GNU/LInux

Programmer’s Manual

Maintainers:

Alejandro Colomar <alx@kernel.org> 2020 - present (5.09 - HEAD)
Michael Kerrisk <mtk.manpages@gmail.com> 2004 - 2021 (2.00 - 5.13)
Andries Brouwer <aeb@cwi.nl> 1995 - 2004 (1.6 - 1.70)

Rik Faith 1993 - 1995 (1.0 -1.5)

intro(1) General Commands Manual intro(1)

NAME
intro — introduction to user commands
DESCRIPTION

Section 1 of the manual describes user commands and tools, for example, file manipula-
tion tools, shells, compilers, web browsers, file and image viewers and editors, and so
on.

NOTES
Linux is a flavor of UNIX, and user commands under UNIX work similarly under Linux
(and lots of other UNIX-like systems too, like FreeBSD).

Under Linux, there are GUIs (graphical user interfaces), where you can point and click
and drag, and hopefully get work done without first reading lots of documentation. The
traditional UNIX environment is a CLI (command line interface), where you type com-
mands to tell the computer what to do. This is faster and more powerful, but requires
finding out what the commands are and how to use them. Below is a bare minimum
guide to get you started.

Login
In order to start working, you’ll probably first have to open a session. The program lo-
gin(1) will wait for you to type your username and password, and after that, it will start
a shell (command interpreter) for you. In case of a graphical login, you get a screen
with menus or icons and a mouse click will start a shell in a window. See also xterm(1)

The shell
One types commands into the shell, the command interpreter. It is not built-in; it is just
another program. You can change your shell, and everybody has their own favorite one.
The standard one is called sh. See also ash(1), bash(1), chsh(1), csh(1), dash(1),
ksh(1), zsh(1)

A session might look like this:

knuth login: aeb
Password: *****x*x*x*x
$ date
Tue Aug 6 23:50:44 CEST 2002
$ cal
August 2002
Su Mo Tu We Th Fr Sa
1 2 3
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

$ Is

bin tel
$ Is -1
total 2

Linux man-pages 6.16 2025-09-21 2

intro(1) General Commands Manual intro(1)

drwxrwxr—x 2 aeb 1024 Aug 6 23:51 bin
—rw—rw—-r—— 1 aeb 37 Aug 6 23:52 tel
$ cat tel

maja 0501-1136285

peter 0136-7399214

$ cp tel tel2

$ Is -1

total 3

drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
—-rw—-r——r—— 1 aeb 37 Aug 6 23:52 tel
-rw—r——r—— 1 aeb 37 Aug 6 23:53 tel2
$ mv tel tell

$ Is -1

total 3

drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
—rw—-r——r—— 1 aeb 37 Aug 6 23:52 tell
-rw—-r——r—— 1 aeb 37 Aug 6 23:53 tel2
$ diff tell tel2

$ rm tell

$ grep maja tel2
maja 0501-1136285
$

Here typing Control-D ended the session.

The $ here was the command prompt—it is the shell’s way of indicating that it is ready
for the next command. The prompt can be customized in lots of ways, and one might
include stuff like username, machine name, current directory, time, and so on. An as-
signment PS1="What next, master? " would change the prompt as indicated.

We see that there are commands date (that gives date and time), and cal (that gives a
calendar).

The command Is lists the contents of the current directory—it tells you what files you
have. With a —I option it gives a long listing, that includes the owner and size and date
of the file, and the permissions people have for reading and/or changing the file. For ex-
ample, the file "tel" here is 37 bytes long, owned by aeb and the owner can read and
write it, others can only read it. Owner and permissions can be changed by the com-
mands chown and chmod.

The command cat will show the contents of a file. (The name is from "concatenate and
print": all files given as parameters are concatenated and sent to "standard output” (see
stdout(3)), here the terminal screen.)

The command cp (from "copy™) will copy a file.
The command mv (from "move"), on the other hand, only renames it.

The command diff lists the differences between two files. Here there was no output be-
cause there were no differences.

The command rm (from "remove") deletes the file, and be careful! it is gone. No

Linux man-pages 6.16 2025-09-21 3

intro(1) General Commands Manual intro(1)

wastepaper basket or anything. Deleted means lost.

The command grep (from "g/re/p™) finds occurrences of a string in one or more files.
Here it finds Maja’s telephone number.

Pathnames and the current directory
Files live in a large tree, the file hierarchy. Each has a pathname describing the path
from the root of the tree (which is called /) to the file. For example, such a full path-
name might be /home/aeb/tel. Always using full pathnames would be inconvenient, and
the name of a file in the current directory may be abbreviated by giving only the last
component. That is why /home/aeb/tel can be abbreviated to tel when the current direc-
tory is /home/aeb.

The command pwd prints the current directory.
The command cd changes the current directory.

Try alternatively cd and pwd commands and explore cd usage: "cd", "cd .", "cd ..", "cd
/", and "cd ~".

Directories
The command mkdir makes a new directory.

The command rmdir removes a directory if it is empty, and complains otherwise.

The command find (with a rather baroque syntax) will find files with given name or
other properties. For example, "find . —name tel" would find the file tel starting in the
present directory (which is called .). And "find / —name tel” would do the same, but
starting at the root of the tree. Large searches on a multi-GB disk will be time-consum-
ing, and it may be better to use locate(1)

Disks and filesystems
The command mount will attach the filesystem found on some disk (or floppy, or
CDROM or so) to the big filesystem hierarchy. And umount detaches it again. The
command df will tell you how much of your disk is still free.

Processes
On a UNIX system many user and system processes run simultaneously. The one you
are talking to runs in the foreground, the others in the background. The command ps
will show you which processes are active and what numbers these processes have. The
command kill allows you to get rid of them. Without option this is a friendly request:
please go away. And "kill =9" followed by the number of the process is an immediate
kill. Foreground processes can often be killed by typing Control-C.

Getting information
There are thousands of commands, each with many options. Traditionally commands
are documented on man pages, (like this one), so that the command "man kill" will doc-
ument the use of the command "kill" (and "man man" document the command "man").
The program man sends the text through some pager, usually less. Hit the space bar to
get the next page, hit q to quit.

In documentation it is customary to refer to man pages by giving the name and section
number, as in man(1)Man pages are terse, and allow you to find quickly some forgotten
detail. For newcomers an introductory text with more examples and explanations is

Linux man-pages 6.16 2025-09-21 4

intro(1) General Commands Manual intro(1)

useful.

A lot of GNU/FSF software is provided with info files. Type "info info" for an introduc-
tion on the use of the program info.

Special topics are often treated in HOWTOs. Look in /usr/share/doc/howto/en and use
a browser if you find HTML files there.

SEE ALSO
ash(1), bash(1), chsh(1), csh(1), dash(1), ksh(1), locate(1), login(1), man(1), xterm(1),
zsh(1), wait(2), stdout(3), man-pages(7), standards(7)

Linux man-pages 6.16 2025-09-21 5

diffman—git(1) General Commands Manual diffman—git(1)

NAME

diffman—git — compare changes to manual pages line by line
SYNOPSIS

diffman—git [diff-options . ..] [[base-commit] commit]
DESCRIPTION

The diffman—git command formats a manual page at two git(1) commits, and then runs
diff (1) on the formatted outputs.

If the commit is not specified, it diffs the working directory against HEAD.

If the base-commit is not specified, the comparison is done against the previous commit.

OPTIONS

=S Report when two files are the same.
-Un output n (default 3) lines of unified context.

-w Ignore all white space.

ENVIRONMENT
See man(1)

EXAMPLES
$ MAN_KEEP_FORMATTING= diffman—-git 437ed4afec6ca | less —-R;
——— 437e4afec6ca™:man/man3/sem_open.3
+++ 437ed4afec6ca:-man/man3/sem_open.3
@@ -14,3 +14,2 @@
- sem_t *sem_open(const char *name, int oflag);
- sem_t *sem_open(const char *name, int oflag,
- mode_t mode, unsigned int value);

+ sem_t *sem_open(const char *name, int oflag,
+ /* mode_t mode, unsigned int value */);
SEE ALSO

diff (1), man(2), git(1), less(1)

Linux man-pages 6.16 2025-05-17 6

getent(1) General Commands Manual getent(1)

NAME
getent — get entries from Name Service Switch libraries

SYNOPSIS
getent [option ...] database key ...

DESCRIPTION
The getent command displays entries from databases supported by the Name Service
Switch libraries, which are configured in /etc/nsswitch.conf. If one or more key argu-
ments are provided, then only the entries that match the supplied keys will be displayed.
Otherwise, if no key is provided, all entries will be displayed (unless the database does
not support enumeration).

The database may be any of those supported by the GNU C Library, listed below:

ahosts
When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to
enumerate the hosts database. This is identical to using hosts(5). When one or
more key arguments are provided, pass each key in succession to getaddrinfo(3)
with the address family AF_UNSPEC, enumerating each socket address struc-
ture returned.

ahostsv4
Same as ahosts, but use the address family AF_INET.

ahostsve
Same as ahosts, but use the address family AF_INET6. The call to getad-
drinfo(3) in this case includes the Al_V4AMAPPED flag.

aliases
When no key is provided, use setaliasent(3), getaliasent(3), and endaliasent(3) to
enumerate the aliases database. When one or more key arguments are provided,
pass each key in succession to getaliasbyname(3) and display the result.

ethers
When one or more key arguments are provided, pass each key in succession to
ether_aton(3) and ether_hostton(3) until a result is obtained, and display the re-
sult. Enumeration is not supported on ethers, so a key must be provided.

group
When no key is provided, use setgrent(3), getgrent(3), and endgrent(3) to enu-
merate the group database. When one or more key arguments are provided, pass
each numeric key to getgrgid(3) and each nonnumeric key to getgrnam(3) and
display the result.

gshadow
When no key is provided, use setsgent(3), getsgent(3), and endsgent(3) to enu-
merate the gshadow database. When one or more key arguments are provided,
pass each key in succession to getsgnam(3) and display the result.

hosts
When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to
enumerate the hosts database. When one or more key arguments are provided,
pass each key to gethostbyaddr(3) or gethostbyname2(3), depending on whether

Linux man-pages 6.16 2025-05-17 7

getent(1) General Commands Manual getent(1)

a call to inet_pton(3) indicates that the key is an IPv6 or IPv4 address or not, and
display the result.

initgroups
When one or more key arguments are provided, pass each key in succession to
getgrouplist(3) and display the result. Enumeration is not supported on init-
groups, so a key must be provided.

netgroup
When one key is provided, pass the key to setnetgrent(3) and, using getnet-
grent(3) display the resulting string triple (hostname, username, domainname).
Alternatively, three keys may be provided, which are interpreted as the hostname,
username, and domainname to match to a netgroup name via innetgr(3). Enu-
meration is not supported on netgroup, so either one or three keys must be pro-
vided.

networks
When no key is provided, use setnetent(3), getnetent(3), and endnetent(3) to enu-
merate the networks database. When one or more key arguments are provided,
pass each numeric key to getnetbyaddr(3) and each nonnumeric key to getnetby-
name(3) and display the result.

passwd
When no key is provided, use setpwent(3), getpwent(3), and endpwent(3) to enu-
merate the passwd database. When one or more key arguments are provided,
pass each numeric key to getpwuid(3) and each nonnumeric key to getpwnam(3)
and display the result.

protocols
When no key is provided, use setprotoent(3), getprotoent(3), and endprotoent(3)
to enumerate the protocols database. When one or more key arguments are pro-
vided, pass each numeric key to getprotobynumber(3) and each nonnumeric key
to getprotobyname(3) and display the result.

rpc When no key is provided, use setrpcent(3), getrpcent(3), and endrpcent(3) to
enumerate the rpc database. When one or more key arguments are provided,
pass each numeric key to getrpcbynumber(3) and each nonnumeric key to getr-
pcbyname(3) and display the result.

services
When no key is provided, use setservent(3), getservent(3), and endservent(3) to
enumerate the services database. When one or more key arguments are provided,
pass each numeric key to getservbynumber(3) and each nonnumeric key to get-
servbyname(3) and display the result.

shadow
When no key is provided, use setspent(3), getspent(3), and endspent(3) to enu-
merate the shadow database. When one or more key arguments are provided,
pass each key in succession to getspnam(3) and display the result.

Linux man-pages 6.16 2025-05-17 8

getent(1) General Commands Manual getent(1)

OPTIONS
—=service service
—s service
Override all databases with the specified service. (Since glibc 2.2.5.)

——service database:service

—s database:service
Override only specified databases with the specified service. The option may be
used multiple times, but only the last service for each database will be used.
(Since glibc 2.4.)

——no-idn
=i Disables IDN encoding in lookups for ahosts/getaddrinfo(3) (Since glibc-2.13.)

——help
-? Print a usage summary and exit.

——usage
Print a short usage summary and exit.

—=version
-V Print the version number, license, and disclaimer of warranty for getent.

EXIT STATUS
One of the following exit values can be returned by getent:

0 Command completed successfully.

1 Missing arguments, or database unknown.

2 One or more supplied key could not be found in the database.
3

Enumeration not supported on this database.

SEE ALSO
nsswitch.conf(5)

Linux man-pages 6.16 2025-05-17 9

iconv(l) General Commands Manual iconv(l)
NAME
iconv — convert text from one character encoding to another
SYNOPSIS
iconv [options] [-f from-encoding] [t to-encoding] [inpultfile .. .]
DESCRIPTION
The iconv program reads in text in one encoding and outputs the text in another encod-

ing. If
input. 1

no input files are given, or if it is given as a dash (=), iconv reads from standard
f no output file is given, iconv writes to standard output.

If no from-encoding is given, the default is derived from the current locale’s character
encoding. If no to-encoding is given, the default is derived from the current locale’s
character encoding.

OPTIONS
——from-code= from-encoding
—f from-encoding

Use from-encoding for input characters.

——to—code=to-encoding
-t to-encoding

Use to-encoding for output characters.

If the string /IGNORE is appended to to-encoding, characters that cannot be
converted are discarded and an error is printed after conversion. (Characters that
cannot be decoded are treated as an error with or without this flag.)

If the string //TRANSLIT is appended to to-encoding, characters being con-
verted are transliterated when needed and possible. This means that when a
character cannot be represented in the target character set, it can be approxi-
mated through one or several similar looking characters. Characters that are out-
side of the target character set and cannot be transliterated are replaced with a
question mark (?) in the output.

List all known character set encodings.

Discard characters that cannot be converted instead of terminating when encoun-
tering such characters. POSIX requires that this option does not change the exit
status of the program.

——output=outputfile
—0 outputfile

Use outputfile for output.

——silent

=S

This option is ignored; it is provided only for compatibility.

——verbose

——help

Print progress information on standard error when processing multiple files.

Linux man-pages 6.16 2025-09-21 10

iconv(l)

-?

General Commands Manual iconv(l)

Print a usage summary and exit.

——usage

Print a short usage summary and exit.

——version

-V

Print the version number, license, and disclaimer of warranty for iconv.

EXIT STATUS
Zero on success, NONZEro on errors.

ENVIRONMENT
Internally, the iconv program uses the iconv(3) function which in turn uses gconv mod-
ules (dynamically loaded shared libraries) to convert to and from a character set. Before

call

ing iconv(3), the iconv program must first allocate a conversion descriptor using

iconv_open(3). The operation of the latter function is influenced by the setting of the
GCONV_PATH environment variable:

FILES

If GCONV_PATH is not set, iconv_open(3) loads the system gconv module config-
uration cache file created by iconvconfig(8) and then, based on the configuration,
loads the gconv modules needed to perform the conversion. If the system gconv
module configuration cache file is not available then the system gconv module con-
figuration file is used.

