt sample_count_2_bc36_alt sample_count_2_bc37_alt sample_count_2_bc38_alt sample_count_2_bc39_alt sample_count_2_bc40_alt sample_count_2_bc41_alt sample_count_2_bc42_alt sample_count_2_bc43_alt sample_count_2_bc44_alt sample_count_2_bc45_alt sample_count_2_bc46_alt sample_count_2_bc47_alt sample_count_2_bc48_alt sample_count_2_bc49_alt sample_count_2_bc50_alt sample_count_2_bc51_alt sample_count_2_bc52_alt sample_count_2_bc53_alt sample_count_2_bc54_alt sample_count_2_bc55_alt sample_count_2_bc56_alt sample_count_2_bc57_alt sample_count_2_bc58_alt sample_count_2_bc59_alt sample_count_2_bc60_alt sample_count_2_bc61_alt sample_count_2_bc62_alt sample_count_2_bc63_alt sample_count_2_bc64_alt sample_count_2_bc65_alt sample_count_2_bc66_alt sample_count_2_bc67_alt sample_count_2_bc68_alt sample_count_2_bc69_alt sample_count_2_bc70_alt sample_count_2_bc71_alt sample_count_2_bc72_alt sample_count_2_bc73_alt sample_count_2_bc74_alt sample_count_2_bc75_alt sample_count_2_bc76_alt sample_count_2_bc77_alt sample_count_2_bc78_alt sample_count_2_bc79_alt sample_count_3_bc1_ref sample_count_3_bc2_ref sample_count_3_bc3_ref sample_count_3_bc4_ref sample_count_3_bc5_ref sample_count_3_bc6_ref sample_count_3_bc7_ref sample_count_3_bc8_ref sample_count_3_bc9_ref sample_count_3_bc10_ref sample_count_3_bc11_ref sample_count_3_bc12_ref sample_count_3_bc13_ref sample_count_3_bc14_ref sample_count_3_bc15_ref sample_count_3_bc16_ref sample_count_3_bc17_ref sample_count_3_bc18_ref sample_count_3_bc19_ref sample_count_3_bc20_ref sample_count_3_bc21_ref sample_count_3_bc22_ref sample_count_3_bc23_ref sample_count_3_bc24_ref sample_count_3_bc25_ref sample_count_3_bc26_ref sample_count_3_bc27_ref sample_count_3_bc28_ref sample_count_3_bc29_ref sample_count_3_bc30_ref sample_count_3_bc31_ref sample_count_3_bc32_ref sample_count_3_bc33_ref sample_count_3_bc34_ref sample_count_3_bc35_ref sample_count_3_bc36_ref sample_count_3_bc37_ref sample_count_3_bc38_ref sample_count_3_bc39_ref sample_count_3_bc40_ref sample_count_3_bc41_ref sample_count_3_bc42_ref sample_count_3_bc43_ref sample_count_3_bc44_ref sample_count_3_bc45_ref sample_count_3_bc46_ref sample_count_3_bc47_ref sample_count_3_bc48_ref sample_count_3_bc49_ref sample_count_3_bc50_ref sample_count_3_bc51_ref sample_count_3_bc52_ref sample_count_3_bc53_ref sample_count_3_bc54_ref sample_count_3_bc55_ref sample_count_3_bc56_ref sample_count_3_bc57_ref sample_count_3_bc58_ref sample_count_3_bc59_ref sample_count_3_bc60_ref sample_count_3_bc61_ref sample_count_3_bc62_ref sample_count_3_bc63_ref sample_count_3_bc64_ref sample_count_3_bc65_ref sample_count_3_bc66_ref sample_count_3_bc67_ref sample_count_3_bc68_ref sample_count_3_bc69_ref sample_count_3_bc70_ref sample_count_3_bc71_ref sample_count_3_bc72_ref sample_count_3_bc73_ref sample_count_3_bc74_ref sample_count_3_bc75_ref sample_count_3_bc76_ref sample_count_3_bc77_ref sample_count_3_bc78_ref sample_count_3_bc79_ref sample_count_3_bc1_alt sample_count_3_bc2_alt sample_count_3_bc3_alt sample_count_3_bc4_alt sample_count_3_bc5_alt sample_count_3_bc6_alt sample_count_3_bc7_alt sample_count_3_bc8_alt sample_count_3_bc9_alt sample_count_3_bc10_alt sample_count_3_bc11_alt sample_count_3_bc12_alt sample_count_3_bc13_alt sample_count_3_bc14_alt sample_count_3_bc15_alt sample_count_3_bc16_alt sample_count_3_bc17_alt sample_count_3_bc18_alt sample_count_3_bc19_alt sample_count_3_bc20_alt sample_count_3_bc21_alt sample_count_3_bc22_alt sample_count_3_bc23_alt sample_count_3_bc24_alt sample_count_3_bc25_alt sample_count_3_bc26_alt sample_count_3_bc27_alt sample_count_3_bc28_alt sample_count_3_bc29_alt sample_count_3_bc30_alt sample_count_3_bc31_alt sample_count_3_bc32_alt sample_count_3_bc33_alt sample_count_3_bc34_alt sample_count_3_bc35_alt sample_count_3_bc36_alt sample_count_3_bc37_alt sample_count_3_bc38_alt sample_count_3_bc39_alt sample_count_3_bc40_alt sample_count_3_bc41_alt sample_count_3_bc42_alt sample_count_3_bc43_alt sample_count_3_bc44_alt sample_count_3_bc45_alt sample_count_3_bc46_alt