Load and process single cell data

Here we perform analysis of PBMCs from 8 individuals stimulated with interferon-β Kang, et al, 2018, Nature Biotech. We perform standard processing with dreamlet to compute pseudobulk before applying crumblr.

Here, single cell RNA-seq data is downloaded from ExperimentHub.

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

sce$ind <- as.character(sce$ind)

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim

Aggregate to pseudobulk

Dreamlet creates the pseudobulk dataset:

# Since 'ind' is the individual and 'StimStatus' is the stimulus status,
# create unique identifier for each sample
sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk data by specifying cluster_id and sample_id for aggregating cells
pb <- aggregateToPseudoBulk(sce,
  assay = "counts",
  cluster_id = "cell",
  sample_id = "id",
  verbose = FALSE
)

Process data

Here we evaluate whether the observed cell proportions change in response to interferon-β.

library(crumblr)

# use dreamlet::cellCounts() to extract data
cellCounts(pb)[1:3, 1:3]
##          B cells CD14+ Monocytes CD4 T cells
## ctrl101      101             136         288
## ctrl1015     424             644         819
## ctrl1016     119             315         413
# Apply crumblr transformation
# cobj is an EList object compatable with limma workflow
# cobj$E stores transformed values
# cobj$weights stores precision weights
cobj <- crumblr(cellCounts(pb))

Analysis

Now continue on with the downstream analysis

library(variancePartition)

fit <- dream(cobj, ~ StimStatus + ind, colData(pb))
fit <- eBayes(fit)

topTable(fit, coef = "StimStatusstim", number = Inf)
##                         logFC    AveExpr          t     P.Value  adj.P.Val         B
## CD8 T cells       -0.25085170  0.0857175 -4.0787416 0.002436375 0.01949100 -1.279815
## Dendritic cells    0.37386979 -2.1849234  3.1619195 0.010692544 0.02738587 -2.638507
## CD14+ Monocytes   -0.10525402  1.2698117 -3.1226341 0.011413912 0.02738587 -2.709377
## B cells           -0.10478652  0.5516882 -3.0134349 0.013692935 0.02738587 -2.940542
## CD4 T cells       -0.07840101  2.0201947 -2.2318104 0.050869691 0.08139151 -4.128069
## FCGR3A+ Monocytes  0.07425165 -0.2567492  1.6647681 0.128337022 0.17111603 -4.935304
## NK cells           0.10270672  0.3797777  1.5181860 0.161321761 0.18436773 -5.247806
## Megakaryocytes     0.01377768 -1.8655172  0.1555131 0.879651456 0.87965146 -6.198336

Given the results here, we see that CD8 T cells at others change relative abundance following treatment with iterferon-β.