If GCONV_PATH is defined (as a colon-separated list of pathnames), the system
gconv module configuration cache is not used. Instead, iconv_open(3) first tries to
load the configuration files by searching the directories in GCONV_PATH in order,
followed by the system default gconv module configuration file. If a directory does
not contain a gconv module configuration file, any gconv modules that it may con-
tain are ignored. If a directory contains a gconv module configuration file and it is
determined that a module needed for this conversion is available in the directory,
then the needed module is loaded from that directory, the order being such that the
first suitable module found in GCONV_PATH is used. This allows users to use
custom modules and even replace system-provided modules by providing such mod-
ules in GCONV_PATH directories.

{usr/lib/gconv

Usual default gconv module path.

lusr/lib/gconv/gconv—modules

Usual system default gconv module configuration file.

{usr/lib/gconv/gconv—modules.cache

Usual system gconv module configuration cache.

Depending on the architecture, the above files may instead be located at directories with

the

path prefix /usr/lib64.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 11

iconv(l) General Commands Manual iconv(l)

HISTORY
POSIX.1-2001.

EXAMPLES
Convert text from the ISO/IEC 8859-15 character encoding to UTF-8:

$ 1conv —f 1S0-8859-15 -t UTF-8 < input.txt > output.txt;
The next example converts from UTF-8 to ASCII, transliterating when possible:

$ echo abc B a € abg | iconv —F UTF-8 -t ASCII//TRANSLIT;
abc ss ? EUR abc

SEE ALSO
locale(1), uconv(1), iconv(3), nl_langinfo(3), charsets(7), iconvconfig(8)

Linux man-pages 6.16 2025-09-21 12

Idd (1) General Commands Manual ldd(1)

NAME
Idd - print shared object dependencies

SYNOPSIS
Idd [option ...] file...

DESCRIPTION
Idd prints the shared objects (shared libraries) required by each program or shared ob-
ject specified on the command line. An example of its use and output is the following:

$ Idd /bin/ls;
linux-vdso.so.1 (0x00007ffcc3563000)
libselinux.so.1l => /lib64/libselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /lib64/libcap.so.2 (0x00007f87e5254000)
libc.so.6 => /l1ib64/1libc.so.6 (0x00007f87e4e92000)
libpcre.so.1l => /l1ib64/libpcre.so.1 (0x00007f87e4c22000)
libdl.so.2 => /1ib64/1ibdl.so.2 (0x00007f87e4ale000)
/1ib64/1d-1inux—x86-64.s0.2 (0x00005574b¥12e000)
libattr.so.1l => /lib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /l1ib64/libpthread.so.0 (0x00007f87e45fa000)

In the usual case, Idd invokes the standard dynamic linker (see Id.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the dy-
namic linker to inspect the program’s dynamic dependencies, and find (according to the
rules described in 1d.so(8)) and load the objects that satisfy those dependencies. For
each dependency, Idd displays the location of the matching object and the (hexadecimal)
address at which it is loaded. (The linux—vdso and Id—linux shared dependencies are
special; see vdso(7) and 1d.so(8).)

Security

Be aware that in some circumstances (e.g., where the program specifies an ELF inter-
preter other than Id-linux.so), some versions of Idd may attempt to obtain the depen-
dency information by attempting to directly execute the program, which may lead to the
execution of whatever code is defined in the program’s ELF interpreter, and perhaps to
execution of the program itself. (Before glibc 2.27, the upstream Idd implementation
did this for example, although most distributions provided a modified version that did
not.)

Thus, you should never employ Idd on an untrusted executable, since this may result in
the execution of arbitrary code. A safer alternative when dealing with untrusted exe-
cutables is:

$ objdump -p /path/to/program | grep NEEDED;

Note, however, that this alternative shows only the direct dependencies of the exe-
cutable, while Idd shows the entire dependency tree of the executable.

OPTIONS
——Vversion
Print the version number of Idd.

Linux man-pages 6.16 2025-09-21 13

Idd (1) General Commands Manual ldd(1)

—-verbose
-V Print all information, including, for example, symbol versioning information.

—-unused
-u Print unused direct dependencies. (Since glibc 2.3.4.)

——data-relocs
-d Perform relocations and report any missing objects (ELF only).

——function-relocs
-r Perform relocations for both data objects and functions, and report any missing
objects or functions (ELF only).

——help
Usage information.

BUGS

Idd does not work on a.out shared libraries.

Idd does not work with some extremely old a.out programs which were built before 1dd
support was added to the compiler releases. If you use Idd on one of these programs,
the program will attempt to run with argc = 0 and the results will be unpredictable.

SEE ALSO
pldd(1), sprof(1), 1d.so(8), Idconfig(8)

Linux man-pages 6.16 2025-09-21 14

locale(1) General Commands Manual locale(1)

NAME
locale — get locale-specific information
SYNOPSIS

locale [option]

locale [option] —a
locale [option] -m
locale [option] name ...

DESCRIPTION

The locale command displays information about the current locale, or all locales, on
standard output.

When invoked without arguments, locale displays the current locale settings for each lo-
cale category (see locale(5)), based on the settings of the environment variables that
control the locale (see locale(7)). Values for variables set in the environment are printed
without double quotes, implied values are printed with double quotes.

If either the —a or the —m option (or one of their long-format equivalents) is specified,
the behavior is as follows:

—-all-locales
-a Display a list of all available locales. The —v option causes the LC_IDENTIFI-
CATION metadata about each locale to be included in the output.

——charmaps
-m Display the available charmaps (character set description files). To display the
current character set for the locale, use locale -c charmap.

The locale command can also be provided with one or more arguments, which are the
names of locale keywords (for example, date_fmt, ctype-class-names, yesexpr, or deci-
mal_point) or locale categories (for example, LC_CTYPE or LC_TIME). For each ar-
gument, the following is displayed:

» For a locale keyword, the value of that keyword to be displayed.
» For a locale category, the values of all keywords in that category are displayed.
When arguments are supplied, the following options are meaningful:

——category—name
-C For a category name argument, write the name of the locale category on a sepa-
rate line preceding the list of keyword values for that category.

For a keyword name argument, write the name of the locale category for this
keyword on a separate line preceding the keyword value.

This option improves readability when multiple name arguments are specified. It
can be combined with the —k option.

——keyword—name
-k For each keyword whose value is being displayed, include also the name of that
keyword, so that the output has the format:

keyword=""value"

The locale command also knows about the following options:

Linux man-pages 6.16 2025-05-17 15

locale(1) General Commands Manual

——verbose

locale(1)

-V Display additional information for some command-line option and argument

combinations.

——help

-? Display a summary of command-line options and arguments and exit.

——usage
Display a short usage message and exit.

—=version
-V Display the program version and exit.

FILES
{usr/lib/locale/locale—archive
Usual default locale archive location.

/usr/share/il8n/locales
Usual default path for locale definition files.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
$ locale;
LANG=en_US.UTF-8
LC_CTYPE=""en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US._.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY=""en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER=""en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="'en_US_UTF-8"
LC_TELEPHONE="en_US_UTF-8"
LC_MEASUREMENT="'en_US.UTF-8"
LC IDENTIFICATION="en_US.UTF-8"
LC_ALL=

$ locale date_fmt;
%a %b %e %H:%M:%S %Z %Y

$ locale -k date_ fmt;
date _fmt="%a %b %e %H:%M:%S %Z %Y

$ locale -ck date fmt;

LC_TIME
date fmt="%a %b %e %H:%M:%S %Z %Y"

Linux man-pages 6.16 2025-05-17

16

locale(1) General Commands Manual locale(1)

$ locale LC_TELEPHONE;
+%c (%a) %l

(%a) %l

11

1

UTF-8

$ locale -k LC_TELEPHONE;
tel_int_fmt="+%c (%a) %Il"
tel _dom_fmt="(%a) %I
int_select="11"
int_prefix="1"
telephone-codeset="UTF-8"

The following example compiles a custom locale from the ./wrk directory with the lo-
caledef(1) utility under the $HOME/.locale directory, then tests the result with the
date(1) command, and then sets the environment variables LOCPATH and LANG in
the shell profile file so that the custom locale will be used in the subsequent user ses-
sions:

$ mkdir -p $HOME/.locale;

$ 118NPATH=./wrk/ localedef -f UTF-8 -i fi_SE $HOME/.locale/fi_SE_UTF
$ LOCPATH=$HOME/ .locale LC_ALL=Ffi_SE.UTF-8 date;

$ echo "export LOCPATH=\$HOME/.locale'™ >> $HOME/.bashrc;

$ echo "export LANG=Fi_SE.UTF-8" >> $HOME/ .bashrc;

SEE ALSO
localedef(1), charmap(5), locale(5), locale(7)

Linux man-pages 6.16 2025-05-17 17

localedef (1) General Commands Manual localedef (1)

NAME
localedef — compile locale definition files

SYNOPSIS
localedef [options] outputpath
localedef ——add-to—archive [options] compiledpath
localedef ——delete—from—archive [options] localename ...
localedef ——list—archive [options]
localedef ——help
localedef ——usage
localedef ——version

DESCRIPTION
The localedef program reads the indicated charmap and input files, compiles them to a
binary form quickly usable by the locale functions in the C library (setlocale(3), locale-
conv(3), etc.), and places the output in outputpath.

The outputpath argument is interpreted as follows:

» If outputpath contains a slash character (’/’), it is interpreted as the name of the di-
rectory where the output definitions are to be stored. In this case, there is a separate
output file for each locale category (LC_TIME, LC_NUMERIC, and so on).

* If the ——no—-archive option is used, outputpath is the name of a subdirectory in
lusr/lib/locale where per-category compiled files are placed.

» Otherwise, outputpath is the name of a locale and the compiled locale data is added
to the archive file /usr/lib/locale/locale-archive. A locale archive is a memory-
mapped file which contains all the system-provided locales; it is used by all local-
ized programs when the environment variable LOCPATH is not set.

In any case, localedef aborts if the directory in which it tries to write locale files has not
already been created.

If no charmapfile is given, the value ANSI_X3.4—1968 (for ASCII) is used by default.
If no inputfile is given, or if it is given as a dash (=), localedef reads from standard in-
put.

OPTIONS
Operation-selection options
A few options direct localedef to do something other than compile locale definitions.
Only one of these options should be used at a time.

——add-to—archive
Add the compiledpath directories to the locale archive file. The directories
should have been created by previous runs of localedef, using --no-archive.

——delete—from-archive
Delete the named locales from the locale archive file.

——list—archive
List the locales contained in the locale archive file.

Linux man-pages 6.16 2025-05-17 18

localedef (1) General Commands Manual localedef (1)

Other options
Some of the following options are sensible only for certain operations; generally, it
should be self-evident which ones. Notice that —f and —c are reversed from what you
might expect; that is, —f is not the same as --force.

—f charmapfile

——charmap=charmapfile
Specify the file that defines the character set that is used by the input file. If
charmapfile contains a slash character (’/*), it is interpreted as the name of the
character map. Otherwise, the file is sought in the current directory and the de-
fault directory for character maps. If the environment variable 118NPATH is set,
$118NPATH/charmaps/ and $I118NPATH/ are also searched after the current di-
rectory. The default directory for character maps is printed by localedef --help.

=i inputfile

——inputfile=inputfile
Specify the locale definition file to compile. The file is sought in the current di-
rectory and the default directory for locale definition files. If the environment
variable 118NPATH is set, $118NPATH/locales/ and $I18NPATH are also
searched after the current directory. The default directory for locale definition
files is printed by localedef --help.

—u repertoirefile

——repertoire—map=repertoirefile
Read mappings from symbolic names to Unicode code points from repertoire-
file. If repertoirefile contains a slash character (°/), it is interpreted as the path-
name of the repertoire map. Otherwise, the file is sought in the current directory
and the default directory for repertoire maps. If the environment variable
I18NPATH is set, $I18NPATH/repertoiremaps/ and $I18NPATH are also
searched after the current directory. The default directory for repertoire maps is
printed by localedef --help.

—A aliasfile
—-alias—file=aliasfile
Use aliasfile to look up aliases for locale names. There is no default aliases file.

——force
-C Write the output files even if warnings were generated about the input file.

—-verbose
-V Generate extra warnings about errors that are normally ignored.
—-big-endian

Generate big-endian output.

——little—endian
Generate little-endian output.

—-no-archive
Do not use the locale archive file, instead create outputpath as a subdirectory in
the same directory as the locale archive file, and create separate output files for
locale categories in it. This is helpful to prevent system locale archive updates

Linux man-pages 6.16 2025-05-17 19

localedef (1) General Commands Manual localedef (1)

from overwriting custom locales created with localedef.

——no-hard-links
Do not create hard links between installed locales.

——no-warnings=warnings
Comma-separated list of warnings to disable. Supported warnings are ascii and
intcurrsym.

——posix
Conform strictly to POSIX. Implies --verbose. This option currently has no
other effect. POSIX conformance is assumed if the environment variable
POSIXLY_CORRECT is set.

——prefix=pathname
Set the prefix to be prepended to the full archive pathname. By default, the pre-
fix is empty. Setting the prefix to foo, the archive would be placed in
foo/usr/lib/locale/locale-archive.

——quiet
Suppress all notifications and warnings, and report only fatal errors.

——replace
Replace a locale in the locale archive file. Without this option, if the locale is in
the archive file already, an error occurs.

——warnings=warnings
Comma-separated list of warnings to enable. Supported warnings are ascii and
intcurrsym.

——help
-? Print a usage summary and exit. Also prints the default paths used by localedef.

——usage
Print a short usage summary and exit.

—=version
-V Print the version number, license, and disclaimer of warranty for localedef.

EXIT STATUS
One of the following exit values can be returned by localedef:

0 Command completed successfully.
1 Warnings or errors occurred, output files were written.

4 Errors encountered, no output created.

ENVIRONMENT
POSIXLY_CORRECT
The ——posix flag is assumed if this environment variable is set.

118NPATH
A colon-separated list of search directories for files.

Linux man-pages 6.16 2025-05-17 20

localedef (1) General Commands Manual localedef (1)

FILES
lusr/share/i18n/charmaps
Usual default character map path.

lusr/share/il8n/locales
Usual default path for locale definition files.

lusr/share/il8n/repertoiremaps
Usual default repertoire map path.

{usr/lib/locale/locale—archive
Usual default locale archive location.

lusr/lib/locale
Usual default path for compiled individual locale data files.

outputpath/LC_ADDRESS
An output file that contains information about formatting of addresses and geog-
raphy-related items.

outputpath/LC_COLLATE
An output file that contains information about the rules for comparing strings.

outputpath/LC_CTYPE
An output file that contains information about character classes.

outputpath/LC_IDENTIFICATION
An output file that contains metadata about the locale.

outputpath/LC_MEASUREMENT
An output file that contains information about locale measurements (metric ver-
sus US customary).

outputpath/LC_MESSAGES/SYS_LC_MESSAGES
An output file that contains information about the language messages should be
printed in, and what an affirmative or negative answer looks like.

outputpath/LC_MONETARY
An output file that contains information about formatting of monetary values.

outputpath/LC_NAME
An output file that contains information about salutations for persons.

outputpath/LC_NUMERIC
An output file that contains information about formatting of nonmonetary nu-
meric values.

outputpath/LC_PAPER
An output file that contains information about settings related to standard paper
size.

outputpath/LC_TELEPHONE
An output file that contains information about formats to be used with telephone
services.

Linux man-pages 6.16 2025-05-17 21

localedef (1) General Commands Manual localedef (1)

outputpath/LC_TIME
An output file that contains information about formatting of data and time val-
ues.

STANDARDS
POSIX.1-2008.