sample_count_3_bc47_alt sample_count_3_bc48_alt sample_count_3_bc49_alt sample_count_3_bc50_alt sample_count_3_bc51_alt sample_count_3_bc52_alt sample_count_3_bc53_alt sample_count_3_bc54_alt sample_count_3_bc55_alt sample_count_3_bc56_alt sample_count_3_bc57_alt sample_count_3_bc58_alt sample_count_3_bc59_alt sample_count_3_bc60_alt sample_count_3_bc61_alt sample_count_3_bc62_alt sample_count_3_bc63_alt sample_count_3_bc64_alt sample_count_3_bc65_alt sample_count_3_bc66_alt sample_count_3_bc67_alt sample_count_3_bc68_alt sample_count_3_bc69_alt sample_count_3_bc70_alt sample_count_3_bc71_alt sample_count_3_bc72_alt sample_count_3_bc73_alt sample_count_3_bc74_alt sample_count_3_bc75_alt sample_count_3_bc76_alt sample_count_3_bc77_alt sample_count_3_bc78_alt sample_count_3_bc79_alt
variant_10 7 7 3 1 15 1 18 43 2 22 16 16 4 6 3 17 2 24 3 17 5 16 41 8 12 25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 29 5 12 11 3 2 4 2 2 1 4 32 10 2 5 16 6 8 12 8 9 7 13 4 8 4 2 11 1 16 9 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 6 1 7 8 2 24 8 3 23 4 7 1 2 13 11 1 4 14 1 4 2 6 10 10 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 27 10 2 32 3 16 35 6 19 17 16 6 5 55 1 13 22 15 17 2 10 34 1 54 6 12 15 2 5 15 11 44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 10 22 7 4 4 13 2 31 5 15 27 6 12 49 6 8 12 13 15 7 12 5 5 21 1 23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 25 35 17 3 2 18 3 10 14 13 25 25 18 16 10 25 18 2 10 19 2 8 4 27 7 1 10 12 7 15 40 19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100 39 9 21 16 2 5 22 46 23 55 38 23 39 13 21 2 8 31 27 32 5 7 9 19 20 7 14 16 45 1 36 14 7 14 8 3 26 11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 6 11 1 19 2 7 3 31 6 3 4 2 1 13 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 8 18 12 39 12 15 5 22 17 24 39 20 5 17 30 5 8 23 20 58 18 1 10 2 12 7 8 11 6 13 17 22 64 23 20 11 6 10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 11 8 19 11 13 6 5 2 9 20 11 7 1 4 3 21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13 25 19 43 3 41 10 51 3 26 49 8 27 3 5 21 36 5 42 5 10 2 2 26 7 29 2 33 5 5 15 36 115 5 37 4 7 27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 9 32 27 8 18 4 6 11 3 9 5 4 1 3 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100314 1 17 3 6 8 4 4 6 15 12 4 17 7 10 9 11 15 9 16 2 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5 5 20 11 9 4 2 6 24 5 11 12 3 10 11 2 4 6 29 34 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 2 18 11 21 6 1 7 33 10 3 38 2 6 6 2 5 2 2 28 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100463 1 2 3 11 2 2 24 3 9 1 2 4 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 4 1 4 1 4 9 2 7 8 2 14 10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 22 1 9 2 2 2 6 8 3 9 4 6 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_101 7 19 4 28 1 5 1 1 9 1 6 7 5 12 59 13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 32 2 12 1 22 19 11 6 45 8 13 2 24 8 51 12 16 4 51 11 25 35 7 6 79 34 19 9 26 4 43 10 11 6 4 18 7 22 1 37 6 58 2 12 41 25 2 16 17 29 19 20 63 16 82 15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 12 40 3 16 23 5 3 2 2 6 4 12 5 24 26 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 48 23 39 29 5 84 37 51 27 18 24 20 20 15 13 13 18 6 32 9 23 30 8 38 22 12 49 23 40 6 13 9 32 20 38 5 4 25 31 4 39 5 58 36 16 23 5 61 1 22 4 5 272 8 37 23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 21 5 5 3 4 2 4 3 1 2 2 2 16 12 3 6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 32 1 37 22 33 45 14 1 23 36 22 5 11 5 53 17 14 10 2 2 22 11 14 62 12 25 6 17 62 7 91 10 25 9 6 1 11 15 58 23 12 24 2 12 106 19 35 51 16 13 26 27 88 28 80 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_101165 4 13 9 26 13 2 24 2 5 22 4 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 3 3 10 4 2 13 1 27 2 3 7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5 1 12 7 3 1 4 3 6 12 7 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Now we create the MPRAset used as input to BCalm.

