1 Basics

1.1 Install chevreulProcess

R is an open-source statistical environment which can be easily modified to enhance its functionality via packages. chevreulProcess is a R package available via the Bioconductor repository for packages. R can be installed on any operating system from CRAN after which you can install chevreulProcess by using the following commands in your R session:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

BiocManager::install("chevreulProcess")

1.2 Required knowledge

The chevreulProcess package is designed for single-cell RNA sequencing data. The functions included within this package are derived from other packages that have implemented the infrastructure needed for RNA-seq data processing and analysis. Packages that have been instrumental in the development of chevreulProcess include, Biocpkg("SummarizedExperiment") and Biocpkg("scater").

1.3 Asking for help

R and Bioconductor have a steep learning curve so it is critical to learn where to ask for help. The Bioconductor support site is the main resource for getting help: remember to use the chevreulProcess tag and check the older posts.

2 Quick start to using chevreulProcess

The chevreulProcess package contains functions to preprocess, cluster, visualize, and perform other analyses on scRNA-seq data. It also contains a shiny app for easy visualization and analysis of scRNA data.

chvereul uses SingelCellExperiment (SCE) object type (from SingleCellExperiment) to store expression and other metadata from single-cell experiments.

This package features functions capable of:

  • Performing Clustering at a range of resolutions and Dimensional reduction of Raw Sequencing Data.
  • Visualizing scRNA data using different plotting functions.
  • Integration of multiple datasets for consistent analyses.
  • Cell cycle state regression and labeling.

library("chevreulProcess")

# Load the data
library(chevreuldata)
chevreul_sce <- human_gene_transcript_sce()
chevreul_sce
#> class: SingleCellExperiment 
#> dim: 9740 883 
#> metadata(2): markers experiment
#> assays(3): counts logcounts scaledata
#> rownames(9740): 5-8S-rRNA A2M-AS1 ... HHIP-AS1 AC117490.2
#> rowData names(0):
#> colnames(883): ds20181001-0001 ds20181001-0002 ... ds20181001-1039
#>   ds20181001-1040
#> colData names(49): orig.ident nCount_gene ... nFeature_transcript ident
#> reducedDimNames(2): PCA UMAP
#> mainExpName: gene
#> altExpNames(1): transcript

R session information.

