Here we perform analysis of PBMCs from 8 individuals stimulated with
interferon-β Kang, et
al, 2018, Nature Biotech. We perform standard processing with dreamlet
to compute pseudobulk before applying crumblr
.
Here, single cell RNA-seq data is downloaded from ExperimentHub.
library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)
# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]
sce$ind <- as.character(sce$ind)
# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]
# compute QC metrics
qc <- perCellQCMetrics(sce)
# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]
# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim
Dreamlet creates the pseudobulk dataset:
# Since 'ind' is the individual and 'StimStatus' is the stimulus status,
# create unique identifier for each sample
sce$id <- paste0(sce$StimStatus, sce$ind)
# Create pseudobulk data by specifying cluster_id and sample_id for aggregating cells
pb <- aggregateToPseudoBulk(sce,
assay = "counts",
cluster_id = "cell",
sample_id = "id",
verbose = FALSE
)
Here we evaluate whether the observed cell proportions change in response to interferon-β.
library(crumblr)
# use dreamlet::cellCounts() to extract data
cellCounts(pb)[1:3, 1:3]
## B cells CD14+ Monocytes CD4 T cells
## ctrl101 101 136 288
## ctrl1015 424 644 819
## ctrl1016 119 315 413
# Apply crumblr transformation
# cobj is an EList object compatable with limma workflow
# cobj$E stores transformed values
# cobj$weights stores precision weights
cobj <- crumblr(cellCounts(pb))
Now continue on with the downstream analysis
library(variancePartition)
fit <- dream(cobj, ~ StimStatus + ind, colData(pb))
fit <- eBayes(fit)
topTable(fit, coef = "StimStatusstim", number = Inf)
## logFC AveExpr t P.Value adj.P.Val B
## CD8 T cells -0.25085170 0.0857175 -4.0787416 0.002436375 0.01949100 -1.279815
## Dendritic cells 0.37386979 -2.1849234 3.1619195 0.010692544 0.02738587 -2.638507
## CD14+ Monocytes -0.10525402 1.2698117 -3.1226341 0.011413912 0.02738587 -2.709377
## B cells -0.10478652 0.5516882 -3.0134349 0.013692935 0.02738587 -2.940542
## CD4 T cells -0.07840101 2.0201947 -2.2318104 0.050869691 0.08139151 -4.128069
## FCGR3A+ Monocytes 0.07425165 -0.2567492 1.6647681 0.128337022 0.17111603 -4.935304
## NK cells 0.10270672 0.3797777 1.5181860 0.161321761 0.18436773 -5.247806
## Megakaryocytes 0.01377768 -1.8655172 0.1555131 0.879651456 0.87965146 -6.198336
Given the results here, we see that CD8 T cells at others change relative abundance following treatment with iterferon-β.
## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_GB
## [4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] muscData_1.21.0 scater_1.35.0 scuttle_1.17.0
## [4] ExperimentHub_2.15.0 AnnotationHub_3.15.0 BiocFileCache_2.15.1
## [7] dbplyr_2.5.0 muscat_1.21.0 dreamlet_1.5.0
## [10] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0 Biobase_2.67.0
## [13] GenomicRanges_1.59.1 GenomeInfoDb_1.43.2 IRanges_2.41.2
## [16] S4Vectors_0.45.2 BiocGenerics_0.53.3 generics_0.1.3
## [19] MatrixGenerics_1.19.1 matrixStats_1.5.0 lubridate_1.9.4
## [22] forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
## [25] purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
## [28] tibble_3.2.1 tidyverse_2.0.0 glue_1.8.0
## [31] HMP_2.0.1 dirmult_0.1.3-5 variancePartition_1.37.2
## [34] BiocParallel_1.41.0 limma_3.63.3 crumblr_0.99.16