# create the variant specific MPRAset
BcVariantMPRASetExample <- MPRASet(DNA = dna_var, RNA = rna_var, eid = row.names(dna_var), barcode = NULL)

2.2 Element testing

The dataset is the same one we used above, but we have to add labels to the data to distinguish between control and test groups, thus allowing us to easily identify and compare these different groups in the analysis later.

data(LabelExample)
table(LabelExample)
## LabelExample
## control  tested 
##     198    1475
kable(head(LabelExample), "html") %>% kable_styling("striped") %>% scroll_box(width = "100%")
x
oligo_000702 tested
oligo_000703 tested
oligo_000706 tested
oligo_000707 tested
oligo_000711 tested
oligo_000713 tested

Once again, we perform downsampling on this dataset using the downsample_barcodes function.

elem_df <- downsample_barcodes(BcSetExample)

As before, we use create_dna_df and create_rna_df to format the data correctly for the MPRASet function. However, this time we specify id_column_name = "name" since the default, id_column_name = "variant_id", does not match our data format.

dna_elem <- create_dna_df(elem_df, id_column_name="name")
rna_elem <- create_rna_df(elem_df, id_column_name="name")

To compare between test and control, we need to add the labels to the MPRASet.

BcLabelMPRASetExample <- MPRASet(DNA = dna_elem, RNA = rna_elem, eid = row.names(dna_elem), barcode = NULL, label=LabelExample)

With the data prepared and preprocessed, we now have the foundation to conduct our analysis.

3 Analysis

In this section we get to see the usage of the mpralm and the fit_elements functions. We take the MPRASet created in the preprocessing chapter. BCalm allows us to analyze individual barcode counts as separate samples, capturing additional data variation and potentially increasing statistical power.

3.1 Variant Analysis

We will start with variant testing. In order to achieve this, we employ the mpralm function. Which column belongs to which replicate is described in a blocking vector, also used to normalize the counts per replicate. The design matrix gives information which count comes from the reference and which from the alternative allele.

bcs <- ncol(dna_var) / nr_reps
design <- data.frame(intcpt = 1, alt = grepl("alt", colnames(BcVariantMPRASetExample)))
block_vector <- rep(1:nr_reps, each=bcs)
mpralm_fit_var <- mpralm(object = BcVariantMPRASetExample, design = design, aggregate = "none", normalize = TRUE, model_type = "corr_groups", plot = FALSE, block = block_vector)

