Contents

0.1 Introduction

mist (Methylation Inference for Single-cell along Trajectory) is an R package for differential methylation (DM) analysis of single-cell DNA methylation (scDNAm) data. The package employs a Bayesian approach to model methylation changes along pseudotime and estimates developmental-stage-specific biological variations. It supports both single-group and two-group analyses, enabling users to identify genomic features exhibiting temporal changes in methylation levels or different methylation patterns between groups.

This vignette demonstrates how to use mist for: 1. Single-group analysis. 2. Two-group analysis.

0.2 Installation

To install the latest version of mist, run the following commands:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

# Install mist from GitHub
BiocManager::install("https://github.com/dxd429/mist")

From Bioconductor:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}
BiocManager::install("mist")

To view the package vignette in HTML format, run the following lines in R:

library(mist)
vignette("mist")

0.3 Example Workflow for Single-Group Analysis

In this section, we will estimate parameters and perform differential methylation analysis using single-group data.

1 Step 1: Load Example Data

Here we load the example data from GSE121708.

library(mist)
library(SingleCellExperiment)
# Load sample scDNAm data
Dat_sce <- readRDS(system.file("extdata", "small_sampleData_sce.rds", package = "mist"))

2 Step 2: Estimate Parameters Using estiParamSingle

# Estimate parameters for single-group
Dat_sce <- estiParamSingle(
    Dat_sce = Dat_sce,
    Dat_name = "Methy_level_group1",
    ptime_name = "pseudotime"
)

# Check the output
head(rowData(Dat_sce)$mist_pars)
##                      Beta_0     Beta_1     Beta_2      Beta_3       Beta_4
## ENSMUSG00000000001 1.251821 -0.8298828 0.71185133  0.47356436 -0.100648275
## ENSMUSG00000000003 1.541433  1.9426357 2.66996046 -2.00873161 -2.948861743
## ENSMUSG00000000028 1.268217 -0.0146444 0.09725288  0.04459067 -0.004776211
## ENSMUSG00000000037 1.060106 -2.0275698 5.24558881 -0.89507053 -2.276672217
## ENSMUSG00000000049 1.016816 -0.1346197 0.15546302  0.09704615  0.062586513
##                     Sigma2_1  Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001  6.102466 14.318164 3.464031 1.735114
## ENSMUSG00000000003 26.378111  4.884270 7.225007 9.163833
## ENSMUSG00000000028  7.538908  8.134058 2.970255 2.317636
## ENSMUSG00000000037  9.822060 12.605745 7.191436 2.221882
## ENSMUSG00000000049  5.742192  9.096224 2.807598 1.256330

3 Step 3: Perform Differential Methylation Analysis Using dmSingle

# Perform differential methylation analysis for the single-group
Dat_sce <- dmSingle(Dat_sce)

# View the top genomic features with drastic methylation changes
head(rowData(Dat_sce)$mist_int)
## ENSMUSG00000000003 ENSMUSG00000000037 ENSMUSG00000000001 ENSMUSG00000000049 
##        0.035204394        0.033684470        0.016134207        0.008551738 
## ENSMUSG00000000028 
##        0.005163135

4 Step 4: Perform Differential Methylation Analysis Using plotGene

# Produce scatterplot with fitted curve of a specific gene
library(ggplot2)
plotGene(Dat_sce = Dat_sce,
         Dat_name = "Methy_level_group1",
         ptime_name = "pseudotime", 
         gene_name = "ENSMUSG00000000037")

4.1 Example Workflow for Two-Group Analysis

In this section, we will estimate parameters and perform DM analysis using data from two phenotypic groups.

5 Step 1: Load Two-Group Data

# Load two-group scDNAm data
Dat_sce <- readRDS(system.file("extdata", "small_sampleData_sce.rds", package = "mist"))

6 Step 2: Estimate Parameters Using estiParamTwoGroups

# Estimate parameters for both groups
Dat_sce <- estiParamTwo(
    Dat_sce = Dat_sce,
    Dat_name_g1 = "Methy_level_group1",
    Dat_name_g2 = "Methy_level_group2",
    ptime_name_g1 = "pseudotime",
    ptime_name_g2 = "pseudotime_g2"
)