EXAMPLES
Compile the locale files for Finnish in the UTF-8 character set and add it to the default
locale archive with the name fi_FI.UTF-8:

localedef -f UTF-8 -1 fi_F1 fi_FI1_.UTF-8

The next example does the same thing, but generates files into the fi_FI.UTF—8 direc-
tory which can then be used by programs when the environment variable LOCPATH is
set to the current directory (note that the last argument must contain a slash):

localedef -f UTF-8 -1 fi_FI1 _/fi_FI1_.UTF-8

SEE ALSO
locale(1), charmap(5), locale(5), repertoiremap(5), locale(7)

Linux man-pages 6.16 2025-05-17 22

mansect(1) General Commands Manual mansect(1)

NAME

mansect — print the source code of sections of manual pages
SYNOPSIS

mansect section [file ..]
DESCRIPTION

The mansect command prints the source code of the section of the given manual-page
files. If no files are specified, the standard input is used.

section is a PCRE2 regular expression.
The TH line is unconditionally printed.
The output of this program is suitable for piping to the groff (1) pipeline.

EXAMPLES
$ man -w strtol strtoul | xargs mansect "NAME|SEE ALSO";
.If 1 /usr/local/man/man3/strtol .3
.TH strtol 3 2024-07-23 "'Linux man-pages 6.9.1"
-.SH NAME
strtol, strtoll, strtoq - convert a string to a long integer
.SH SEE ALSO
.BR atof (3),
-BR atoi (3),
-.BR atol (3),
-BR strtod (3),
-BR strtoimax (3),
.BR strtoul (3)
.If 1 /usr/local/man/man3/strtoul .3
.TH strtoul 3 2024-07-23 "Linux man-pages 6.9.1"
.SH NAME
strtoul, strtoull, strtoug - convert a string to an unsigned long int
.SH SEE ALSO
.BR a641 (3),
.BR atof (3),
-BR atoi (3),
-.BR atol (3),
-BR strtod (3),
-BR strtol (3),
BR strtoumax (3)

SEE ALSO
lexgrog(1), groff (1), pcre2grep(1), mandb(8)

Linux man-pages 6.16 2025-05-17 23

memusage(1) General Commands Manual memusage(1)

NAME

memusage — profile memory usage of a program
SYNOPSIS

memusage [option ...] program [programoption .. .]
DESCRIPTION

memusage is a bash(1) script which profiles memory usage of the program, program.
It preloads the libmemusage.so library into the caller’s environment (via the LD_PRE-
LOAD environment variable; see Id.so(8)). The libmemusage.so library traces memory
allocation by intercepting calls to malloc(3), calloc(3), free(3), and realloc(3); option-
ally, calls to mmap(2), mremap(2), and munmap(2) can also be intercepted.

memusage can output the collected data in textual form, or it can use memusagestat(1)
(see the —p option, below) to create a PNG file containing graphical representation of
the collected data.

Memory usage summary
The "Memory usage summary" line output by memusage contains three fields:

heap total
Sum of size arguments of all malloc(3) calls, products of arguments
(n*size) of all calloc(3) calls, and sum of length arguments of all mmap(2)
calls. In the case of realloc(3) and mremap(2), if the new size of an alloca-
tion is larger than the previous size, the sum of all such differences (new
size minus old size) is added.

heap peak
Maximum of all size arguments of malloc(3), all products of n*size of cal-
loc(3), all size arguments of realloc(3), length arguments of mmap(2), and
new_size arguments of mremap(2).

stack peak
Before the first call to any monitored function, the stack pointer address
(base stack pointer) is saved. After each function call, the actual stack
pointer address is read and the difference from the base stack pointer com-
puted. The maximum of these differences is then the stack peak.

Immediately following this summary line, a table shows the number calls, total memory
allocated or deallocated, and number of failed calls for each intercepted function. For
realloc(3) and mremap(2), the additional field "nomove" shows reallocations that
changed the address of a block, and the additional "dec" field shows reallocations that
decreased the size of the block. For realloc(3), the additional field “free” shows reallo-
cations that caused a block to be freed (i.e., the reallocated size was 0).

The "realloc/total memory" of the table output by memusage does not reflect cases
where realloc(3) is used to reallocate a block of memory to have a smaller size than pre-
viously. This can cause sum of all "total memory™ cells (excluding "free") to be larger
than the "free/total memory" cell.

Histogram for block sizes
The "Histogram for block sizes™ provides a breakdown of memory allocations into vari-
ous bucket sizes.

Linux man-pages 6.16 2025-09-21 24

memusage(1) General Commands Manual memusage(1)

OPTIONS
—-Nn name
——progname=name
Name of the program file to profile.
-p file
——png=file
Generate PNG graphic and store it in file.
—d file
——data=file
Generate binary data file and store it in file.
-u
——unbuffered
Do not buffer output.

-b size
——buffer=size
Collect size entries before writing them out.

——no-timer
Disable timer-based (SIGPROF) sampling of stack pointer value.
-m
——mmap
Also trace mmap(2), mremap(2), and munmap(2).
-?
——help
Print help and exit.
—-usage
Print a short usage message and exit.
-V
—=Vversion
Print version information and exit.

The following options apply only when generating graphical output:
-t
——time—based
Use time (rather than number of function calls) as the scale for the X axis.

-T
——total
Also draw a graph of total memory use.

——title=name
Use name as the title of the graph.

—X Size

Linux man-pages 6.16 2025-09-21 25

memusage(1)

——X-size=size
Make the graph size pixels wide.
-y size
——y-size=size
Make the graph size pixels high.
EXIT STATUS

General Commands Manual

memusage(1)

The exit status of memusage is equal to the exit status of the profiled program.

BUGS

To report bugs, see [http://www.gnu.org/software/libc/bugs.html]

EXAMPLES

Below is a simple program that reallocates a block of memory in cycles that rise to a
peak before then cyclically reallocating the memory in smaller blocks that return to
zero. After compiling the program and running the following commands, a graph of the
memory usage of the program can be found in the file memusage.png:

$ memusage —--data=memusage.dat ./a.out;

Memory usage summary: heap total: 45200, heap peak: 6440, stack pe
total calls total memory Tailed calls

1
40

malloc|
realloc|
calloc| 0
free| 1
Histogram for block sizes:
192-207 1

2192-2207
2240-2255
2832-2847
3440-3455
4032-4047
4640-4655
5232-5247
5840-5855
6432-6447

NNDNNNDNDNPR

1 2%

400
44800

0
0 (nomove:40, dec:19

440

$ memusagestat memusage.dat memusage.pnd;

Program source
#include <stdio.h>
#include <stdlib.h>

#define CYCLES 20

int
main(int argc, char *argv[])

{

int i1, j;

Linux man-pages 6.16 2025-09-21

26

memusage(1) General Commands Manual memusage(1)

size_t size;
int *p;

size = sizeof(*p) * 100;
printf("'malloc: %zu\n'", size);
p = malloc(size);

for O; 1 < CYCLES; 1++) {
CYCLES 7/ 2)

i;

-~

i
f

I
—

I A

else
N

size = sizeof(*p) * (g * 50 + 110);
printf("'realloc: %zu\n", size);
p = realloc(p, size);

size = sizeof(*p) * (g + 1) * 150 + 110);
printf('realloc: %zu\n", size);
p = realloc(p, size);

}

free(p);
exit(EXIT_SUCCESS);

}

SEE ALSO
memusagestat(1), mtrace(1), Id.so(8)

Linux man-pages 6.16 2025-09-21 27

memusagestat(1) General Commands Manual memusagestat(1)

NAME

memusagestat — generate graphic from memory profiling data
SYNOPSIS

memusagestat [option . ..] datafile [outfile]
DESCRIPTION

memusagestat creates a PNG file containing a graphical representation of the memory
profiling data in the file datafile; that file is generated via the —d (or --data) option of
memusage(1).

The red line in the graph shows the heap usage (allocated memory) and the green line
shows the stack usage. The x-scale is either the number of memory-handling function
calls or (if the —t option is specified) time.

OPTIONS
-0 file
——output=file
Name of the output file.
—s string
—=string=string
Use string as the title inside the output graph.
-t
——time
Use time (rather than number of function calls) as the scale for the X axis.
-T
——total
Also draw a graph of total memory consumption.

—X size
——X-Size=size

Make the output graph size pixels wide.
-y size
——y-size=size

Make the output graph size pixels high.
-?
——help

Print a help message and exit.
—-usage

Print a short usage message and exit.
-V
—=version

Print version information and exit.

BUGS
To report bugs, see [hittp://www.gnu.org/software/libc/bugs.html]

Linux man-pages 6.16 2025-05-17 28

memusagestat(1) General Commands Manual memusagestat(1)

EXAMPLES
See memusage(1).

SEE ALSO
memusage(1), mtrace(1)

Linux man-pages 6.16 2025-05-17 29

mtrace(1) General Commands Manual mtrace(1)

NAME

mtrace — interpret the malloc trace log
SYNOPSIS

mtrace [option ...] [binary] mtracedata
DESCRIPTION

mtrace is a Perl script used to interpret and provide human readable output of the trace
log contained in the file mtracedata, whose contents were produced by mtrace(3). If bi-
nary is provided, the output of mtrace also contains the source file name with line num-
ber information for problem locations (assuming that binary was compiled with debug-
ging information).

For more information about the mtrace(3) function and mtrace script usage, see
mtrace(3).

OPTIONS
——help
Print help and exit.

——version
Print version information and exit.

BUGS
For bug reporting instructions, please see: [http://www.gnu.org/software/libc/bugs.htmil]

SEE ALSO
memusage(1), mtrace(3)

Linux man-pages 6.16 2025-05-17 30

pdfman(1) General Commands Manual pdfman(1)

NAME
pdfman — render a manual page in PDF

SYNOPSIS
pdfman [man-options] [section] page

DESCRIPTION
The pdfman command renders a manual page in PDF. All the arguments are inter-
preted by man(1)

SEE ALSO
man(1), groff (1), gropdf (1), xdg-open(1)

Linux man-pages 6.16 2025-05-17 31

pldd(1) General Commands Manual pldd(1)

NAME
pldd — display dynamic shared objects linked into a process

SYNOPSIS
pldd pid
pldd option

DESCRIPTION
The pldd command displays a list of the dynamic shared objects (DSOs) that are linked
into the process with the specified process ID (PID). The list includes the libraries that
have been dynamically loaded using dlopen(3).

OPTIONS
——help
-? Display a help message and exit.

——usage
Display a short usage message and exit.

—=Vversion
-V Display program version information and exit.

EXIT STATUS
On success, pldd exits with the status 0. If the specified process does not exist, the user
does not have permission to access its dynamic shared object list, or no command-line
arguments are supplied, pldd exists with a status of 1. If given an invalid option, it exits
with the status 64.

VERSIONS

Some other systems have a similar command.

STANDARDS
None.

HISTORY
glibc 2.15.

NOTES
The command

Isof —p PID

also shows output that includes the dynamic shared objects that are linked into a
process.

The gdb(1) info shared command also shows the shared libraries being used by a
process, so that one can obtain similar output to pldd using a command such as the fol-
lowing (to monitor the process with the specified pid):

$ gdb -ex "'set confirm off" \
—-ex ''set height 0" \
-ex "info shared™ \
—ex "'quit" \
-p $pid \

| grep "~Ox.*0x";

Linux man-pages 6.16 2025-05-17 32

pldd(1) General Commands Manual pldd(1)

BUGS
From glibc 2.19 to glibc 2.29, pldd was broken: it just hung when executed. This prob-
lem was fixed in glibc 2.30, and the fix has been backported to earlier glibc versions in
some distributions.

EXAMPLES
$ echo $%; # Display PID of shell
1143
$ pldd $$; # Display DSOs linked into the shell

1143: /usr/bin/bash
linux-vdso.so.1
/1ib64/libtinfo.so0.5
/1i1b64/1ibdl.so.2
/1ib64/1libc.so0.6
/1ib64/1d-1inux—x86-64.s0.2
/1ib64/1libnss_files.s0.2

SEE ALSO
Idd(2), Isof (1), dlopen(3), Id.so(8)

Linux man-pages 6.16 2025-05-17 33

sortman(1) General Commands Manual sortman(1)

NAME

sortman — sort manual-page path names

SYNOPSIS

sortman

DESCRIPTION
The sortman command sorts manual-page path names in the order that they should ap-
pear in the manual.

The chapters and subchapters are first sorted. Then, within each (sub)chapter, the first
page is the corresponding intro(*) page, and the rest are sorted alphabetically (but treat-
ing specially some special characters).

SEE ALSO
intro(1), man(1), sort(1)

Linux man-pages 6.16 2025-05-17 34

sprof (1) General Commands Manual sprof (1)

NAME
sprof — read and display shared object profiling data

SYNOPSIS
sprof [option .. .] shared-object-path [profile-data-path]

DESCRIPTION
The sprof command displays a profiling summary for the shared object (shared library)
specified as its first command-line argument. The profiling summary is created using
previously generated profiling data in the (optional) second command-line argument. If
the profiling data pathname is omitted, then sprof will attempt to deduce it using the
soname of the shared object, looking for a file with the name <soname>.profile in the
current directory.

OPTIONS
The following command-line options specify the profile output to be produced:

——call—pairs
-C Print a list of pairs of call paths for the interfaces exported by the shared object,
along with the number of times each path is used.

——flat—profile

-p Generate a flat profile of all of the functions in the monitored object, with counts
and ticks.

——graph

- Generate a call graph.

If none of the above options is specified, then the default behavior is to display a flat
profile and a call graph.

The following additional command-line options are available:

——help
-? Display a summary of command-line options and arguments and exit.

——usage
Display a short usage message and exit.

—=version
-V Display the program version and exit.

STANDARDS
GNU.

EXAMPLES
The following example demonstrates the use of sprof. The example consists of a main
program that calls two functions in a shared object. First, the code of the main program:

$ cat prog.c;
#include <stdlib.h>

void x1(void);
void x2(void);

Linux man-pages 6.16 2025-09-21 35

sprof (1) General Commands Manual sprof (1)

int
main(int argc, char *argv[])
{
x1Q0);
x20);
exit(EXIT_SUCCESS);
}

The functions x1() and x2() are defined in the following source file that is used to con-
struct the shared object:

$ cat libdemo.c;
#include <unistd.h>

void
consumeCpul(int 1im)

{

for (unsigned int j
getppid();

I
(@)
—
N

Lim; j++)
}

void
x1(void) {
for (unsigned int j = 0; j 100; j++)
consumeCpul(200000);

N

}

void
consumeCpu2(int 1im)

{

N

for (unsigned iInt j
getppid();

0; J lim; j++)
}

void
x2(void)
{

N

for (unsigned int j
consumeCpu2(10000) ;

0; J < 1000; j++)

}

Now we construct the shared object with the real name libdemo.so0.1.0.1, and the son-
ame libdemo.so.1:

$ cc -g —-fPIC -shared -WI,-soname, libdemo.so.1 \
-0 libdemo.so0.1.0.1 libdemo.c;

Then we construct symbolic links for the library soname and the library linker name:

$ In —st libdemo.so0.1.0.1 libdemo.so.1;
$ In —sT libdemo.so.1 libdemo.so;

Linux man-pages 6.16 2025-09-21 36

sprof (1) General Commands Manual sprof (1)

Next, we compile the main program, linking it against the shared object, and then list
the dynamic dependencies of the program:
$ cc —-g -0 prog prog.c -L. —-ldemo;
$ Idd prog;
linux-vdso.so.1l => (0Ox00007fFf86d66000)
libdemo.so.1 => not found
libc.so.6 => /l1ib64/libc.so.6 (0x00007fd4dc138000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007fd4dc51f000)

In order to get profiling information for the shared object, we define the environment
variable LD_PROFILE with the soname of the library:

$ export LD _PROFILE=libdemo.so0.1;

We then define the environment variable LD _PROFILE_OUTPUT with the pathname
of the directory where profile output should be written, and create that directory if it
does not exist already:

$ export LD _PROFILE _OUTPUT=$(pwd)/prof_data;
$ mkdir —-p $LD_PROFILE_OUTPUT;

LD_PROFILE causes profiling output to be appended to the output file if it already ex-
ists, so we ensure that there is no preexisting profiling data:

$ rm —F $LD_PROFILE_OUTPUT/$LD_PROFILE.profile;

We then run the program to produce the profiling output, which is written to a file in the
directory specified in LD_PROFILE_OUTPUT:

$ LD_LIBRARY_PATH=. ./prog;
$ Is prof_data;
libdemo.so.1l.profile

We then use the sprof —p option to generate a flat profile with counts and ticks:

$ sprof —p libdemo.so.1l $LD_PROFILE OUTPUT/libdemo.so.1l.profile;
Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls wus/call us/call name

60.00 0.06 0.06 100 600.00 consumeCpul
40.00 0.10 0.04 1000 40.00 consumeCpu?2
0.00 0.10 0.00 1 0.00 x1

0.00 0.10 0.00 1 0.00 X2

The sprof —q option generates a call graph:
$ sprof —q libdemo.so.1l $LD PROFILE OUTPUT/libdemo.so.1l.profile;

index % time self children called name
0.00 0.00 1007100 x1 [1]
[O0] 100.0 0.00 0.00 100 consumeCpul [O]

Linux man-pages 6.16 2025-09-21 37

sprof (1) General Commands Manual sprof (1)

0.00 0.00 1/1 <UNKNOWN>

[1] 0.0 0.00 0.00 1 x1 [1]
0.00 0.00 100/100 consumeCpul [O]
0.00 0.00 1000/1000 x2 [3]

[2] 0.0 0.00 0.00 1000 consumeCpu2 [2]
0.00 0.00 1/1 <UNKNOWN>

[3] 0.0 0.00 0.00 1 x2 [3]
0.00 0.00 1000/1000 consumeCpu2 [2]

Above and below, the "<UNKNOWN>" strings represent identifiers that are outside of
the profiled object (in this example, these are instances of main()).