top_var <- topTable(mpralm_fit_var, coef = 2, number = Inf)
kable(head(rna_var), "html") %>% kable_styling("striped") %>% scroll_box(width = "100%")
sample_count_1_bc1_ref sample_count_1_bc2_ref sample_count_1_bc3_ref sample_count_1_bc4_ref sample_count_1_bc5_ref sample_count_1_bc6_ref sample_count_1_bc7_ref sample_count_1_bc8_ref sample_count_1_bc9_ref sample_count_1_bc10_ref sample_count_1_bc11_ref sample_count_1_bc12_ref sample_count_1_bc13_ref sample_count_1_bc14_ref sample_count_1_bc15_ref sample_count_1_bc16_ref sample_count_1_bc17_ref sample_count_1_bc18_ref sample_count_1_bc19_ref sample_count_1_bc20_ref sample_count_1_bc21_ref sample_count_1_bc22_ref sample_count_1_bc23_ref sample_count_1_bc24_ref sample_count_1_bc25_ref sample_count_1_bc26_ref sample_count_1_bc27_ref sample_count_1_bc28_ref sample_count_1_bc29_ref sample_count_1_bc30_ref sample_count_1_bc31_ref sample_count_1_bc32_ref sample_count_1_bc33_ref sample_count_1_bc34_ref sample_count_1_bc35_ref sample_count_1_bc36_ref sample_count_1_bc37_ref sample_count_1_bc38_ref sample_count_1_bc39_ref sample_count_1_bc40_ref sample_count_1_bc41_ref sample_count_1_bc42_ref sample_count_1_bc43_ref sample_count_1_bc44_ref sample_count_1_bc45_ref sample_count_1_bc46_ref sample_count_1_bc47_ref sample_count_1_bc48_ref sample_count_1_bc49_ref sample_count_1_bc50_ref sample_count_1_bc51_ref sample_count_1_bc52_ref sample_count_1_bc53_ref sample_count_1_bc54_ref sample_count_1_bc55_ref sample_count_1_bc56_ref sample_count_1_bc57_ref sample_count_1_bc58_ref sample_count_1_bc59_ref sample_count_1_bc60_ref sample_count_1_bc61_ref sample_count_1_bc62_ref sample_count_1_bc63_ref sample_count_1_bc64_ref sample_count_1_bc65_ref sample_count_1_bc66_ref sample_count_1_bc67_ref sample_count_1_bc68_ref sample_count_1_bc69_ref sample_count_1_bc70_ref sample_count_1_bc71_ref sample_count_1_bc72_ref sample_count_1_bc73_ref sample_count_1_bc74_ref sample_count_1_bc75_ref sample_count_1_bc76_ref sample_count_1_bc77_ref sample_count_1_bc78_ref sample_count_1_bc79_ref sample_count_1_bc1_alt sample_count_1_bc2_alt sample_count_1_bc3_alt sample_count_1_bc4_alt sample_count_1_bc5_alt sample_count_1_bc6_alt sample_count_1_bc7_alt sample_count_1_bc8_alt sample_count_1_bc9_alt sample_count_1_bc10_alt sample_count_1_bc11_alt sample_count_1_bc12_alt sample_count_1_bc13_alt sample_count_1_bc14_alt sample_count_1_bc15_alt sample_count_1_bc16_alt sample_count_1_bc17_alt sample_count_1_bc18_alt sample_count_1_bc19_alt sample_count_1_bc20_alt sample_count_1_bc21_alt sample_count_1_bc22_alt sample_count_1_bc23_alt sample_count_1_bc24_alt sample_count_1_bc25_alt sample_count_1_bc26_alt sample_count_1_bc27_alt sample_count_1_bc28_alt sample_count_1_bc29_alt sample_count_1_bc30_alt sample_count_1_bc31_alt sample_count_1_bc32_alt sample_count_1_bc33_alt sample_count_1_bc34_alt sample_count_1_bc35_alt sample_count_1_bc36_alt sample_count_1_bc37_alt sample_count_1_bc38_alt sample_count_1_bc39_alt sample_count_1_bc40_alt sample_count_1_bc41_alt sample_count_1_bc42_alt sample_count_1_bc43_alt sample_count_1_bc44_alt sample_count_1_bc45_alt sample_count_1_bc46_alt sample_count_1_bc47_alt sample_count_1_bc48_alt sample_count_1_bc49_alt sample_count_1_bc50_alt sample_count_1_bc51_alt sample_count_1_bc52_alt sample_count_1_bc53_alt sample_count_1_bc54_alt sample_count_1_bc55_alt sample_count_1_bc56_alt sample_count_1_bc57_alt sample_count_1_bc58_alt sample_count_1_bc59_alt sample_count_1_bc60_alt sample_count_1_bc61_alt sample_count_1_bc62_alt sample_count_1_bc63_alt sample_count_1_bc64_alt sample_count_1_bc65_alt sample_count_1_bc66_alt sample_count_1_bc67_alt sample_count_1_bc68_alt sample_count_1_bc69_alt