## [37] ggplot2_3.5.1
##
## loaded via a namespace (and not attached):
## [1] fs_1.6.5 bitops_1.0-9 httr_1.4.7
## [4] RColorBrewer_1.1-3 doParallel_1.0.17 Rgraphviz_2.51.0
## [7] numDeriv_2016.8-1.1 sctransform_0.4.1 tools_4.5.0
## [10] backports_1.5.0 R6_2.5.1 vegan_2.6-8
## [13] metafor_4.6-0 lazyeval_0.2.2 mgcv_1.9-1
## [16] GetoptLong_1.0.5 permute_0.9-7 withr_3.0.2
## [19] prettyunits_1.2.0 gridExtra_2.3 cli_3.6.3
## [22] sandwich_3.1-1 labeling_0.4.3 sass_0.4.9
## [25] KEGGgraph_1.67.0 SQUAREM_2021.1 mvtnorm_1.3-3
## [28] blme_1.0-6 mixsqp_0.3-54 yulab.utils_0.1.9
## [31] zenith_1.9.0 parallelly_1.41.0 invgamma_1.1
## [34] RSQLite_2.3.9 shape_1.4.6.1 gridGraphics_0.5-1
## [37] gtools_3.9.5 Matrix_1.7-1 metadat_1.2-0
## [40] ggbeeswarm_0.7.2 abind_1.4-8 lifecycle_1.0.4
## [43] multcomp_1.4-26 yaml_2.3.10 edgeR_4.5.1
## [46] mathjaxr_1.6-0 gplots_3.2.0 SparseArray_1.7.4
## [49] grid_4.5.0 blob_1.2.4 crayon_1.5.3
## [52] lattice_0.22-6 beachmat_2.23.6 msigdbr_7.5.1
## [55] annotate_1.85.0 KEGGREST_1.47.0 pillar_1.10.1
## [58] knitr_1.49 ComplexHeatmap_2.23.0 rjson_0.2.23
## [61] boot_1.3-31 estimability_1.5.1 corpcor_1.6.10
## [64] future.apply_1.11.3 codetools_0.2-20 ggfun_0.1.8
## [67] data.table_1.16.4 vctrs_0.6.5 png_0.1-8
## [70] treeio_1.31.0 Rdpack_2.6.2 gtable_0.3.6
## [73] assertthat_0.2.1 cachem_1.1.0 xfun_0.50
## [76] mime_0.12 rbibutils_2.3 S4Arrays_1.7.1
## [79] Rfast_2.1.4 coda_0.19-4.1 reformulas_0.4.0
## [82] survival_3.8-3 iterators_1.0.14 statmod_1.5.0
## [85] TH.data_1.1-3 nlme_3.1-166 pbkrtest_0.5.3
## [88] ggtree_3.15.0 bit64_4.6.0-1 filelock_1.0.3
## [91] progress_1.2.3 EnvStats_3.0.0 TMB_1.9.16
## [94] bslib_0.8.0 irlba_2.3.5.1 vipor_0.4.7
## [97] KernSmooth_2.23-26 rpart_4.1.24 colorspace_2.1-1
## [100] rmeta_3.0 DBI_1.2.3 DESeq2_1.47.1
## [103] tidyselect_1.2.1 emmeans_1.10.6 curl_6.1.0
## [106] bit_4.5.0.1 compiler_4.5.0 graph_1.85.1
## [109] BiocNeighbors_2.1.2 DelayedArray_0.33.4 scales_1.3.0
## [112] caTools_1.18.3 remaCor_0.0.18 rappdirs_0.3.3
## [115] digest_0.6.37 minqa_1.2.8 rmarkdown_2.29
## [118] aod_1.3.3 XVector_0.47.2 RhpcBLASctl_0.23-42
## [121] htmltools_0.5.8.1 pkgconfig_2.0.3 lme4_1.1-36
## [124] sparseMatrixStats_1.19.0 mashr_0.2.79 fastmap_1.2.0
## [127] rlang_1.1.5 GlobalOptions_0.1.2 UCSC.utils_1.3.1
## [130] DelayedMatrixStats_1.29.1 farver_2.1.2 jquerylib_0.1.4
## [133] zoo_1.8-12 jsonlite_1.8.9 BiocSingular_1.23.0
## [136] RCurl_1.98-1.16 magrittr_2.0.3 GenomeInfoDbData_1.2.13
## [139] ggplotify_0.1.2 patchwork_1.3.0 munsell_0.5.1
## [142] Rcpp_1.0.14 ape_5.8-1 babelgene_22.9
## [145] viridis_0.6.5 EnrichmentBrowser_2.37.0 RcppZiggurat_0.1.6
## [148] stringi_1.8.4 MASS_7.3-64 plyr_1.8.9
## [151] listenv_0.9.1 ggrepel_0.9.6 Biostrings_2.75.3
## [154] splines_4.5.0 hms_1.1.3 circlize_0.4.16
## [157] locfit_1.5-9.10 ScaledMatrix_1.15.0 reshape2_1.4.4
## [160] BiocVersion_3.21.1 XML_3.99-0.18 evaluate_1.0.3
## [163] BiocManager_1.30.25 RcppParallel_5.1.9 rpart.plot_3.1.2
## [166] nloptr_2.1.1 tzdb_0.4.0 foreach_1.5.2
## [169] future_1.34.0 clue_0.3-66 scattermore_1.2
## [172] ashr_2.2-63 rsvd_1.0.5 broom_1.0.7
## [175] xtable_1.8-4 fANCOVA_0.6-1 tidytree_0.4.6
## [178] viridisLite_0.4.2 truncnorm_1.0-9 glmmTMB_1.1.10
## [181] lmerTest_3.1-3 aplot_0.2.4 memoise_2.0.1
## [184] beeswarm_0.4.0 AnnotationDbi_1.69.0 cluster_2.1.8
## [187] globals_0.16.3 timechange_0.3.0 GSEABase_1.69.0