The sprof —c option generates a list of call pairs and the number of their occurrences:
$ sprof —c libdemo.so.1l $LD_PROFILE_OUTPUT/libdemo.so.1l.profile;

<UNKNOWN> x1 1

x1 consumeCpul 100

<UNKNOWN> X2 1

X2 consumeCpu?2 1000
SEE ALSO

gprof (1), Idd(1), Id.so(8)

Linux man-pages 6.16 2025-09-21 38

time(1) General Commands Manual time(1)

NAME

time — time a simple command or give resource usage
SYNOPSIS

time [option ...] command [argument .. .]
DESCRIPTION

The time command runs the specified program command with the given arguments.
When command finishes, time writes a message to standard error giving timing statis-
tics about this program run. These statistics consist of (i) the elapsed real time between
invocation and termination, (ii) the user CPU time (the sum of the tms_utime and
tms_cutime values in a struct tms as returned by times(2)), and (iii) the system CPU time
(the sum of the tms_stime and tms_cstime values in a struct tms as returned by times(2)).

Note: some shells (e.g., bash(1)) have a built-in time command that provides similar in-
formation on the usage of time and possibly other resources. To access the real com-
mand, you may need to specify its pathname (something like /usr/bin/time).

OPTIONS
-p When in the POSIX locale, use the precise traditional format

"real %f\nuser %f\nsys %f\n"

(with numbers in seconds) where the number of decimals in the output for %f is
unspecified but is sufficient to express the clock tick accuracy, and at least one.

EXIT STATUS
If command was invoked, the exit status is that of command. Otherwise, it is 127 if
command could not be found, 126 if it could be found but could not be invoked, and
some other nonzero value (1-125) if something else went wrong.

ENVIRONMENT
The variables LANG, LC ALL, LC CTYPE, LC_MESSAGES, LC NUMERIC,
and NLSPATH are used for the text and formatting of the output. PATH is used to
search for command.

GNU VERSION
Below a description of the GNU 1.7 version of time. Disregarding the name of the util-
ity, GNU makes it output lots of useful information, not only about time used, but also
on other resources like memory, 1/0 and IPC calls (where available). The output is for-
matted using a format string that can be specified using the —f option or the TIME envi-
ronment variable.

The default format string is:

%Uuser %Ssystem %Eelapsed %PCPU (%Xtext+%Ddata %Mmax)k
%1 inputs+%Ooutputs (%Fmajor+%Rminor)pagefaults %Wswaps

When the —p option is given, the (portable) output format is used:

real %e
user %U
sys %S

Linux man-pages 6.16 2025-05-17 39

time(1)

General Commands Manual time(1)

The format string
The format is interpreted in the usual printf(3)-like way. Ordinary characters are di-
rectly copied, tab, newline, and backslash are escaped using \t, \n, and \\, a percent sign
is represented by %%, and otherwise % indicates a conversion. The program time will
always add a trailing newline itself. The conversions follow. All of those used by
tcsh(1) are supported.

Time

%E Elapsed real time (in [hours:]minutes:seconds).

%e (Notin tcsh(1)Elapsed real time (in seconds).

%S Total number of CPU-seconds that the process spent in kernel mode.

%U Total number of CPU-seconds that the process spent in user mode.

%P Percentage of the CPU that this job got, computed as (%U + %S) / %E.

Memory

%M Maximum resident set size of the process during its lifetime, in Kbytes.

%t (Not in tcsh(1)Average resident set size of the process, in Kbytes.

%K Average total (data+stack+text) memory use of the process, in Kbytes.

%D Average size of the process’s unshared data area, in Kbytes.

%p (Not in tcsh(1)Average size of the process’s unshared stack space, in Kbytes.

%X Average size of the process’s shared text space, in Kbytes.

%Z (Not in tcsh(1)System’s page size, in bytes. This is a per-system constant, but
varies between systems.

%F Number of major page faults that occurred while the process was running.
These are faults where the page has to be read in from disk.

%R Number of minor, or recoverable, page faults. These are faults for pages that are
not valid but which have not yet been claimed by other virtual pages. Thus the
data in the page is still valid but the system tables must be updated.

%W Number of times the process was swapped out of main memory.

%c Number of times the process was context-switched involuntarily (because the
time slice expired).

%w Number of waits: times that the program was context-switched voluntarily, for
instance while waiting for an 1/0O operation to complete.

1/0

%Il Number of filesystem inputs by the process.

%0 Number of filesystem outputs by the process.

%r Number of socket messages received by the process.

Linux man-pages 6.16 2025-05-17 40

time(1) General Commands Manual time(1)

%s Number of socket messages sent by the process.

%k Number of signals delivered to the process.

%C (Not in tcsh(1)Name and command-line arguments of the command being timed.
%x (Not in tcsh(1)Exit status of the command.

GNU options
—f format, ——format= format
Specify output format, possibly overriding the format specified in the environ-
ment variable TIME.

—-p, ——portability
Use the portable output format.
-0 file, ——output=file
Do not send the results to stderr, but overwrite the specified file.

—-a, ——append

(Used together with —0.) Do not overwrite but append.
-V, ——verbose

Give very verbose output about all the program knows about.
—-(, ——quiet

Don’t report abnormal program termination (where command is terminated by a
signal) or nonzero exit status.

GNU standard options
——help
Print a usage message on standard output and exit successfully.

-V, ——version
Print version information on standard output, then exit successfully.

- Terminate option list.

BUGS
Not all resources are measured by all versions of UNIX, so some of the values might be
reported as zero. The present selection was mostly inspired by the data provided by 4.2
or 4.3BSD.

GNU time version 1.7 is not yet localized. Thus, it does not implement the POSIX re-
quirements.

The environment variable TIME was badly chosen. It is not unusual for systems like
autoconf (1) or make(1) to use environment variables with the name of a utility to over-
ride the utility to be used. Uses like MORE or TIME for options to programs (instead of
program pathnames) tend to lead to difficulties.

It seems unfortunate that —o overwrites instead of appends. (That is, the —a option
should be the default.)

Mail suggestions and bug reports for GNU time to bug-time@gnu.org. Please include
the version of time, which you can get by running

time ——version

Linux man-pages 6.16 2025-05-17 41

time(1) General Commands Manual time(1)

and the operating system and C compiler you used.

SEE ALSO
bash(1), tcsh(1), times(2), wait3(2)

Linux man-pages 6.16 2025-05-17 42

intro(2) System Calls Manual intro(2)

NAME
intro — introduction to system calls
DESCRIPTION

Section 2 of the manual describes the Linux system calls. A system call is an entry
point into the Linux kernel. Usually, system calls are not invoked directly: instead, most
system calls have corresponding C library wrapper functions which perform the steps re-
quired (e.g., trapping to kernel mode) in order to invoke the system call. Thus, making a
system call looks the same as invoking a normal library function.

In many cases, the C library wrapper function does nothing more than:

» copying arguments and the unique system call number to the registers where the ker-
nel expects them;

» trapping to kernel mode, at which point the kernel does the real work of the system
call;

» setting errno if the system call returns an error number when the kernel returns the
CPU to user mode.

However, in a few cases, a wrapper function may do rather more than this, for example,
performing some preprocessing of the arguments before trapping to kernel mode, or
postprocessing of values returned by the system call. Where this is the case, the manual
pages in Section 2 generally try to note the details of both the (usually GNU) C library
API interface and the raw system call. Most commonly, the main DESCRIPTION will
focus on the C library interface, and differences for the system call are covered in the
NOTES section.

For a list of the Linux system calls, see syscalls(2).
RETURN VALUE

On error, most system calls return a negative error number (i.e., the negated value of one
of the constants described in errno(3)). The C library wrapper hides this detail from the
caller: when a system call returns a negative value, the wrapper copies the absolute value
into the errno variable, and returns —1 as the return value of the wrapper.

The value returned by a successful system call depends on the call. Many system calls
return 0 on success, but some can return nonzero values from a successful call. The de-
tails are described in the individual manual pages.

In some cases, the programmer must define a feature test macro in order to obtain the
declaration of a system call from the header file specified in the man page SYNOPSIS
section. (Where required, these feature test macros must be defined before including
any header files.) In such cases, the required macro is described in the man page. For
further information on feature test macros, see feature_test_macros(7).

STANDARDS
Certain terms and abbreviations are used to indicate UNIX variants and standards to
which calls in this section conform. See standards(7).

NOTES

Linux man-pages 6.16 2025-05-17 43

intro(2) System Calls Manual intro(2)

Calling directly
In most cases, it is unnecessary to invoke a system call directly, but there are times when

the Standard C library does not implement a nice wrapper function for you. In this case,
the programmer must manually invoke the system call using syscall(2). Historically,
this was also possible using one of the _syscall macros described in _syscall(2).

Authors and copyright conditions
Look at the header of the manual page source for the author(s) and copyright conditions.

Note that these can be different from page to page!

SEE ALSO
_syscall(2), syscall(2), syscalls(2), errno(3), intro(3), capabilities(7), credentials(7),
feature_test_macros(7), mg_overview(7), path_resolution(7), pipe(7), pty(7),
sem_overview(7), shm_overview(7), signal(7), socket(7), standards(7), symlink(7),
system_data_types(7), sysvipc(7), time(7)

Linux man-pages 6.16 2025-05-17 44

accept(2) System Calls Manual accept(2)

NAME

accept, accept4 — accept a connection on a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen);

#define _ GNU_SOURCE I* See feature_test_macros(7) */
#include <sys/socket.h>

int accept4(int sockfd, struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen, int flags);

DESCRIPTION
The accept() system call is wused with connection-based socket types
(SOCK_STREAM, SOCK_SEQPACKET). It extracts the first connection request on
the queue of pending connections for the listening socket, sockfd, creates a new con-
nected socket, and returns a new file descriptor referring to that socket. The newly cre-
ated socket is not in the listening state. The original socket sockfd is unaffected by this
call.

The argument sockfd is a socket that has been created with socket(2), bound to a local
address with bind(2), and is listening for connections after a listen(2).

The argument addr is a pointer to a sockaddr structure. This structure is filled in with
the address of the peer socket, as known to the communications layer. The exact format
of the address returned addr is determined by the socket’s address family (see socket(2)
and the respective protocol man pages). When addr is NULL, nothing is filled in; in
this case, addrlen is not used, and should also be NULL.

The addrlen argument is a value-result argument: the caller must initialize it to contain
the size (in bytes) of the structure pointed to by addr; on return it will contain the actual
size of the peer address.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

If no pending connections are present on the queue, and the socket is not marked as non-
blocking, accept() blocks the caller until a connection is present. If the socket is marked
nonblocking and no pending connections are present on the queue, accept() fails with
the error EAGAIN or EWOULDBLOCK.

In order to be notified of incoming connections on a socket, you can use select(2),
poll(2), or epoll(7). A readable event will be delivered when a new connection is at-
tempted and you may then call accept() to get a socket for that connection. Alterna-
tively, you can set the socket to deliver SIGIO when activity occurs on a socket; see
socket(7) for details.

If flags is O, then accept4() is the same as accept(). The following values can be bit-
wise ORed in flags to obtain different behavior:

Linux man-pages 6.16 2025-10-29 45

accept(2) System Calls Manual accept(2)

SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file de-
scriptor. See the description of the O_CLOEXEC flag in open(2)
for reasons why this may be useful.

RETURN VALUE
On success, these system calls return a file descriptor for the accepted socket (a nonneg-
ative integer). On error, —1 is returned, errno is set to indicate the error, and addrlen is
left unchanged.

Error handling
Linux accept() (and accept4()) passes already-pending network errors on the new
socket as an error code from accept(). This behavior differs from other BSD socket im-
plementations. For reliable operation the application should detect the network errors
defined for the protocol after accept() and treat them like EAGAIN by retrying. In the
case of TCP/IP, these are ENETDOWN, EPROTO, ENOPROTOOPT, EHOST-
DOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP, and ENETUNREACH.

ERRORS
EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and no connections are present to be ac-
cepted. POSIX.1-2001 and POSIX.1-2008 allow either error to be returned for
this case, and do not require these constants to have the same value, so a portable
application should check for both possibilities.

EBADF
sockfd is not an open file descriptor.

ECONNABORTED
A connection has been aborted.

EFAULT
The addr argument is not in a writable part of the user address space.

EINTR
The system call was interrupted by a signal that was caught before a valid con-
nection arrived; see signal(7).

EINVAL
Socket is not listening for connections, or addrlen is invalid (e.g., is negative).

EINVAL
(accept4()) invalid value in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

Linux man-pages 6.16 2025-10-29 46

accept(2) System Calls Manual accept(2)

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOBUFS

ENOMEM
Not enough free memory. This often means that the memory allocation is lim-
ited by the socket buffer limits, not by the system memory.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM.

EPERM
Firewall rules forbid connection.

EPROTO
Protocol error.

In addition, network errors for the new socket and as defined for the protocol may be re-
turned. Various Linux kernels can return other errors such as ENOSR, ESOCKTNO-
SUPPORT, EPROTONOSUPPORT, ETIMEDOUT. The value ERESTARTSYS
may be seen during a trace.

VERSIONS
On Linux, the new socket returned by accept() does not inherit file status flags such as
O_NONBLOCK and O_ASYNC from the listening socket. This behavior differs from
the canonical BSD sockets implementation. Portable programs should not rely on inher-
itance or noninheritance of file status flags and always explicitly set all required flags on
the socket returned from accept().

STANDARDS
POSIX.1-2024.

HISTORY

accept()
POSIX.1-2001, SVr4, 4.4BSD (accept() first appeared in 4.2BSD).

accept4()
POSIX.1-2024. Linux 2.6.28, glibc 2.10.