sample_count_1_bc70_alt sample_count_1_bc71_alt sample_count_1_bc72_alt sample_count_1_bc73_alt sample_count_1_bc74_alt sample_count_1_bc75_alt sample_count_1_bc76_alt sample_count_1_bc77_alt sample_count_1_bc78_alt sample_count_1_bc79_alt sample_count_2_bc1_ref sample_count_2_bc2_ref sample_count_2_bc3_ref sample_count_2_bc4_ref sample_count_2_bc5_ref sample_count_2_bc6_ref sample_count_2_bc7_ref sample_count_2_bc8_ref sample_count_2_bc9_ref sample_count_2_bc10_ref sample_count_2_bc11_ref sample_count_2_bc12_ref sample_count_2_bc13_ref sample_count_2_bc14_ref sample_count_2_bc15_ref sample_count_2_bc16_ref sample_count_2_bc17_ref sample_count_2_bc18_ref sample_count_2_bc19_ref sample_count_2_bc20_ref sample_count_2_bc21_ref sample_count_2_bc22_ref sample_count_2_bc23_ref sample_count_2_bc24_ref sample_count_2_bc25_ref sample_count_2_bc26_ref sample_count_2_bc27_ref sample_count_2_bc28_ref sample_count_2_bc29_ref sample_count_2_bc30_ref sample_count_2_bc31_ref sample_count_2_bc32_ref sample_count_2_bc33_ref sample_count_2_bc34_ref sample_count_2_bc35_ref sample_count_2_bc36_ref sample_count_2_bc37_ref sample_count_2_bc38_ref sample_count_2_bc39_ref sample_count_2_bc40_ref sample_count_2_bc41_ref sample_count_2_bc42_ref sample_count_2_bc43_ref sample_count_2_bc44_ref sample_count_2_bc45_ref sample_count_2_bc46_ref sample_count_2_bc47_ref sample_count_2_bc48_ref sample_count_2_bc49_ref sample_count_2_bc50_ref sample_count_2_bc51_ref sample_count_2_bc52_ref sample_count_2_bc53_ref sample_count_2_bc54_ref sample_count_2_bc55_ref sample_count_2_bc56_ref sample_count_2_bc57_ref sample_count_2_bc58_ref sample_count_2_bc59_ref sample_count_2_bc60_ref sample_count_2_bc61_ref sample_count_2_bc62_ref sample_count_2_bc63_ref sample_count_2_bc64_ref sample_count_2_bc65_ref sample_count_2_bc66_ref sample_count_2_bc67_ref sample_count_2_bc68_ref sample_count_2_bc69_ref sample_count_2_bc70_ref sample_count_2_bc71_ref sample_count_2_bc72_ref sample_count_2_bc73_ref sample_count_2_bc74_ref sample_count_2_bc75_ref sample_count_2_bc76_ref sample_count_2_bc77_ref sample_count_2_bc78_ref sample_count_2_bc79_ref sample_count_2_bc1_alt sample_count_2_bc2_alt sample_count_2_bc3_alt sample_count_2_bc4_alt sample_count_2_bc5_alt sample_count_2_bc6_alt sample_count_2_bc7_alt sample_count_2_bc8_alt sample_count_2_bc9_alt sample_count_2_bc10_alt sample_count_2_bc11_alt sample_count_2_bc12_alt sample_count_2_bc13_alt sample_count_2_bc14_alt sample_count_2_bc15_alt sample_count_2_bc16_alt sample_count_2_bc17_alt sample_count_2_bc18_alt sample_count_2_bc19_alt sample_count_2_bc20_alt sample_count_2_bc21_alt sample_count_2_bc22_alt sample_count_2_bc23_alt sample_count_2_bc24_alt sample_count_2_bc25_alt sample_count_2_bc26_alt sample_count_2_bc27_alt sample_count_2_bc28_alt sample_count_2_bc29_alt sample_count_2_bc30_alt sample_count_2_bc31_alt sample_count_2_bc32_alt sample_count_2_bc33_alt sample_count_2_bc34_alt sample_count_2_bc35_alt sample_count_2_bc36_alt sample_count_2_bc37_alt sample_count_2_bc38_alt sample_count_2_bc39_alt sample_count_2_bc40_alt sample_count_2_bc41_alt sample_count_2_bc42_alt sample_count_2_bc43_alt sample_count_2_bc44_alt sample_count_2_bc45_alt sample_count_2_bc46_alt sample_count_2_bc47_alt sample_count_2_bc48_alt sample_count_2_bc49_alt sample_count_2_bc50_alt sample_count_2_bc51_alt sample_count_2_bc52_alt sample_count_2_bc53_alt sample_count_2_bc54_alt sample_count_2_bc55_alt sample_count_2_bc56_alt sample_count_2_bc57_alt sample_count_2_bc58_alt sample_count_2_bc59_alt sample_count_2_bc60_alt sample_count_2_bc61_alt sample_count_2_bc62_alt sample_count_2_bc63_alt sample_count_2_bc64_alt sample_count_2_bc65_alt