#> R Under development (unstable) (2024-10-21 r87258)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] chevreuldata_0.99.16        ExperimentHub_2.15.0       
#>  [3] AnnotationHub_3.15.0        BiocFileCache_2.15.0       
#>  [5] dbplyr_2.5.0                chevreulProcess_0.99.10    
#>  [7] scater_1.35.0               ggplot2_3.5.1              
#>  [9] scuttle_1.17.0              SingleCellExperiment_1.29.1
#> [11] SummarizedExperiment_1.37.0 Biobase_2.67.0             
#> [13] GenomicRanges_1.59.1        GenomeInfoDb_1.43.1        
#> [15] IRanges_2.41.1              S4Vectors_0.45.2           
#> [17] BiocGenerics_0.53.3         generics_0.1.3             
#> [19] MatrixGenerics_1.19.0       matrixStats_1.4.1          
#> [21] BiocStyle_2.35.0           
#> 
#> loaded via a namespace (and not attached):
#>   [1] shape_1.4.6.1              jsonlite_1.8.9            
#>   [3] magrittr_2.0.3             ggbeeswarm_0.7.2          
#>   [5] GenomicFeatures_1.59.1     rmarkdown_2.29            
#>   [7] fs_1.6.5                   GlobalOptions_0.1.2       
#>   [9] BiocIO_1.17.0              zlibbioc_1.53.0           
#>  [11] vctrs_0.6.5                memoise_2.0.1             
#>  [13] Rsamtools_2.23.0           DelayedMatrixStats_1.29.0 
#>  [15] RCurl_1.98-1.16            htmltools_0.5.8.1         
#>  [17] S4Arrays_1.7.1             curl_6.0.1                
#>  [19] BiocNeighbors_2.1.0        SparseArray_1.7.2         
#>  [21] sass_0.4.9                 bslib_0.8.0               
#>  [23] cachem_1.1.0               ResidualMatrix_1.17.0     
#>  [25] GenomicAlignments_1.43.0   igraph_2.1.1              
#>  [27] mime_0.12                  lifecycle_1.0.4           
#>  [29] pkgconfig_2.0.3            rsvd_1.0.5                
#>  [31] Matrix_1.7-1               R6_2.5.1                  
#>  [33] fastmap_1.2.0              GenomeInfoDbData_1.2.13   
#>  [35] digest_0.6.37              colorspace_2.1-1          
#>  [37] AnnotationDbi_1.69.0       dqrng_0.4.1               
#>  [39] irlba_2.3.5.1              RSQLite_2.3.7             
#>  [41] beachmat_2.23.1            filelock_1.0.3            
#>  [43] fansi_1.0.6                httr_1.4.7                
#>  [45] abind_1.4-8                compiler_4.5.0            
#>  [47] bit64_4.5.2                withr_3.0.2               
#>  [49] BiocParallel_1.41.0        viridis_0.6.5             
#>  [51] DBI_1.2.3                  rappdirs_0.3.3            
#>  [53] DelayedArray_0.33.2        rjson_0.2.23              
#>  [55] bluster_1.17.0             tools_4.5.0               
#>  [57] vipor_0.4.7                beeswarm_0.4.0            
#>  [59] glue_1.8.0                 restfulr_0.0.15           
#>  [61] batchelor_1.23.0           grid_4.5.0                
#>  [63] cluster_2.1.6              megadepth_1.17.0          
#>  [65] gtable_0.3.6               tzdb_0.4.0                
#>  [67] tidyr_1.3.1                ensembldb_2.31.0          
#>  [69] hms_1.1.3                  EnsDb.Mmusculus.v79_2.99.0
#>  [71] metapod_1.15.0             BiocSingular_1.23.0       
#>  [73] ScaledMatrix_1.15.0        utf8_1.2.4                
#>  [75] XVector_0.47.0             ggrepel_0.9.6             
#>  [77] BiocVersion_3.21.1         pillar_1.9.0              
#>  [79] stringr_1.5.1              limma_3.63.2              
#>  [81] circlize_0.4.16            dplyr_1.1.4               
#>  [83] lattice_0.22-6             rtracklayer_1.67.0        
#>  [85] bit_4.5.0                  tidyselect_1.2.1          
#>  [87] locfit_1.5-9.10            Biostrings_2.75.1         
#>  [89] knitr_1.49                 gridExtra_2.3             
#>  [91] bookdown_0.41              ProtGenerics_1.39.0       
#>  [93] edgeR_4.5.0                cmdfun_1.0.2              
#>  [95] xfun_0.49                  statmod_1.5.0             
#>  [97] stringi_1.8.4              UCSC.utils_1.3.0          
#>  [99] EnsDb.Hsapiens.v86_2.99.0  lazyeval_0.2.2            
#> [101] yaml_2.3.10                evaluate_1.0.1            
#> [103] codetools_0.2-20           tibble_3.2.1              
#> [105] BiocManager_1.30.25        cli_3.6.3                 
#> [107] munsell_0.5.1              jquerylib_0.1.4           
#> [109] Rcpp_1.0.13-1              png_0.1-8                 
#> [111] XML_3.99-0.17              parallel_4.5.0            
#> [113] readr_2.1.5                blob_1.2.4                
#> [115] scran_1.35.0               AnnotationFilter_1.31.0   
#> [117] sparseMatrixStats_1.19.0   bitops_1.0-9              
#> [119] viridisLite_0.4.2          scales_1.3.0              
#> [121] purrr_1.0.2                crayon_1.5.3              
#> [123] rlang_1.1.4                KEGGREST_1.47.0