NOTES
There may not always be a connection waiting after a SIGIO is delivered or select(2),
poll(2), or epoll(7) return a readability event because the connection might have been re-
moved by an asynchronous network error or another thread before accept() is called. If
this happens, then the call will block waiting for the next connection to arrive. To en-
sure that accept() never blocks, the passed socket sockfd needs to have the O_NON-
BLOCK flag set (see socket(7)).

For certain protocols which require an explicit confirmation, such as DECnet, accept()
can be thought of as merely dequeuing the next connection request and not implying
confirmation. Confirmation can be implied by a normal read or write on the new file de-
scriptor, and rejection can be implied by closing the new socket. Currently, only

Linux man-pages 6.16 2025-10-29 47

accept(2) System Calls Manual accept(2)

DECnet has these semantics on Linux.

The socklen_t type
In the original BSD sockets implementation (and on other older systems) the third argu-
ment of accept() was declared as an int *. A POSIX.1g draft standard wanted to change
it into a size_t *; later POSIX standards and glibc 2.x have socklen_t * .

EXAMPLES
See bind(2).

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2), socket(7)

Linux man-pages 6.16 2025-10-29 48

access(2) System Calls Manual access(2)

NAME

access, faccessat, faccessat2 — check user’s permissions for a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int access(const char * path, int mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int faccessat(int dirfd, const char *path, int mode, int flags);
/* But see C library/kernel differences, below */

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_faccessat2,
int dirfd, const char *path, int mode, int flags);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

faccessat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
access() checks whether the calling process can access the file path. If path is a sym-
bolic link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and is either the value
F_OK, or a mask consisting of the bitwise OR of one or more of R_OK, W_OK, and
X _OK. F_OK tests for the existence of the file. R_OK, W_OK, and X OK test
whether the file exists and grants read, write, and execute permissions, respectively.

The check is done using the calling process’s real UID and GID, rather than the effec-
tive IDs as is done when actually attempting an operation (e.g., open(2)) on the file.
Similarly, for the root user, the check uses the set of permitted capabilities rather than
the set of effective capabilities; and for non-root users, the check uses an empty set of
capabilities.

This allows set-user-1D programs and capability-endowed programs to easily determine
the invoking user’s authority. In other words, access() does not answer the "can |
read/write/execute this file?"" question. It answers a slightly different question: "(assum-
ing I’'m a setuid binary) can the user who invoked me read/write/execute this file?",
which gives set-user-ID programs the possibility to prevent malicious users from caus-
ing them to read files which users shouldn’t be able to read.

If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is

Linux man-pages 6.16 2025-10-29 49

access(2) System Calls Manual access(2)

successful for a regular file if execute permission is enabled for any of the file owner,
group, or other.

faccessat()
faccessat() operates in exactly the same way as access(), except for the differences de-
scribed here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by access() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like access())

If path is absolute, then dirfd is ignored.
flags is constructed by ORing together zero or more of the following values:

AT_EACCESS
Perform access checks using the effective user and group IDs. By default, fac-
cessat() uses the real IDs (like access())

AT_EMPTY_PATH (since Linux 5.8)
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag). In this case, dirfd can re-
fer to any type of file, not just a directory. If dirfd is AT_FDCWD, the call op-
erates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead return information about
the link itself.

See openat(2) for an explanation of the need for faccessat().

faccessat2()
The description of faccessat() given above corresponds to POSIX.1 and to the imple-
mentation provided by glibc. However, the glibc implementation was an imperfect emu-
lation (see BUGS) that papered over the fact that the raw Linux faccessat() system call
does not have a flags argument. To allow for a proper implementation, Linux 5.8 added
the faccessat2() system call, which supports the flags argument and allows a correct im-
plementation of the faccessat() wrapper function.

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the file exists),
zero is returned. On error (at least one bit in mode asked for a permission that is denied,
or mode is F_OK and the file does not exist, or some other error occurred), -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EACCES
The requested access would be denied to the file, or search permission is denied
for one of the directories in the path prefix of path. (See also
path_resolution(7).)

Linux man-pages 6.16 2025-10-29 50

access(2) System Calls Manual access(2)

EBADF
(faccessat()) path is relative but dirfd is neither AT_FDCWD (faccessat()) nor
a valid file descriptor.

EFAULT
path points outside your accessible address space.

EINVAL
mode was incorrectly specified.

EINVAL
(faccessat()) Invalid flag specified in flags.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
A component of path does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component used as a directory in path is not, in fact, a directory.

ENOTDIR
(faccessat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

EPERM
Write permission was requested to a file that has the immutable flag set. See
also FS_IOC_SETFLAGS(2const).

EROFS
Write permission was requested for a file on a read-only filesystem.

ETXTBSY
Write access was requested to an executable which is being executed.

VERSIONS
If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 per-
mits an implementation to indicate success for an X_OK check even if none of the exe-
cute file permission bits are set. Linux does not do this.

C library/kernel differences
The raw faccessat() system call takes only the first three arguments. The AT_EAC-
CESS and AT_SYMLINK_NOFOLLOW flags are actually implemented within the
glibc wrapper function for faccessat(). If either of these flags is specified, then the
wrapper function employs fstatat(2) to determine access permissions, but see BUGS.

Linux man-pages 6.16 2025-10-29 51

access(2) System Calls Manual access(2)

glibc notes
On older kernels where faccessat() is unavailable (and when the AT_EACCESS and
AT_SYMLINK_NOFOLLOW flags are not specified), the glibc wrapper function falls
back to the use of access(). When path is relative, glibc constructs a pathname based on
the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
access()
faccessat()
POSIX.1-2024.

faccessat2()
Linux.

HISTORY
access()
SVr4, 4.3BSD, POSIX.1-2001.

faccessat()
Linux 2.6.16, glibc 2.4.

faccessat2()
Linux 5.8.

NOTES
Warning: Using these calls to check if a user is authorized to, for example, open a file
before actually doing so using open(2) creates a security hole, because the user might
exploit the short time interval between checking and opening the file to manipulate it.
For this reason, the use of this system call should be avoided. (In the example just
described, a safer alternative would be to temporarily switch the process’s effective user
ID to the real ID and then call open(2).)

access() always dereferences symbolic links. If you need to check the permissions on a
symbolic link, use faccessat() with the flag AT_SYMLINK_NOFOLLOW.

These calls return an error if any of the access types in mode is denied, even if some of
the other access types in mode are permitted.

A file is accessible only if the permissions on each of the directories in the path prefix of
path grant search (i.e., execute) access. If any directory is inaccessible, then the ac-
cess() call fails, regardless of the permissions on the file itself.

Only access bits are checked, not the file type or contents. Therefore, if a directory is
found to be writable, it probably means that files can be created in the directory, and not
that the directory can be written as a file. Similarly, a DOS file may be reported as exe-
cutable, but the execve(2) call will still fail.

These calls may not work correctly on NFSv2 filesystems with UID mapping enabled,
because UID mapping is done on the server and hidden from the client, which checks
permissions. (NFS versions 3 and higher perform the check on the server.) Similar
problems can occur to FUSE mounts.

Linux man-pages 6.16 2025-10-29 52

access(2) System Calls Manual access(2)

BUGS
Because the Linux kernel’s faccessat() system call does not support a flags argument,
the glibc faccessat() wrapper function provided in glibc 2.32 and earlier emulates the re-
quired functionality using a combination of the faccessat() system call and fstatat(2).
However, this emulation does not take ACLs into account. Starting with glibc 2.33, the
wrapper function avoids this bug by making use of the faccessat2() system call where it
is provided by the underlying kernel.

In Linux 2.4 (and earlier) there is some strangeness in the handling of X_OK tests for
superuser. If all categories of execute permission are disabled for a nondirectory file,
then the only access() test that returns =1 is when mode is specified as just X_OK; if
R_OK or W_OK is also specified in mode, then access() returns 0 for such files. Early
Linux 2.6 (up to and including Linux 2.6.3) also behaved in the same way as Linux 2.4.

Before Linux 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was
used to mount(2) the underlying filesystem. Since Linux 2.6.20, the MS_NOEXEC flag
is honored.

SEE ALSO
chmod(2), chown(2), open(2), setgid(2), setuid(2), stat(2), euidaccess(3), credentials(7),
path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 53

acct(2) System Calls Manual acct(2)

NAME

acct — switch process accounting on or off
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int acct(const char *_Nullable path);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acct():
Since glibc 2.21:
_DEFAULT_SOURCE
In glibc 2.19 and 2.20:
_DEFAULT_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:
_BSD_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The acct() system call enables or disables process accounting. If called with the path-
name of an existing file as its argument, accounting is turned on, and records for each
terminating process are appended to the file as it terminates. An argument of NULL
causes accounting to be turned off.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES
Write permission is denied for the specified file, or search permission is denied
for one of the directories in the path prefix of path (see also path_resolution(7)),
or path is not a regular file.

EFAULT
path points outside your accessible address space.

EIO Error writing to the file path.

EISDIR
path is a directory.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

Linux man-pages 6.16 2025-05-17 54

acct(2) System Calls Manual acct(2)

ENOENT
The specified path does not exist.

ENOMEM
Out of memory.

ENOSYS
BSD process accounting has not been enabled when the operating system kernel
was compiled. The kernel configuration parameter controlling this feature is
CONFIG_BSD_PROCESS_ACCT.

ENOTDIR
A component used as a directory in path is not in fact a directory.

EPERM
The calling process has insufficient privilege to enable process accounting. On
Linux, the CAP_SYS_PACCT capability is required.

EROFS
path refers to a file on a read-only filesystem.

EUSERS
There are no more free file structures or we ran out of memory.

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

NOTES
No accounting is produced for programs running when a system crash occurs. In partic-
ular, nonterminating processes are never accounted for.

The structure of the records written to the accounting file is described in acct(5).

SEE ALSO
acct(b)

Linux man-pages 6.16 2025-05-17 55

add_key(2) System Calls Manual add_key(2)

NAME

add_key — add a key to the kernel’s key management facility
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <keyutils.h>

key serial _tadd_key(size_t size;
const char *type, const char *description,
const void payload[size], size_t size,
key_serial_t keyring);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

add_key() creates or updates a key of the given type and description, instantiates it with
the payload of size size, attaches it to the nominated keyring, and returns the key’s serial
number.

The key may be rejected if the provided data is in the wrong format or it is invalid in
some other way.

If the destination keyring already contains a key that matches the specified type and de-
scription, then, if the key type supports it, that key will be updated rather than a new key
being created; if not, a new key (with a different ID) will be created and it will displace
the link to the extant key from the keyring.

The destination keyring serial number may be that of a valid keyring for which the caller
has write permission. Alternatively, it may be one of the following special keyring IDs:

KEY_SPEC_THREAD_KEYRING
This specifies the caller’s thread-specific keyring (thread—keyring(7)).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring (process—keyring(7)).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring (session—keyring(7)).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring (user—keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring (user—session—keyring(7)).

Key types
The key type is a string that specifies the key’s type. Internally, the kernel defines a
number of key types that are available in the core key management code. Among the
types that are available for user-space use and can be specified as the type argument to
add_key() are the following:

"keyring"
Keyrings are special key types that may contain links to sequences of other keys
of any type. If this interface is used to create a keyring, then payload should be

Linux man-pages 6.16 2025-09-21 56

add_key(2) System Calls Manual add_key(2)

NULL and size should be zero.

"user"
This is a general purpose key type whose payload may be read and updated by
user-space applications. The key is kept entirely within kernel memory. The
payload for keys of this type is a blob of arbitrary data of up to 32,767 bytes.

"logon" (since Linux 3.3)
This key type is essentially the same as "user"”, but it does not permit the key to
read. This is suitable for storing payloads that you do not want to be readable
from user space.

This key type vets the description to ensure that it is qualified by a "service" prefix, by
checking to ensure that the description contains a ’:” that is preceded by other charac-
ters.

"big_key" (since Linux 3.13)
This key type is similar to "user", but may hold a payload of up to 1 MiB. If the
key payload is large enough, then it may be stored encrypted in tmpfs (which can
be swapped out) rather than kernel memory.

For further details on these key types, see keyrings(7).

RETURN VALUE
On success, add_key() returns the serial number of the key it created or updated. On er-
ror, —1 is returned and errno is set to indicate the error.

ERRORS
EACCES
The keyring wasn’t available for modification by the user.

EDQUOT
The key quota for this user would be exceeded by creating this key or linking it
to the keyring.

EFAULT
One or more of type, description, and payload points outside process’s accessi-
ble address space.

EINVAL
The size of the string (including the terminating null byte) specified in type or
description exceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL
The payload data was invalid.

EINVAL
type was "logon™ and the description was not qualified with a prefix string of the
form "'service:".

EKEYEXPIRED
The keyring has expired.

Linux man-pages 6.16 2025-09-21 57

add_key(2) System Calls Manual add_key(2)

EKEYREVOKED
The keyring has been revoked.

ENOKEY
The keyring doesn’t exist.

ENOMEM
Insufficient memory to create a key.

EPERM

The type started with a period ('."). Key types that begin with a period are re-
served to the implementation.

EPERM
type was "keyring" and the description started with a period ('."). Keyrings with
descriptions (names) that begin with a period are reserved to the implementation.

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

NOTES
glibc does not provide a wrapper for this system call. A wrapper is provided in the
libkeyutils library. (The accompanying package provides the <keyutils.h> header file.)
When employing the wrapper in that library, link with -lkeyutils.

EXAMPLES
The program below creates a key with the type, description, and payload specified in its
command-line arguments, and links that key into the session keyring. The following
shell session demonstrates the use of the program:

$./a.out user mykey ''Some payload";

Key 1D iIs 64addca

$ grep "64a4dca” /proc/keys;

O64ad4dca 1--Q——- 1 perm 3f010000 1000 1000 user

Program source

#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])

{
key serial _t key;

if (argc 1= 4) {

mykey: 12

fprintf(stderr, "Usage: %s type description payload\n™,

Linux man-pages 6.16 2025-09-21 58

add_key(2) System Calls Manual add_key(2)

argv[0]);
ex1t(EXIT_FAILURE);

}

key = add_key(argv[1l], argv[2], argv[3], strlen(argv[3]),
KEY_SPEC_SESSION_KEYRING);
if (key == -1) {
perror(*add_key™);
exit(EXIT_FAILURE);
+

printf("’Key ID is %jx\n", (uintmax_t) key);

ex1t(EXIT_SUCCESS);
}
SEE ALSO
keyctl(1), keyctl(2), request_key(2), keyctl(3), keyrings(7), keyutils(7), persistent-
keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-keyring(7),
user-session-keyring(7)

The kernel source files Documentation/security/keys/core.rst and
Documentation/keys/request—key.rst (or, before Linux 4.13, in the files
Documentation/security/keys.txt and Documentation/security/keys-request-key.txt).