sample_count_2_bc66_alt sample_count_2_bc67_alt sample_count_2_bc68_alt sample_count_2_bc69_alt sample_count_2_bc70_alt sample_count_2_bc71_alt sample_count_2_bc72_alt sample_count_2_bc73_alt sample_count_2_bc74_alt sample_count_2_bc75_alt sample_count_2_bc76_alt sample_count_2_bc77_alt sample_count_2_bc78_alt sample_count_2_bc79_alt sample_count_3_bc1_ref sample_count_3_bc2_ref sample_count_3_bc3_ref sample_count_3_bc4_ref sample_count_3_bc5_ref sample_count_3_bc6_ref sample_count_3_bc7_ref sample_count_3_bc8_ref sample_count_3_bc9_ref sample_count_3_bc10_ref sample_count_3_bc11_ref sample_count_3_bc12_ref sample_count_3_bc13_ref sample_count_3_bc14_ref sample_count_3_bc15_ref sample_count_3_bc16_ref sample_count_3_bc17_ref sample_count_3_bc18_ref sample_count_3_bc19_ref sample_count_3_bc20_ref sample_count_3_bc21_ref sample_count_3_bc22_ref sample_count_3_bc23_ref sample_count_3_bc24_ref sample_count_3_bc25_ref sample_count_3_bc26_ref sample_count_3_bc27_ref sample_count_3_bc28_ref sample_count_3_bc29_ref sample_count_3_bc30_ref sample_count_3_bc31_ref sample_count_3_bc32_ref sample_count_3_bc33_ref sample_count_3_bc34_ref sample_count_3_bc35_ref sample_count_3_bc36_ref sample_count_3_bc37_ref sample_count_3_bc38_ref sample_count_3_bc39_ref sample_count_3_bc40_ref sample_count_3_bc41_ref sample_count_3_bc42_ref sample_count_3_bc43_ref sample_count_3_bc44_ref sample_count_3_bc45_ref sample_count_3_bc46_ref sample_count_3_bc47_ref sample_count_3_bc48_ref sample_count_3_bc49_ref sample_count_3_bc50_ref sample_count_3_bc51_ref sample_count_3_bc52_ref sample_count_3_bc53_ref sample_count_3_bc54_ref sample_count_3_bc55_ref sample_count_3_bc56_ref sample_count_3_bc57_ref sample_count_3_bc58_ref sample_count_3_bc59_ref sample_count_3_bc60_ref sample_count_3_bc61_ref sample_count_3_bc62_ref sample_count_3_bc63_ref sample_count_3_bc64_ref sample_count_3_bc65_ref sample_count_3_bc66_ref sample_count_3_bc67_ref sample_count_3_bc68_ref sample_count_3_bc69_ref sample_count_3_bc70_ref sample_count_3_bc71_ref sample_count_3_bc72_ref sample_count_3_bc73_ref sample_count_3_bc74_ref sample_count_3_bc75_ref sample_count_3_bc76_ref sample_count_3_bc77_ref sample_count_3_bc78_ref sample_count_3_bc79_ref sample_count_3_bc1_alt sample_count_3_bc2_alt sample_count_3_bc3_alt sample_count_3_bc4_alt sample_count_3_bc5_alt sample_count_3_bc6_alt sample_count_3_bc7_alt sample_count_3_bc8_alt sample_count_3_bc9_alt sample_count_3_bc10_alt sample_count_3_bc11_alt sample_count_3_bc12_alt sample_count_3_bc13_alt sample_count_3_bc14_alt sample_count_3_bc15_alt sample_count_3_bc16_alt sample_count_3_bc17_alt sample_count_3_bc18_alt sample_count_3_bc19_alt sample_count_3_bc20_alt sample_count_3_bc21_alt sample_count_3_bc22_alt sample_count_3_bc23_alt sample_count_3_bc24_alt sample_count_3_bc25_alt sample_count_3_bc26_alt sample_count_3_bc27_alt sample_count_3_bc28_alt sample_count_3_bc29_alt sample_count_3_bc30_alt sample_count_3_bc31_alt sample_count_3_bc32_alt sample_count_3_bc33_alt sample_count_3_bc34_alt sample_count_3_bc35_alt sample_count_3_bc36_alt sample_count_3_bc37_alt sample_count_3_bc38_alt sample_count_3_bc39_alt sample_count_3_bc40_alt sample_count_3_bc41_alt sample_count_3_bc42_alt sample_count_3_bc43_alt sample_count_3_bc44_alt sample_count_3_bc45_alt sample_count_3_bc46_alt sample_count_3_bc47_alt sample_count_3_bc48_alt sample_count_3_bc49_alt sample_count_3_bc50_alt sample_count_3_bc51_alt sample_count_3_bc52_alt sample_count_3_bc53_alt sample_count_3_bc54_alt sample_count_3_bc55_alt sample_count_3_bc56_alt sample_count_3_bc57_alt sample_count_3_bc58_alt sample_count_3_bc59_alt sample_count_3_bc60_alt sample_count_3_bc61_alt sample_count_3_bc62_alt sample_count_3_bc63_alt sample_count_3_bc64_alt sample_count_3_bc65_alt sample_count_3_bc66_alt sample_count_3_bc67_alt sample_count_3_bc68_alt sample_count_3_bc69_alt sample_count_3_bc70_alt sample_count_3_bc71_alt sample_count_3_bc72_alt sample_count_3_bc73_alt sample_count_3_bc74_alt sample_count_3_bc75_alt sample_count_3_bc76_alt sample_count_3_bc77_alt sample_count_3_bc78_alt sample_count_3_bc79_alt