# Check the output
head(rowData(Dat_sce)$mist_pars_group1, n = 3)
##                      Beta_0      Beta_1    Beta_2      Beta_3       Beta_4
## ENSMUSG00000000001 1.251117 -1.24339490 1.2852404  0.65851897 -0.401992034
## ENSMUSG00000000003 1.610158  1.88177269 2.3122802 -1.78509481 -2.775867523
## ENSMUSG00000000028 1.276944 -0.04699542 0.1334145  0.06866795  0.007253987
##                     Sigma2_1  Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001  5.911935 14.374977 3.299854 1.926787
## ENSMUSG00000000003 26.318934  3.687068 5.759587 9.469006
## ENSMUSG00000000028  7.465450  7.732377 2.844887 2.487678
head(rowData(Dat_sce)$mist_pars_group2, n = 3)
##                        Beta_0    Beta_1    Beta_2     Beta_3     Beta_4
## ENSMUSG00000000001  1.9125108 -3.618325 19.878396 -26.800633 10.4805747
## ENSMUSG00000000003 -0.8242179 -1.276835  3.622506  -1.453831 -0.8421272
## ENSMUSG00000000028  2.3290821 -1.831904  8.601193 -10.278182  3.6263711
##                     Sigma2_1  Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001  5.409877  6.433782 3.506305 1.642253
## ENSMUSG00000000003  6.847387 10.197469 4.528897 2.961215
## ENSMUSG00000000028 11.623755  5.327985 3.491826 3.492715

7 Step 3: Perform Differential Methylation Analysis for Two-Group Comparison Using dmTwoGroups

# Perform DM analysis to compare the two groups
Dat_sce <- dmTwoGroups(Dat_sce)

# View the top genomic features with different temporal patterns between groups
head(rowData(Dat_sce)$mist_int_2group)
## ENSMUSG00000000001 ENSMUSG00000000037 ENSMUSG00000000003 ENSMUSG00000000049 
##        0.034716066        0.031906532        0.031560902        0.010995756 
## ENSMUSG00000000028 
##        0.007225196

7.1 Conclusion

mist provides a comprehensive suite of tools for analyzing scDNAm data along pseudotime, whether you are working with a single group or comparing two phenotypic groups. With the combination of Bayesian modeling and differential methylation analysis, mist is a powerful tool for identifying significant genomic features in scDNAm data.

Session info

## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] ggplot2_3.5.1               SingleCellExperiment_1.29.1
##  [3] SummarizedExperiment_1.37.0 Biobase_2.67.0             
##  [5] GenomicRanges_1.59.1        GenomeInfoDb_1.43.2        
##  [7] IRanges_2.41.2              S4Vectors_0.45.2           
##  [9] BiocGenerics_0.53.3         generics_0.1.3             
## [11] MatrixGenerics_1.19.0       matrixStats_1.5.0          
## [13] mist_0.99.15                BiocStyle_2.35.0           
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.1         farver_2.1.2             dplyr_1.1.4             
##  [4] Biostrings_2.75.3        bitops_1.0-9             fastmap_1.2.0           
##  [7] RCurl_1.98-1.16          GenomicAlignments_1.43.0 XML_3.99-0.18           
## [10] digest_0.6.37            lifecycle_1.0.4          survival_3.8-3          
## [13] magrittr_2.0.3           compiler_4.5.0           rlang_1.1.4             
## [16] sass_0.4.9               tools_4.5.0              yaml_2.3.10             
## [19] rtracklayer_1.67.0       knitr_1.49               labeling_0.4.3          
## [22] S4Arrays_1.7.1           curl_6.1.0               DelayedArray_0.33.3     
## [25] abind_1.4-8              BiocParallel_1.41.0      withr_3.0.2             
## [28] grid_4.5.0               colorspace_2.1-1         scales_1.3.0            
## [31] MASS_7.3-64              mcmc_0.9-8               tinytex_0.54            
## [34] cli_3.6.3                mvtnorm_1.3-2            rmarkdown_2.29          
## [37] crayon_1.5.3             httr_1.4.7               rjson_0.2.23            
## [40] cachem_1.1.0             zlibbioc_1.53.0          splines_4.5.0           
## [43] parallel_4.5.0           BiocManager_1.30.25      XVector_0.47.2          
## [46] restfulr_0.0.15          vctrs_0.6.5              Matrix_1.7-1            
## [49] jsonlite_1.8.9           SparseM_1.84-2           carData_3.0-5           
## [52] bookdown_0.42            car_3.1-3                MCMCpack_1.7-1          
## [55] Formula_1.2-5            magick_2.8.5             jquerylib_0.1.4         
## [58] snow_0.4-4               glue_1.8.0               codetools_0.2-20        
## [61] gtable_0.3.6             BiocIO_1.17.1            UCSC.utils_1.3.0        
## [64] munsell_0.5.1            tibble_3.2.1             pillar_1.10.1           
## [67] htmltools_0.5.8.1        quantreg_5.99.1          GenomeInfoDbData_1.2.13 
## [70] R6_2.5.1                 evaluate_1.0.1           lattice_0.22-6          
## [73] Rsamtools_2.23.1         bslib_0.8.0              MatrixModels_0.5-3      
## [76] Rcpp_1.0.13-1            coda_0.19-4.1            SparseArray_1.7.2       
## [79] xfun_0.50                pkgconfig_2.0.3