Linux man-pages 6.16 2025-09-21 59

adjtimex(2) System Calls Manual adjtimex(2)

NAME

adjtimex, clock_adjtime, ntp_adjtime — tune kernel clock
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/timex.h>
int adjtimex(struct timex *buf);
int clock_adjtime(clockid_t clk_id, struct timex *buf);

int ntp_adjtime(struct timex *buf);

DESCRIPTION
Linux uses David L. Mills’ clock adjustment algorithm (see RFC 5905). The system
call adjtimex() reads and optionally sets adjustment parameters for this algorithm. It
takes a pointer to a timex structure, updates kernel parameters from (selected) field val-
ues, and returns the same structure updated with the current kernel values. This struc-

ture is declared as follows:

struct timex {

int modes; /* Mode selector */

long offset; /* Time offset; nanoseconds, 1T STA NANO
status flag is set, otherwise
microseconds */

long freq; /* Frequency offset; see NOTES for units */

long maxerror; /* Maximum error (microseconds) */

long esterror; /* Estimated error (microseconds) */

int status; /* Clock command/status */

long constant; /* PLL (phase-locked loop) time constant */

long precision; /* Clock precision
(microseconds, read-only) */

long tolerance; /* Clock frequency tolerance (read-only);

struct timeval time;

long
long

tick;
ppsfreq;

long jitter;

/*

/*
/*

/*

see NOTES for units */

Current time (read-only, except for

ADJ _SETOFFSET); upon return, time.tv_usec
contains nanoseconds, 1f STA NANO status
flag is set, otherwise microseconds */
Microseconds between clock ticks */

PPS (pulse per second) frequency
(read-only); see NOTES for units */

PPS jitter (read-only); nanoseconds, if
STA NANO status flag i1s set, otherwise
microseconds */

int shift; /* PPS interval duration
(seconds, read-only) */
long stabil; /* PPS stability (read-only);

Linux man-pages 6.16

see NOTES for units */

2025-09-21 60

adjtimex(2) System Calls Manual adjtimex(2)

long jitcnt; /* PPS count of jitter limit exceeded
events (read-only) */

long calcnt; /* PPS count of calibration intervals
(read-only) */

long errcnt; /* PPS count of calibration errors
(read-only) */

long stbcnt; /* PPS count of stability limit exceeded
events (read-only) */

int tai; /* TAl offset, as set by previous ADJ TAI

operation (seconds, read-only,
since Linux 2.6.26) */
/* Further padding bytes to allow for future expansion */
33
The modes field determines which parameters, if any, to set. (As described later in this
page, the constants used for ntp_adjtime() are equivalent but differently named.) Itis a
bit mask containing a bitwise OR combination of zero or more of the following bits:

ADJ _OFFSET
Set time offset from buf.offset. Since Linux 2.6.26, the supplied value is
clamped to the range (-0.5s, +0.5s). In older kernels, an EINVAL error occurs
if the supplied value is out of range.

ADJ FREQUENCY
Set frequency offset from buf.freq. Since Linux 2.6.26, the supplied value is
clamped to the range (—32768000, +32768000). In older kernels, an EINVAL
error occurs if the supplied value is out of range.

ADJ MAXERROR
Set maximum time error from buf.maxerror.

ADJ ESTERROR
Set estimated time error from buf.esterror.

ADJ_STATUS
Set clock status bits from buf.status. A description of these bits is provided be-
low.

ADJ_TIMECONST
Set PLL time constant from buf.constant. If the STA_NANO status flag (see be-
low) is clear, the kernel adds 4 to this value.

ADJ SETOFFSET (since Linux 2.6.39)
Add buf.time to the current time. If buf.status includes the ADJ_NANO flag,
then buf.time.tv_usec is interpreted as a nanosecond value; otherwise it is inter-
preted as microseconds.

The value of buf.time is the sum of its two fields, but the field buf.time.tv_usec
must always be nonnegative. The following example shows how to normalize a
timeval with nanosecond resolution.

while (buf.time.tv_usec < 0) {
buf.time.tv_sec -= 1;

Linux man-pages 6.16 2025-09-21 61

adjtimex(2) System Calls Manual adjtimex(2)

buf.time.tv_usec += 1000000000;
}

ADJ_MICRO (since Linux 2.6.26)
Select microsecond resolution.

ADJ_NANO (since Linux 2.6.26)
Select nanosecond resolution. Only one of ADJ_MICRO and ADJ_NANO
should be specified.

ADJ_TAI (since Linux 2.6.26)
Set TAI (Atomic International Time) offset from buf.constant.

ADJ_TAI should not be used in conjunction with ADJ_TIMECONST, since
the latter mode also employs the buf.constant field.

For a complete explanation of TAI and the difference between TAI and UTC, see
BIPM [hittp://mwww.bipm.org/en/bipm/tai/tai.htmlI[]

ADJ_TICK
Set tick value from buf.tick.

Alternatively, modes can be specified as either of the following (multibit mask) values,
in which case other bits should not be specified in modes:

ADJ OFFSET_SINGLESHOT
Old-fashioned adjtime(3): (gradually) adjust time by value specified in buf.offset,
which specifies an adjustment in microseconds.

ADJ OFFSET_SS_READ (functional since Linux 2.6.28)
Return (in buf.offset) the remaining amount of time to be adjusted after an earlier
ADJ OFFSET_SINGLESHOT operation. This feature was added in Linux
2.6.24, but did not work correctly until Linux 2.6.28.

Ordinary users are restricted to a value of either 0 or ADJ_OFFSET_SS_READ for
modes. Only the superuser may set any parameters.

The buf.status field is a bit mask that is used to set and/or retrieve status bits associated
with the NTP implementation. Some bits in the mask are both readable and settable,
while others are read-only.

STA_PLL (read-write)
Enable phase-locked loop (PLL) updates via ADJ_OFFSET.

STA_PPSFREQ (read-write)
Enable PPS (pulse-per-second) frequency discipline.

STA_PPSTIME (read-write)
Enable PPS time discipline.

STA_FLL (read-write)
Select frequency-locked loop (FLL) mode.

STA_INS (read-write)
Insert a leap second after the last second of the UTC day, thus extending the last
minute of the day by one second. Leap-second insertion will occur each day, so
long as this flag remains set.

Linux man-pages 6.16 2025-09-21 62

adjtimex(2) System Calls Manual adjtimex(2)

STA_DEL (read-write)
Delete a leap second at the last second of the UTC day. Leap second deletion
will occur each day, so long as this flag remains set.

STA_UNSYNC (read-write)
Clock unsynchronized.

STA_FREQHOLD (read-write)
Hold frequency. Normally adjustments made via ADJ OFFSET result in
dampened frequency adjustments also being made. So a single call corrects the
current offset, but as offsets in the same direction are made repeatedly, the small
frequency adjustments will accumulate to fix the long-term skew.

This flag prevents the small frequency adjustment from being made when cor-
recting for an ADJ_OFFSET value.

STA_PPSSIGNAL (read-only)
A valid PPS (pulse-per-second) signal is present.

STA PPSJITTER (read-only)
PPS signal jitter exceeded.

STA_PPSWANDER (read-only)
PPS signal wander exceeded.

STA PPSERROR (read-only)
PPS signal calibration error.

STA_CLOCKERR (read-only)
Clock hardware fault.

STA_NANO (read-only; since Linux 2.6.26)
Resolution (0 = microsecond, 1 = nanoseconds). Set via ADJ_NANO, cleared
via ADJ_MICRO.

STA_MODE (since Linux 2.6.26)
Mode (0 = Phase Locked Loop, 1 = Frequency Locked Loop).

STA_CLK (read-only; since Linux 2.6.26)
Clock source (0 = A, 1 = B); currently unused.

Attempts to set read-only status bits are silently ignored.

clock_adjtime ()
The clock_adjtime() system call (added in Linux 2.6.39) behaves like adjtimex() but
takes an additional clk_id argument to specify the particular clock on which to act.

ntp_adjtime ()
The ntp_adjtime() library function (described in the NTP "Kernel Application Program
API", KAPI) is a more portable interface for performing the same task as adjtimex().
Other than the following points, it is identical to adjtimex():

* The constants used in modes are prefixed with *"MOD _" rather than "ADJ_", and
have the same suffixes (thus, MOD_OFFSET, MOD_FREQUENCY, and so on),
other than the exceptions noted in the following points.

Linux man-pages 6.16 2025-09-21 63

adjtimex(2) System Calls Manual adjtimex(2)

« MOD_CLKA is the synonym for ADJ_OFFSET_SINGLESHOT.
» MOD_CLKSB is the synonym for ADJ_TICK.

* The is no synonym for ADJ_OFFSET_SS_READ, which is not described in the
KAPI.

RETURN VALUE
On success, adjtimex() and ntp_adjtime() return the clock state; that is, one of the fol-
lowing values:

TIME_OK Clock synchronized, no leap second adjustment pending.
TIME_INS Indicates that a leap second will be added at the end of the UTC day.

TIME_DEL
Indicates that a leap second will be deleted at the end of the UTC day.

TIME_OOP
Insertion of a leap second is in progress.

TIME_WAIT
A leap-second insertion or deletion has been completed. This value will
be returned until the next ADJ_STATUS operation clears the STA_INS
and STA_DEL flags.

TIME_ERROR
The system clock is not synchronized to a reliable server. This value is
returned when any of the following holds true:

o Either STA_UNSYNC or STA_CLOCKERR is set.

e STA PPSSIGNAL is clear and either STA_PPSFREQ or STA PP-
STIME is set.

 STA_PPSTIME and STA_PPSJITTER are both set.

 STA_PPSFREQ is set and either STA_PPSWANDER or STA_PP-
SJITTER is set.

The symbolic name TIME_BAD is a synonym for TIME_ERROR, pro-
vided for backward compatibility.

Note that starting with Linux 3.4, the call operates asynchronously and the return value
usually will not reflect a state change caused by the call itself.

On failure, these calls return —1 and set errno to indicate the error.

ERRORS
EFAULT
buf does not point to writable memory.

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.freq to a value outside the range (—33554432,
+33554432).

Linux man-pages 6.16 2025-09-21 64

adjtimex(2) System Calls Manual adjtimex(2)

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.offset to a value outside the permitted range. Be-
fore Linux 2.0, the permitted range was (-131072, +131072). From Linux 2.0
onwards, the permitted range was (-512000, +512000).

EINVAL
An attempt was made to set buf.status to a value other than those listed above.

EINVAL
The clk_id given to clock_adjtime() is invalid for one of two reasons. Either the
System-V style hard-coded positive clock ID value is out of range, or the dy-
namic clk_id does not refer to a valid instance of a clock object. See clock get-
time(2) for a discussion of dynamic clocks.

EINVAL
An attempt was made to set buf.tick to a value outside the range 900000/HZ to
1100000/HZ, where HZ is the system timer interrupt frequency.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk_id has disappeared after its character device was opened. See clock_get-
time(2) for a discussion of dynamic clocks.

EOPNOTSUPP
The given clk_id does not support adjustment.

EPERM
buf.modes is neither 0 nor ADJ_OFFSET_SS READ, and the caller does not
have sufficient privilege. Under Linux, the CAP_SYS_TIME capability is re-
quired.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
ntp_adjtime() Thread safety | MT-Safe

STANDARDS
adjtimex()
clock_adjtime()

Linux.

The preferred API for the NTP daemon is ntp_adjtime().

NOTES
In struct timex, freq, ppsfreq, and stabil are ppm (parts per million) with a 16-bit frac-
tional part, which means that a value of 1 in one of those fields actually means 2°-16
ppm, and 2*16=65536 is 1 ppm. This is the case for both input values (in the case of
freq) and output values.

The leap-second processing triggered by STA_INS and STA_DEL is done by the kernel
in timer context. Thus, it will take one tick into the second for the leap second to be in-
serted or deleted.

Linux man-pages 6.16 2025-09-21 65

adjtimex(2) System Calls Manual adjtimex(2)

SEE ALSO

clock_gettime(2), clock_settime(2), settimeofday(2), adjtime(3), ntp_gettime(3), capabil-
ities(7), time(7), adjtimex(8), hwclock(8)

NTP "Kernel Application Program Interface™ [hitp://www:.slac.stanford.edu/comp/unix/
package/rtems/src/ssrlApps/ntpNanoclock/api.htm [

Linux man-pages 6.16 2025-09-21 66

alarm(2) System Calls Manual alarm(2)

NAME

alarm — set an alarm clock for delivery of a signal
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

DESCRIPTION
alarm() arranges for a SIGALRM signal to be delivered to the calling process in sec-
onds seconds.

If seconds is zero, any pending alarm is canceled.

In any event any previously set alarm() is canceled.

RETURN VALUE
alarm() returns the number of seconds remaining until any previously scheduled alarm
was due to be delivered, or zero if there was no previously scheduled alarm.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
alarm() and setitimer(2) share the same timer; calls to one will interfere with use of the
other.

Alarms created by alarm() are preserved across execve(2) and are not inherited by chil-
dren created via fork(2).

sleep(3) may be implemented using SIGALRM; mixing calls to alarm() and sleep(3) is
a bad idea.

Scheduling delays can, as ever, cause the execution of the process to be delayed by an
arbitrary amount of time.

SEE ALSO
gettimeofday(2), pause(2), select(2), setitimer(2), sigaction(2), signal(2), timer_cre-
ate(2), timerfd_create(2), sleep(3), time(7)

Linux man-pages 6.16 2025-10-29 67

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

NAME
alloc_hugepages, free_hugepages — allocate or free huge pages

SYNOPSIS
void *syscall(size_t size;
SYS alloc_hugepages, int key,
void addr[size], size_t size,
int prot, int flag);
int syscall(SYS_free _hugepages, void *addr);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The system calls alloc_hugepages() and free_hugepages() were introduced in Linux
2.5.36 and removed again in Linux 2.5.54. They existed only on i386 and ia64 (when
built with CONFIG_HUGETLB_PAGE). In Linux 2.4.20, the syscall numbers exist,
but the calls fail with the error ENOSYS.

On i386 the memory management hardware knows about ordinary pages (4 KiB) and
huge pages (2 or 4 MiB). Similarly ia64 knows about huge pages of several sizes.
These system calls serve to map huge pages into the process’s memory or to free them
again. Huge pages are locked into memory, and are not swapped.

The key argument is an identifier. When zero the pages are private, and not inherited by
children. When positive the pages are shared with other applications using the same
key, and inherited by child processes.

The addr argument of free_hugepages() tells which page is being freed: it was the re-
turn value of a call to alloc_hugepages(). (The memory is first actually freed when all
users have released it.) The addr argument of alloc_hugepages() is a hint, that the ker-
nel may or may not follow. Addresses must be properly aligned.

The size argument is the size of the required segment. It must be a multiple of the huge
page size.

The prot argument specifies the memory protection of the segment. It is one of
PROT_READ, PROT_WRITE, PROT_EXEC.

The flag argument is ignored, unless key is positive. In that case, if flag is
IPC_CREAT, then a new huge page segment is created when none with the given key
existed. If this flag is not set, then ENOENT s returned when no segment with the
given key exists.

RETURN VALUE
On success, alloc_hugepages() returns the allocated virtual address, and
free_hugepages() returns zero. On error, =1 is returned, and errno is set to indicate the
error.

ERRORS
ENOSYS
The system call is not supported on this kernel.

Linux man-pages 6.16 2025-09-07 68

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

FILES
/proc/sys/ivm/nr_hugepages
Number of configured hugetlb pages. This can be read and written.

/proc/meminfo
Gives info on the number of configured hugetlb pages and on their size in the
three variables HugePages_Total, HugePages_Free, Hugepagesize.

STANDARDS

Linux on Intel processors.

HISTORY
These system calls are gone; they existed only in Linux 2.5.36 through to Linux 2.5.54.

NOTES
Now the hugetlbfs filesystem can be used instead. Memory backed by huge pages (if
the CPU supports them) is obtained by using mmap(2) to map files in this virtual filesys-
tem.

The maximal number of huge pages can be specified using the hugepages= boot para-
meter.

Linux man-pages 6.16 2025-09-07 69

arch_prctl(2) System Calls Manual arch_prctl(2)

NAME

arch_prctl — set architecture-specific thread state
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <asm/prctl.h> * Definition of ARCH_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_arch_prectl, int op, unsigned long addr);
int syscall(SYS_arch_prectl, int op, unsigned long *addr);

Note: glibc provides no wrapper for arch_prctl(), necessitating the use of syscall(2).
DESCRIPTION

arch_prctl() sets architecture-specific process or thread state. op selects an operation
and passes argument addr to it; addr is interpreted as either an unsigned long for the

"set" operations, or as an unsigned long *, for the "get" operations.
Subfunctions for both x86 and x86-64 are:
ARCH_SET_CPUID (since Linux 4.12)

Enable (addr !'= 0) or disable (addr == 0) the cpuid instruction for the calling
thread. The instruction is enabled by default. If disabled, any execution of a
cpuid instruction will instead generate a SIGSEGV signal. This feature can be
used to emulate cpuid results that differ from what the underlying hardware

would have produced (e.g., in a paravirtualization setting).