variant_10 7 7 3 1 15 1 18 43 2 22 16 16 4 6 3 17 2 24 3 17 5 16 41 8 12 25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 29 5 12 11 3 2 4 2 2 1 4 32 10 2 5 16 6 8 12 8 9 7 13 4 8 4 2 11 1 16 9 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 6 1 7 8 2 24 8 3 23 4 7 1 2 13 11 1 4 14 1 4 2 6 10 10 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 27 10 2 32 3 16 35 6 19 17 16 6 5 55 1 13 22 15 17 2 10 34 1 54 6 12 15 2 5 15 11 44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 10 22 7 4 4 13 2 31 5 15 27 6 12 49 6 8 12 13 15 7 12 5 5 21 1 23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 25 35 17 3 2 18 3 10 14 13 25 25 18 16 10 25 18 2 10 19 2 8 4 27 7 1 10 12 7 15 40 19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100 39 9 21 16 2 5 22 46 23 55 38 23 39 13 21 2 8 31 27 32 5 7 9 19 20 7 14 16 45 1 36 14 7 14 8 3 26 11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 6 11 1 19 2 7 3 31 6 3 4 2 1 13 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 8 18 12 39 12 15 5 22 17 24 39 20 5 17 30 5 8 23 20 58 18 1 10 2 12 7 8 11 6 13 17 22 64 23 20 11 6 10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 11 8 19 11 13 6 5 2 9 20 11 7 1 4 3 21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13 25 19 43 3 41 10 51 3 26 49 8 27 3 5 21 36 5 42 5 10 2 2 26 7 29 2 33 5 5 15 36 115 5 37 4 7 27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 9 32 27 8 18 4 6 11 3 9 5 4 1 3 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100314 1 17 3 6 8 4 4 6 15 12 4 17 7 10 9 11 15 9 16 2 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5 5 20 11 9 4 2 6 24 5 11 12 3 10 11 2 4 6 29 34 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 2 18 11 21 6 1 7 33 10 3 38 2 6 6 2 5 2 2 28 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_100463 1 2 3 11 2 2 24 3 9 1 2 4 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 4 1 4 1 4 9 2 7 8 2 14 10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 22 1 9 2 2 2 6 8 3 9 4 6 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_101 7 19 4 28 1 5 1 1 9 1 6 7 5 12 59 13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 32 2 12 1 22 19 11 6 45 8 13 2 24 8 51 12 16 4 51 11 25 35 7 6 79 34 19 9 26 4 43 10 11 6 4 18 7 22 1 37 6 58 2 12 41 25 2 16 17 29 19 20 63 16 82 15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 12 40 3 16 23 5 3 2 2 6 4 12 5 24 26 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 48 23 39 29 5 84 37 51 27 18 24 20 20 15 13 13 18 6 32 9 23 30 8 38 22 12 49 23 40 6 13 9 32 20 38 5 4 25 31 4 39 5 58 36 16 23 5 61 1 22 4 5 272 8 37 23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 21 5 5 3 4 2 4 3 1 2 2 2 16 12 3 6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 32 1 37 22 33 45 14 1 23 36 22 5 11 5 53 17 14 10 2 2 22 11 14 62 12 25 6 17 62 7 91 10 25 9 6 1 11 15 58 23 12 24 2 12 106 19 35 51 16 13 26 27 88 28 80 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
variant_101165 4 13 9 26 13 2 24 2 5 22 4 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 3 3 10 4 2 13 1 27 2 3 7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5 1 12 7 3 1 4 3 6 12 7 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
ggplot(top_var, aes(x = logFC, y = -log10(P.Value))) +
  geom_point(alpha = 0.6)