Session Info

## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB             
##  [4] LC_COLLATE=C               LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] muscData_1.21.0             scater_1.35.0               scuttle_1.17.0             
##  [4] ExperimentHub_2.15.0        AnnotationHub_3.15.0        BiocFileCache_2.15.1       
##  [7] dbplyr_2.5.0                muscat_1.21.0               dreamlet_1.5.0             
## [10] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0 Biobase_2.67.0             
## [13] GenomicRanges_1.59.1        GenomeInfoDb_1.43.2         IRanges_2.41.2             
## [16] S4Vectors_0.45.2            BiocGenerics_0.53.3         generics_0.1.3             
## [19] MatrixGenerics_1.19.1       matrixStats_1.5.0           lubridate_1.9.4            
## [22] forcats_1.0.0               stringr_1.5.1               dplyr_1.1.4                
## [25] purrr_1.0.2                 readr_2.1.5                 tidyr_1.3.1                
## [28] tibble_3.2.1                tidyverse_2.0.0             glue_1.8.0                 
## [31] HMP_2.0.1                   dirmult_0.1.3-5             variancePartition_1.37.2   
## [34] BiocParallel_1.41.0         limma_3.63.3                crumblr_0.99.14            
## [37] ggplot2_3.5.1              
## 
## loaded via a namespace (and not attached):
##   [1] fs_1.6.5                  bitops_1.0-9              httr_1.4.7               
##   [4] RColorBrewer_1.1-3        doParallel_1.0.17         Rgraphviz_2.51.0         
##   [7] numDeriv_2016.8-1.1       sctransform_0.4.1         tools_4.5.0              
##  [10] backports_1.5.0           R6_2.5.1                  vegan_2.6-8              
##  [13] metafor_4.6-0             lazyeval_0.2.2            mgcv_1.9-1               
##  [16] GetoptLong_1.0.5          permute_0.9-7             withr_3.0.2              
##  [19] prettyunits_1.2.0         gridExtra_2.3             cli_3.6.3                
##  [22] sandwich_3.1-1            labeling_0.4.3            sass_0.4.9               
##  [25] KEGGgraph_1.67.0          SQUAREM_2021.1            mvtnorm_1.3-3            
##  [28] blme_1.0-6                mixsqp_0.3-54             yulab.utils_0.1.9        
##  [31] zenith_1.9.0              parallelly_1.41.0         invgamma_1.1             
##  [34] RSQLite_2.3.9             shape_1.4.6.1             gridGraphics_0.5-1       
##  [37] gtools_3.9.5              Matrix_1.7-1              metadat_1.2-0            
##  [40] ggbeeswarm_0.7.2          abind_1.4-8               lifecycle_1.0.4          
##  [43] multcomp_1.4-26           yaml_2.3.10               edgeR_4.5.1              
##  [46] mathjaxr_1.6-0            gplots_3.2.0              SparseArray_1.7.4        
##  [49] grid_4.5.0                blob_1.2.4                crayon_1.5.3             
##  [52] lattice_0.22-6            beachmat_2.23.6           msigdbr_7.5.1            
##  [55] annotate_1.85.0           KEGGREST_1.47.0           pillar_1.10.1            
##  [58] knitr_1.49                ComplexHeatmap_2.23.0     rjson_0.2.23             
##  [61] boot_1.3-31               estimability_1.5.1        corpcor_1.6.10           
##  [64] future.apply_1.11.3       codetools_0.2-20          ggfun_0.1.8              
##  [67] data.table_1.16.4         vctrs_0.6.5               png_0.1-8                
##  [70] treeio_1.31.0             Rdpack_2.6.2              gtable_0.3.6             
##  [73] assertthat_0.2.1          cachem_1.1.0              xfun_0.50                
##  [76] mime_0.12                 rbibutils_2.3             S4Arrays_1.7.1           
##  [79] Rfast_2.1.4               coda_0.19-4.1             reformulas_0.4.0         
##  [82] survival_3.8-3            iterators_1.0.14          statmod_1.5.0            
##  [85] TH.data_1.1-3             nlme_3.1-166              pbkrtest_0.5.3           
##  [88] ggtree_3.15.0             bit64_4.6.0-1             filelock_1.0.3           
##  [91] progress_1.2.3            EnvStats_3.0.0            TMB_1.9.16               
##  [94] bslib_0.8.0               irlba_2.3.5.1             vipor_0.4.7              
##  [97] KernSmooth_2.23-26        rpart_4.1.24              colorspace_2.1-1         
## [100] rmeta_3.0                 DBI_1.2.3                 DESeq2_1.47.1            
## [103] tidyselect_1.2.1          emmeans_1.10.6            curl_6.1.0               
## [106] bit_4.5.0.1               compiler_4.5.0            graph_1.85.1             
## [109] BiocNeighbors_2.1.2       DelayedArray_0.33.4       scales_1.3.0             
## [112] caTools_1.18.3            remaCor_0.0.18            rappdirs_0.3.3           
## [115] digest_0.6.37             minqa_1.2.8               rmarkdown_2.29           
## [118] aod_1.3.3                 XVector_0.47.2            RhpcBLASctl_0.23-42      
## [121] htmltools_0.5.8.1         pkgconfig_2.0.3           lme4_1.1-36              
## [124] sparseMatrixStats_1.19.0  mashr_0.2.79              fastmap_1.2.0            
## [127] rlang_1.1.5               GlobalOptions_0.1.2       UCSC.utils_1.3.1         
## [130] DelayedMatrixStats_1.29.1 farver_2.1.2              jquerylib_0.1.4          
## [133] zoo_1.8-12                jsonlite_1.8.9            BiocSingular_1.23.0      
## [136] RCurl_1.98-1.16           magrittr_2.0.3            GenomeInfoDbData_1.2.13  
## [139] ggplotify_0.1.2           patchwork_1.3.0           munsell_0.5.1            
## [142] Rcpp_1.0.14               ape_5.8-1                 babelgene_22.9           
## [145] viridis_0.6.5             EnrichmentBrowser_2.37.0  RcppZiggurat_0.1.6       
## [148] stringi_1.8.4             MASS_7.3-64               plyr_1.8.9               
## [151] listenv_0.9.1             ggrepel_0.9.6             Biostrings_2.75.3        
## [154] splines_4.5.0             hms_1.1.3                 circlize_0.4.16          
## [157] locfit_1.5-9.10           ScaledMatrix_1.15.0       reshape2_1.4.4           
## [160] BiocVersion_3.21.1        XML_3.99-0.18             evaluate_1.0.3           
## [163] BiocManager_1.30.25       RcppParallel_5.1.9        rpart.plot_3.1.2         
## [166] nloptr_2.1.1              tzdb_0.4.0                foreach_1.5.2            
## [169] future_1.34.0             clue_0.3-66               scattermore_1.2          
## [172] ashr_2.2-63               rsvd_1.0.5                broom_1.0.7              
## [175] xtable_1.8-4              fANCOVA_0.6-1             tidytree_0.4.6           
## [178] viridisLite_0.4.2         truncnorm_1.0-9           glmmTMB_1.1.10           
## [181] lmerTest_3.1-3            aplot_0.2.4               memoise_2.0.1            
## [184] beeswarm_0.4.0            AnnotationDbi_1.69.0      cluster_2.1.8            
## [187] globals_0.16.3            timechange_0.3.0          GSEABase_1.69.0