The ARCH_SET_CPUID setting is preserved across fork(2) and clone(2) but

reset to the default (i.e., cpuid enabled) on execve(2).
ARCH_GET_CPUID (since Linux 4.12)

Return the setting of the flag manipulated by ARCH_SET_CPUID as the result

of the system call (1 for enabled, O for disabled). addr is ignored.
Subfunctions for x86-64 only are:

ARCH_SET_FS
Set the 64-bit base for the FS register to addr.

ARCH_GET _FS

Return the 64-bit base value for the FS register of the calling thread in the un-

signed long pointed to by addr.

ARCH_SET_GS
Set the 64-bit base for the GS register to addr.

ARCH_GET_GS

Return the 64-bit base value for the GS register of the calling thread in the un-

signed long pointed to by addr.
RETURN VALUE

On success, arch_prctl() returns 0; on error, =1 is returned, and errno is set to indicate

the error.

Linux man-pages 6.16 2025-09-21

70

arch_prctl(2) System Calls Manual arch_prctl(2)

ERRORS
EFAULT
addr points to an unmapped address or is outside the process address space.

EINVAL
op is not a valid operation.

ENODEV

ARCH_SET_CPUID was requested, but the underlying hardware does not sup-
port CPUID faulting.

EPERM
addr is outside the process address space.

STANDARDS
Linux/x86-64.

NOTES
arch_prctl() is supported only on Linux/x86-64 for 64-bit programs currently.
The 64-bit base changes when a new 32-bit segment selector is loaded.
ARCH_SET_GS is disabled in some kernels.

Context switches for 64-bit segment bases are rather expensive. As an optimization, if a
32-bit TLS base address is used, arch_prctl() may use a real TLS entry as if
set_thread area(2) had been called, instead of manipulating the segment base register
directly. Memory in the first 2 GB of address space can be allocated by using mmap(2)
with the MAP_32BIT flag.

Because of the aforementioned optimization, using arch_prctl() and set_thread_area(2)
in the same thread is dangerous, as they may overwrite each other’s TLS entries.

FS may be already used by the threading library. Programs that use ARCH_SET_FS
directly are very likely to crash.

SEE ALSO
mmap(2), modify_Idt(2), prctl(2), set_thread_area(2)

AMD X86-64 Programmer’s manual

Linux man-pages 6.16 2025-09-21 71

bdflush(2) System Calls Manual bdflush(2)

NAME
bdflush — start, flush, or tune buffer-dirty-flush daemon

SYNOPSIS
#include <sys/kdaemon.h>

int bdflush(int func, long data);

DESCRIPTION
This system call used to turn the calling process into the bdflush daemon, or tune it, or
flush the "old buffers". It then progressively lost all of that functionality.

See fs/buffer.c in the kernel version you’re interested in to see what it actually does
there.

ERRORS
ENOSYS (this system call is unimplemented)

STANDARDS

Linux.

HISTORY
This system call was introduced in Linux 1.1.3, became effectively obsolete in Linux
1.3.50, mostly useless in Linux 2.3.23, entirely useless in Linux 2.5.12, officially depre-
cated in Linux 2.5.52, and removed outright in Linux 5.15.

Sometimes, if func was even, data actually represented a pointer.

The header and prototype were removed in glibc 2.23.

SEE ALSO
sync(1), fsync(2), sync(2)

Linux man-pages 6.16 2025-05-17 72

bind(2) System Calls Manual bind(2)

NAME

bind — bind a name to a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
When a socket is created with socket(2), it exists in a name space (address family) but
has no address assigned to it. bind() assigns the address specified by addr to the socket
referred to by the file descriptor sockfd. addrlen specifies the size, in bytes, of the ad-
dress structure pointed to by addr. Traditionally, this operation is called “assigning a
name to a socket”.

It is normally necessary to assign a local address using bind() before a
SOCK_STREAM socket may receive connections (see accept(2)).

The rules used in name binding vary between address families. Consult the manual en-
tries in Section 7 for detailed information. For AF_INET, see ip(7); for AF_INETS®,
see ipv6(7); for AF_UNIX, see unix(7); for AF_APPLETALK, see ddp(7); for
AF_PACKET, see packet(7); for AF_X25, see x25(7); and for AF_NETLINK, see
netlink(7).

The actual structure passed for the addr argument will depend on the address family.
The sockaddr structure is defined as something like:

struct sockaddr {
sa_family_t sa_family;
char sa _data[14];
+

The only purpose of this structure is to cast the structure pointer passed in addr in order
to avoid compiler warnings. See EXAMPLES below.

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES
The address is protected, and the user is not the superuser.

EADDRINUSE
The given address is already in use.

EADDRINUSE
(Internet domain sockets) The port number was specified as zero in the socket
address structure, but, upon attempting to bind to an ephemeral port, it was deter-
mined that all port numbers in the ephemeral port range are currently in use. See
the discussion of /proc/sys/net/ipv4/ip_local_port_range ip(7).

Linux man-pages 6.16 2025-10-29 73

bind(2) System Calls Manual bind(2)

EBADF
sockfd is not a valid file descriptor.

EINVAL
The socket is already bound to an address.

EINVAL
addrlen is wrong, or addr is not a valid address for this socket’s domain.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EADDRNOTAVAIL
A nonexistent interface was requested or the requested address was not local.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EFAULT
addr points outside the user’s accessible address space.

ELOOP
Too many symbolic links were encountered in resolving addr.

ENAMETOOLONG
addr is too long.

ENOENT
A component in the directory prefix of the socket pathname does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

EROFS
The socket inode would reside on a read-only filesystem.

Other errors may be generated by the underlying protocol modules.

VERSIONS
Portable programs must ensure that addr.sun_path is a null-terminated string for
AF_UNIX sockets.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.2BSD.

BUGS
The transparent proxy options are not described.

Linux man-pages 6.16 2025-10-29 74

bind(2) System Calls Manual

EXAMPLES

bind (2)

An example of the use of bind() with Internet domain sockets can be found in getad-

drinfo(3).

The following example shows how to bind a stream socket in the UNIX (AF_UNIX)

domain, and accept connections:

#include <err.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

#define MY_SOCK_PATH '/somepath™
#define LISTEN BACKLOG 50

int

main(void)

{
int sfd, cfd;
socklen_t peer_addr_size;

struct sockaddr_un my_ addr, peer_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == -1)
err(EXIT_FAILURE, "socket™);

memset(&my_addr, 0, sizeof(my_addr));

my_addr.sun_family = AF_UNIX;

strncpy(my_addr.sun_path, MY_SOCK_PATH,
sizeof(my_addr.sun_path) - 1);

ifT (bind(sfd, (struct sockaddr *) &my_addr,
sizeof(my_addr)) == -1)
err(EXIT_FAILURE, "bind");

if (listen(sfd, LISTEN_BACKLOG) == -1)
err(EXIT_FAILURE, "listen™);

/* Now we can accept incoming connections one
at a time using accept(2). */

peer_addr_size = sizeof(peer_addr);
cfd = accept(sfd, (struct sockaddr *) &peer_addr,
&peer_addr_size);
it (cfd == -1)
err(EXIT_FAILURE, "accept');

Linux man-pages 6.16 2025-10-29

75

bind(2) System Calls Manual bind(2)

/* Code to deal with incoming connection(s)... */
if (close(sfd) == -1)
err(EXIT_FAILURE, *close™);
iT (unlink(MY_SOCK_PATH) == -1)
err(EXIT_FAILURE, "unlink'™);
}
SEE ALSO

accept(2), connect(2), getsockname(2), listen(2), socket(2), getaddrinfo(3),
getifaddrs(3), ip(7), ipv6(7), path_resolution(7), socket(7), unix(7)

Linux man-pages 6.16 2025-10-29 76

bpf (2) System Calls Manual bpf (2)

NAME
bpf — perform a command on an extended BPF map or program

SYNOPSIS
#include <linux/bpf.h>

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

DESCRIPTION
The bpf() system call performs a range of operations related to extended Berkeley
Packet Filters. Extended BPF (or eBPF) is similar to the original (“classic”) BPF
(cBPF) used to filter network packets. For both cBPF and eBPF programs, the kernel
statically analyzes the programs before loading them, in order to ensure that they cannot
harm the running system.

eBPF extends cBPF in multiple ways, including the ability to call a fixed set of in-kernel
helper functions (via the BPF_CALL opcode extension provided by eBPF) and access
shared data structures such as eBPF maps.

Extended BPF Design/Architecture
eBPF maps are a generic data structure for storage of different data types. Data types
are generally treated as binary blobs, so a user just specifies the size of the key and the
size of the value at map-creation time. In other words, a key/value for a given map can
have an arbitrary structure.

A user process can create multiple maps (with key/value-pairs being opaque bytes of
data) and access them via file descriptors. Different eBPF programs can access the same
maps in parallel. It’s up to the user process and eBPF program to decide what they store
inside maps.

There’s one special map type, called a program array. This type of map stores file de-
scriptors referring to other eBPF programs. When a lookup in the map is performed, the
program flow is redirected in-place to the beginning of another eBPF program and does
not return back to the calling program. The level of nesting has a fixed limit of 32, so
that infinite loops cannot be crafted. At run time, the program file descriptors stored in
the map can be modified, so program functionality can be altered based on specific re-
quirements. All programs referred to in a program-array map must have been previ-
ously loaded into the kernel via bpf(). If a map lookup fails, the current program con-
tinues its execution. See BPF_MAP_TYPE_PROG_ARRAY below for further details.

Generally, eBPF programs are loaded by the user process and automatically unloaded
when the process exits. In some cases, for example, tc-bpf (8), the program will con-
tinue to stay alive inside the kernel even after the process that loaded the program exits.
In that case, the tc subsystem holds a reference to the eBPF program after the file de-
scriptor has been closed by the user-space program. Thus, whether a specific program
continues to live inside the kernel depends on how it is further attached to a given kernel
subsystem after it was loaded via bpf().

Each eBPF program is a set of instructions that is safe to run until its completion. An
in-kernel verifier statically determines that the eBPF program terminates and is safe to
execute. During verification, the kernel increments reference counts for each of the
maps that the eBPF program uses, so that the attached maps can’t be removed until the

Linux man-pages 6.16 2025-09-21 77

bpf (2) System Calls Manual bpf (2)

program is unloaded.

eBPF programs can be attached to different events. These events can be the arrival of
network packets, tracing events, classification events by network queueing disciplines
(for eBPF programs attached to a tc(8) classifier), and other types that may be added in
the future. A new event triggers execution of the eBPF program, which may store infor-
mation about the event in eBPF maps. Beyond storing data, eBPF programs may call a
fixed set of in-kernel helper functions.

The same eBPF program can be attached to multiple events and different eBPF pro-
grams can access the same map:

tracing tracing tracing packet packet packet
event A event B event C on ethO on ethl on eth2
| | | | | "
| | | | v |
——> tracing <—— tracing socket tc ingress tc egress
prog_1 prog_2 prog_3 classifier action
1 | | prog_4 prog_s
- — N R | map_3 | |
map_1 map_2 —| map_4 |—-
Arguments

The operation to be performed by the bpf() system call is determined by the cmd argu-
ment. Each operation takes an accompanying argument, provided via attr, which is a
pointer to a union of type bpf_attr (see below). The unused fields and padding must be
zeroed out before the call. The size argument is the size of the union pointed to by attr.

The value provided in cmd is one of the following:

BPF_MAP_CREATE
Create a map and return a file descriptor that refers to the map. The close-on-
exec file descriptor flag (see fcntl(2)) is automatically enabled for the new file de-
scriptor.

BPF_MAP_LOOKUP_ELEM
Look up an element by key in a specified map and return its value.

BPF_MAP_UPDATE_ELEM
Create or update an element (key/value pair) in a specified map.

BPF_MAP_DELETE_ELEM
Look up and delete an element by key in a specified map.

BPF_MAP_GET_NEXT_KEY
Look up an element by key in a specified map and return the key of the next ele-
ment.

BPF_PROG_LOAD
Verify and load an eBPF program, returning a new file descriptor associated with
the program. The close-on-exec file descriptor flag (see fcntl(2)) is automatically
enabled for the new file descriptor.

Linux man-pages 6.16 2025-09-21 78

bpf (2) System Calls Manual bpf (2)

The bpf_attr union consists of various anonymous structures that are used by
different bpf() commands:

union bpf_attr {
struct { /* Used by BPF_MAP_CREATE */

_u32 map_type;

_u32 key size; /* size of key iIn bytes */
. u32 value_size; /* size of value in bytes */
_u32 max_entries; /* maximum number of entries

in a map */

};

struct { /* Used by BPF _MAP_* ELEM and BPF_MAP_GET_ NEXT_KEY
commands */

u32 map¥d;
__aligned_u64 key;
uniton {

__aligned _u64 value;
__aligned_u64 next_key;

}:
__u64 flags;
}:
struct { /* Used by BPF_PROG_LOAD */
_u32 prog_type;
_u32 insn_cnt;
__aligned_u64 insns; /* “const struct bpf_insn ** */
__aligned_u64 license; /* “const char ** */
_u32 log level; /* verbosity level of verifier *
. u32 log_size; /* size of user buffer */
__aligned_u64 log_buf; /* user supplied "char **
buffer */
_u32 kern_version;
/* checked when prog_type=kprobe
(since Linux 4.1) */
}:
} __ attribute__ ((aligned(8)));
eBPF maps

Maps are a generic data structure for storage of different types of data. They allow shar-
ing of data between eBPF kernel programs, and also between kernel and user-space ap-
plications.

Each map type has the following attributes:

e type
¢ maximum number of elements

Linux man-pages 6.16 2025-09-21 79

bpf (2) System Calls Manual bpf (2)

» key size in bytes
» value size in bytes

The following wrapper functions demonstrate how various bpf() commands can be used
to access the maps. The functions use the cmd argument to invoke different operations.

BPF_MAP_CREATE
The BPF_MAP_CREATE command creates a new map, returning a new file
descriptor that refers to the map.
int
bpf_create_map(enum bpf_map_type map_type,
unsigned Int key size,
unsigned int value_size,
unsigned iInt max_entries)

{
union bpf _attr attr = {
.map_type = map_type,
.key size = key_size,
-.value_size = value_size,
.max_entries = max_entries
33
return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));
}

The new map has the type specified by map_type, and attributes as specified in
key_size, value_size, and max_entries. On success, this operation returns a file
descriptor. On error, =1 is returned and errno is set to EINVAL, EPERM, or
ENOMEM.

The key _size and value_size attributes will be used by the verifier during pro-
gram loading to check that the program is calling bpf_map_* elem() helper
functions with a correctly initialized key and to check that the program doesn’t
access the map element value beyond the specified value_size. For example,
when a map is created with a key_size of 8 and the eBPF program calls

bpf_map_ lookup _elem(map_fd, fp - 4)
the program will be rejected, since the in-kernel helper function
bpf_map_lookup_elem(map_fd, void *key)

expects to read 8 bytes from the location pointed to by key, but the fp — 4 (where
fp is the top of the stack) starting address will cause out-of-bounds stack access.

Similarly, when a map is created with a value_size of 1 and the eBPF program
contains

value = bpf_map_lookup elem(...);
*(u32 *) value = 1;

the program will be rejected, since it accesses the value pointer beyond the spec-
ified 1 byte value_size limit.