3.2 Element Analysis

BCalm provides the function fit_elements. It takes the MPRASet object as input and applies the statistical modeling. Again the block_vector gives reference which barcode belongs to which replicate. We again set normalize = TRUE to perform total count normalization on the RNA and DNA libraries.

bcs <- ncol(dna_elem) / nr_reps
block_vector <- rep(1:nr_reps, each=bcs)
mpralm_fit_elem <- fit_elements(object = BcLabelMPRASetExample, normalize=TRUE, block = block_vector, plot = FALSE)

3.2.1 Visualisation and results

In this section, we will examine the visualization of our analysis results using the mpra_treat and plot_groups functions. To visualize our results, we utilize the plot_groups function, which allows us to compare logratios for each group. We use the results from fit_elements above. As negative controls we use "control" and as test "tested".

plot_groups(mpralm_fit_elem, 0.975, neg_label="control", test_label="tested")

The mpra_treat() function reimplements the treat() function from the limma package. This function performs a t-test with a specified threshold, making it especially useful for identifying elements with significant differential activity in MPRA data.

treat <- mpra_treat(mpralm_fit_elem, 0.975, neg_label="control")
result <- topTreat(treat, coef = 1, number = Inf)
head(result)
##                 logFC  AveExpr        t       P.Value     adj.P.Val
## oligo_006626 3.780354 3.783778 34.48748 1.908268e-137 3.192533e-134
## oligo_006624 3.528993 3.532478 28.82343 1.179753e-107 9.868637e-105
## oligo_006203 2.900044 2.902953 16.70435  1.642477e-48  9.159546e-46
## oligo_006468 2.215949 2.220075 16.16453  7.080540e-48  2.961436e-45
## oligo_005287 1.951758 1.954487 15.58402  1.340092e-45  4.483949e-43
## oligo_005641 1.820148 1.823736 14.10421  7.558722e-39  2.014197e-36

4 Session Info

R Under development (unstable) (2024-10-21 r87258) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.1 LTS

Matrix products: default BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York tzcode source: system (glibc)

attached base packages: [1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages: [1] kableExtra_1.4.0 ggplot2_3.5.1
[3] dplyr_1.1.4 BCalm_0.99.0
[5] curl_6.1.0 limma_3.63.3
[7] SummarizedExperiment_1.37.0 Biobase_2.67.0
[9] GenomicRanges_1.59.1 GenomeInfoDb_1.43.2
[11] IRanges_2.41.2 S4Vectors_0.45.2
[13] MatrixGenerics_1.19.1 matrixStats_1.5.0
[15] BiocGenerics_0.53.3 generics_0.1.3
[17] BiocStyle_2.35.0

loaded via a namespace (and not attached): [1] gtable_0.3.6 xfun_0.50 bslib_0.8.0
[4] mpra_1.29.0 lattice_0.22-6 vctrs_0.6.5
[7] tools_4.5.0 tibble_3.2.1 pkgconfig_2.0.3
[10] Matrix_1.7-1 lifecycle_1.0.4 GenomeInfoDbData_1.2.13 [13] farver_2.1.2 compiler_4.5.0 stringr_1.5.1
[16] statmod_1.5.0 munsell_0.5.1 htmltools_0.5.8.1
[19] sass_0.4.9 yaml_2.3.10 pillar_1.10.1
[22] crayon_1.5.3 jquerylib_0.1.4 tidyr_1.3.1
[25] DelayedArray_0.33.3 cachem_1.1.0 abind_1.4-8
[28] tidyselect_1.2.1 digest_0.6.37 stringi_1.8.4
[31] purrr_1.0.2 bookdown_0.42 labeling_0.4.3
[34] fastmap_1.2.0 grid_4.5.0 colorspace_2.1-1
[37] cli_3.6.3 SparseArray_1.7.2 magrittr_2.0.3
[40] S4Arrays_1.7.1 withr_3.0.2 scales_1.3.0
[43] UCSC.utils_1.3.0 rmarkdown_2.29 XVector_0.47.2
[46] httr_1.4.7 evaluate_1.0.3 knitr_1.49
[49] viridisLite_0.4.2 rlang_1.1.4 glue_1.8.0
[52] xml2_1.3.6 BiocManager_1.30.25 svglite_2.1.3
[55] rstudioapi_0.17.1 jsonlite_1.8.9 R6_2.5.1
[58] systemfonts_1.1.0

References

Csárdi, Gábor, Jim Hester, Hadley Wickham, Winston Chang, Martin Morgan, and Dan Tenenbaum. 2024. README — Cran.r-Project.org.” https://cran.r-project.org/web/packages/remotes/readme/README.html.
Gordon, M. Grace, Fumitaka Inoue, Beth Martin, Max Schubach, Vikram Agarwal, Sean Whalen, Shiyun Feng, et al. 2020. “lentiMPRA and MPRAflow for High-Throughput Functional Characterization of Gene Regulatory Elements.” Nature Protocols 15 (8): 2387–2412. https://doi.org/10.1038/s41596-020-0333-5.
Law, Charity W, Yunshun Chen, Wei Shi, and Gordon K Smyth. 2014. “Voom: Precision Weights Unlock Linear Model Analysis Tools for RNA-seq Read Counts.” Genome Biology 15: R29. https://doi.org/10.1186/gb-2014-15-2-r29.
Myint, Leslie, Dimitrios G Avramopoulos, Loyal A Goff, and Kasper D Hansen. 2019. “Linear Models Enable Powerful Differential Activity Analysis in Massively Parallel Reporter Assays.” BMC Genomics 20: 209. https://doi.org/10.1186/s12864-019-5556-x.
Wickham, Hadley, Jim Hester, Winston Chang, and Jennifer Bryan. 2022. Devtools: Tools to Make Developing r Packages Easier.