Linux man-pages 6.16 2025-09-21 80

bpf (2) System Calls Manual bpf (2)

Currently, the following values are supported for map_type:

enum bpf _map_type {
BPF_MAP_TYPE_UNSPEC, /* Reserve 0 as invalid map type */
BPF_MAP_TYPE_HASH,
BPF_MAP_TYPE_ARRAY,
BPF_MAP_TYPE_PROG_ARRAY,
BPF_MAP_TYPE_PERF_EVENT_ARRAY,
BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_PERCPU_ARRAY,
BPF_MAP_TYPE_STACK_TRACE,
BPF_MAP_TYPE_CGROUP_ARRAY,
BPF_MAP_TYPE_LRU_HASH,
BPF_MAP_TYPE_LRU_PERCPU_HASH,
BPF_MAP_TYPE_LPM_TRIE,
BPF_MAP_TYPE_ARRAY_OF_MAPS,
BPF_MAP_TYPE_HASH_OF_MAPS,
BPF_MAP_TYPE_DEVMAP,
BPF_MAP_TYPE_SOCKMAP,
BPF_MAP_TYPE_CPUMAP,
BPF_MAP_TYPE_XSKMAP,
BPF_MAP_TYPE_SOCKHASH,
BPF_MAP_TYPE_CGROUP_STORAGE,
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
BPF_MAP_TYPE_QUEUE,
BPF_MAP_TYPE_STACK,
/* See /usr/include/linux/bpf.h for the full list. */

}:
map_type selects one of the available map implementations in the kernel. For all
map types, eBPF programs access maps with the same bpf_map_lookup_elem()
and bpf_map_update_elem() helper functions. Further details of the various
map types are given below.

BPF_MAP_LOOKUP_ELEM
The BPF_MAP_LOOKUP_ELEM command looks up an element with a given
key in the map referred to by the file descriptor fd.
int
bpf_lookup_elem(int fd, const void *key, void *value)
{
union bpf_attr attr = {
.map_fd = fd,
-key ptr_to_u64(key),
-value ptr_to u64(value),

¥

return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));

Linux man-pages 6.16 2025-09-21 81

bpf (2) System Calls Manual bpf (2)

}

If an element is found, the operation returns zero and stores the element’s value
into value, which must point to a buffer of value_size bytes.

If no element is found, the operation returns —1 and sets errno to ENOENT.

BPF_MAP_UPDATE_ELEM
The BPF_MAP_UPDATE_ELEM command creates or updates an element
with a given key/value in the map referred to by the file descriptor fd.
int
bpf_update_elem(int fd, const void *key, const void *value,
uint64_t flags)
{
union bpf_attr attr = {
-map_*d fd,
-key ptr_to_u64(key),
-value ptr_to _u64(value),
.flags flags,

};

return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));
}

The flags argument should be specified as one of the following:

BPF_ANY
Create a new element or update an existing element.

BPF_NOEXIST
Create a new element only if it did not exist.

BPF_EXIST
Update an existing element.

On success, the operation returns zero. On error, —1 is returned and errno is set
to EINVAL, EPERM, ENOMEM, or E2BIG. E2BIG indicates that the num-
ber of elements in the map reached the max_entries limit specified at map cre-
ation time. EEXIST will be returned if flags specifies BPF_NOEXIST and the
element with key already exists in the map. ENOENT will be returned if flags
specifies BPF_EXIST and the element with key doesn’t exist in the map.

BPF_MAP_DELETE_ELEM
The BPF_MAP_DELETE_ELEM command deletes the element whose key is
key from the map referred to by the file descriptor fd.

int
bpf_delete_elem(int fd, const void *key)
{
union bpf_attr attr = {
.map_fd = fd,
-key = ptr_to_u64(key),

};

Linux man-pages 6.16 2025-09-21 82

bpf (2) System Calls Manual bpf (2)

return bpf(BPF_MAP_DELETE_ELEM, &attr, sizeof(attr));
+

On success, zero is returned. If the element is not found, -1 is returned and er-
rno is set to ENOENT.

BPF_MAP_GET_NEXT_KEY
The BPF_MAP_GET_NEXT_KEY command looks up an element by key in
the map referred to by the file descriptor fd and sets the next_key pointer to the
key of the next element.
int
bpf_get next_key(int fd, const void *key, void *next_key)
{
union bpf_attr attr = {
-map_*d fd,
-key ptr_to_u64(key),
.next_key = ptr_to_u64(next_key),

&

return bpf(BPF_MAP_GET_NEXT _KEY, &attr, sizeof(attr));
}

If key is found, the operation returns zero and sets the next_key pointer to the key
of the next element. If key is not found, the operation returns zero and sets the
next_key pointer to the key of the first element. If key is the last element, -1 is
returned and errno is set to ENOENT. Other possible errno values are
ENOMEM, EFAULT, EPERM, and EINVAL. This method can be used to it-
erate over all elements in the map.

close(map_fd)
Delete the map referred to by the file descriptor map_fd. When the user-space
program that created a map exits, all maps will be deleted automatically (but see
NOTES).

eBPF map types
The following map types are supported:

BPF_MAP_TYPE_HASH
Hash-table maps have the following characteristics:

* Maps are created and destroyed by user-space programs. Both user-space
and eBPF programs can perform lookup, update, and delete operations.

» The kernel takes care of allocating and freeing key/value pairs.

e The map_update_elem() helper will fail to insert new element when the
max_entries limit is reached. (This ensures that eBPF programs cannot ex-
haust memory.)

* map_update_elem() replaces existing elements atomically.

Linux man-pages 6.16 2025-09-21 83

bpf (2) System Calls Manual bpf (2)

Hash-table maps are optimized for speed of lookup.

BPF_MAP_TYPE_ARRAY
Array maps have the following characteristics:

» Optimized for fastest possible lookup. In the future the verifier/JIT compiler
may recognize lookup() operations that employ a constant key and optimize
it into constant pointer. It is possible to optimize a non-constant key into di-
rect pointer arithmetic as well, since pointers and value_size are constant for
the life of the eBPF program. In other words, array_map_lookup_elem()
may be ’inlined’ by the verifier/JIT compiler while preserving concurrent ac-
cess to this map from user space.

» All array elements pre-allocated and zero initialized at init time
* The key is an array index, and must be exactly four bytes.

* map_delete_elem() fails with the error EINVAL, since elements cannot be
deleted.

* map_update_elem() replaces elements in a nonatomic fashion; for atomic
updates, a hash-table map should be used instead. There is however one spe-
cial case that can also be used with arrays: the atomic built-in
__sync_fetch_and_add() can be used on 32 and 64 bit atomic counters. For
example, it can be applied on the whole value itself if it represents a single
counter, or in case of a structure containing multiple counters, it could be
used on individual counters. This is quite often useful for aggregation and
accounting of events.

Among the uses for array maps are the following:

* As "global" eBPF variables: an array of 1 element whose key is (index) 0 and
where the value is a collection of ’global’ variables which eBPF programs
can use to keep state between events.

» Aggregation of tracing events into a fixed set of buckets.

» Accounting of networking events, for example, number of packets and packet
sizes.

BPF_MAP_TYPE_PROG_ARRAY (since Linux 4.2)
A program array map is a special kind of array map whose map values contain
only file descriptors referring to other eBPF programs. Thus, both the key size
and value_size must be exactly four bytes. This map is used in conjunction with
the bpf_tail_call() helper.

This means that an eBPF program with a program array map attached to it can
call from kernel side into

void bpf_tail_call(void *context, void *prog_map,
unsigned Int index);

and therefore replace its own program flow with the one from the program at the
given program array slot, if present. This can be regarded as kind of a jump ta-
ble to a different eBPF program. The invoked program will then reuse the same

Linux man-pages 6.16 2025-09-21 84

bpf (2) System Calls Manual bpf (2)

stack. When a jump into the new program has been performed, it won’t return to
the old program anymore.

If no eBPF program is found at the given index of the program array (because
the map slot doesn’t contain a valid program file descriptor, the specified lookup
index/key is out of bounds, or the limit of 32 nested calls has been exceed), exe-
cution continues with the current eBPF program. This can be used as a fall-
through for default cases.

A program array map is useful, for example, in tracing or networking, to handle
individual system calls or protocols in their own subprograms and use their iden-
tifiers as an individual map index. This approach may result in performance ben-
efits, and also makes it possible to overcome the maximum instruction limit of a
single eBPF program. In dynamic environments, a user-space daemon might
atomically replace individual subprograms at run-time with newer versions to al-
ter overall program behavior, for instance, if global policies change.

eBPF programs
The BPF_PROG_LOAD command is used to load an eBPF program into the kernel.
The return value for this command is a new file descriptor associated with this eBPF
program.

char bpf_log buf[LOG BUF_SIZE];

int

bpf_prog load(enum bpf_prog_type type,
const struct bpf_insn *insns, Int iInsn_cnt,
const char *license)

{
union bpf_attr attr = {
-prog_type = type,
.insns = ptr_to_u64(insns),
.insn_cnt = Insn_cnt,
.license = ptr_to _u64(license),
.log _buf = ptr_to _u64(bpf_log buf),
.log_size = LOG_BUF_SIZE,
.log _level =1,
}:
return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
¥

prog_type is one of the available program types:

enum bpf_prog type {
BPF_PROG_TYPE_ UNSPEC, /* Reserve 0 as invalid
program type */
BPF _PROG_TYPE SOCKET_ FILTER,
BPF _PROG_TYPE_KPROBE,
BPF_PROG_TYPE_ SCHED CLS,
BPF_PROG_TYPE_SCHED_ ACT,

Linux man-pages 6.16 2025-09-21 85

bpf (2) System Calls Manual bpf (2)

BPF_PROG_TYPE_TRACEPOINT,
BPF_PROG_TYPE_XDP,
BPF_PROG_TYPE_PERF_EVENT,
BPF_PROG_TYPE_CGROUP_SKB,
BPF_PROG_TYPE_CGROUP_SOCK,
BPF_PROG_TYPE_LWT_IN,
BPF_PROG_TYPE_LWT_OUT,
BPF_PROG_TYPE_LWT_XMIT,
BPF_PROG_TYPE_SOCK_OPS,
BPF_PROG_TYPE_SK_SKB,
BPF_PROG_TYPE_CGROUP_DEVICE,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_RAW_TRACEPOINT,
BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
BPF_PROG_TYPE_LWT_SEG6LOCAL,
BPF_PROG_TYPE_LIRC_MODE2,
BPF_PROG_TYPE_SK_REUSEPORT,
BPF_PROG_TYPE_FLOW_DISSECTOR,

/* See /usr/include/linux/bpf.h for the full list.

}:
For further details of eBPF program types, see below.
The remaining fields of bpf_attr are set as follows:
» insns is an array of struct bpf_insn instructions.
* insn_cnt is the number of instructions in the program referred to by insns.

» license is a license string, which must be GPL compatible to call helper functions
marked gpl_only. (The licensing rules are the same as for kernel modules, so that
also dual licenses, such as "Dual BSD/GPL", may be used.)

* log_buf is a pointer to a caller-allocated buffer in which the in-kernel verifier can
store the verification log. This log is a multi-line string that can be checked by the
program author in order to understand how the verifier came to the conclusion that
the eBPF program is unsafe. The format of the output can change at any time as the
verifier evolves.

» log_size size of the buffer pointed to by log_buf. If the size of the buffer is not large
enough to store all verifier messages, —1 is returned and errno is set to ENOSPC.

* log_level verbosity level of the verifier. A value of zero means that the verifier will
not provide a log; in this case, log_buf must be a null pointer, and log_size must be
zero.

Applying close(2) to the file descriptor returned by BPF_PROG_LOAD will unload the
eBPF program (but see NOTES).

Maps are accessible from eBPF programs and are used to exchange data between eBPF
programs and between eBPF programs and user-space programs. For example, eBPF
programs can process various events (like kprobe, packets) and store their data into a
map, and user-space programs can then fetch data from the map. Conversely, user-space

Linux man-pages 6.16 2025-09-21 86

*/

bpf (2) System Calls Manual bpf (2)

programs can use a map as a configuration mechanism, populating the map with values
checked by the eBPF program, which then modifies its behavior on the fly according to
those values.

eBPF program types
The eBPF program type (prog_type) determines the subset of kernel helper functions
that the program may call. The program type also determines the program input (con-
text)—the format of struct bpf_context (which is the data blob passed into the eBPF pro-
gram as the first argument).

For example, a tracing program does not have the exact same subset of helper functions
as a socket filter program (though they may have some helpers in common). Similarly,
the input (context) for a tracing program is a set of register values, while for a socket fil-
ter it is a network packet.

The set of functions available to eBPF programs of a given type may increase in the fu-
ture.

The following program types are supported:

BPF_PROG_TYPE_SOCKET_FILTER (since Linux 3.19)
Currently, the set of functions for BPF_PROG_TYPE_SOCKET_FILTERis:

bpf _map_ lookup_elem(map_fd, void *key)
/* look up key in a map_fd */

bpf_map_update _elem(map_fd, void *key, void *value)
/* update key/value */

bpf _map_delete _elem(map_fd, void *key)
/* delete key in a map_fd */

The bpf_context argument is a pointer to a struct __sk_buff.

BPF_PROG_TYPE_KPROBE (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_CLS (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_ACT (since Linux 4.1)
[To be documented]

Events
Once a program is loaded, it can be attached to an event. Various kernel subsystems
have different ways to do so.

Since Linux 3.19, the following call will attach the program prog_fd to the socket
sockfd, which was created by an earlier call to socket(2):

setsockopt(sockfd, SOL_SOCKET, SO _ATTACH_BPF,
&prog_fd, sizeof(prog_fd));

Since Linux 4.1, the following call may be used to attach the eBPF program referred to
by the file descriptor prog_fd to a perf event file descriptor, event_fd, that was created
by a previous call to perf_event_open(2):

ioctl(event_fd, PERF_EVENT_IOC_SET BPF, prog_fd);

Linux man-pages 6.16 2025-09-21 87

bpf (2) System Calls Manual bpf (2)

RETURN VALUE
For a successful call, the return value depends on the operation:

BPF_MAP_CREATE
The new file descriptor associated with the eBPF map.

BPF_PROG_LOAD
The new file descriptor associated with the eBPF program.

All other commands
Zero.

On error, =1 is returned, and errno is set to indicate the error.

ERRORS
E2BIG
The eBPF program is too large or a map reached the max_entries limit (maxi-
mum number of elements).

EACCES

For BPF_PROG_LOAD, even though all program instructions are valid, the
program has been rejected because it was deemed unsafe. This may be because
it may have accessed a disallowed memory region or an uninitialized stack/regis-
ter or because the function constraints don’t match the actual types or because
there was a misaligned memory access. In this case, it is recommended to call
bpf() again with log_level = 1 and examine log_buf for the specific reason pro-
vided by the verifier.

EAGAIN
For BPF_PROG_LOAD, indicates that needed resources are blocked. This
happens when the verifier detects pending signals while it is checking the valid-
ity of the bpf program. In this case, just call bpf() again with the same parame-
ters.

EBADF
fd is not an open file descriptor.

EFAULT
One of the pointers (key or value or log_buf or insns) is outside the accessible
address space.

EINVAL
The value specified in cmd is not recognized by this kernel.

EINVAL
For BPF_MAP_CREATE, either map_type or attributes are invalid.

EINVAL
For BPF_MAP_* ELEM commands, some of the fields of union bpf_attr that
are not used by this command are not set to zero.

EINVAL
For BPF_PROG_LOAD, indicates an attempt to load an invalid program. eBPF
programs can be deemed invalid due to unrecognized instructions, the use of re-
served fields, jumps out of range, infinite loops or calls of unknown functions.

Linux man-pages 6.16 2025-09-21 88

bpf (2) System Calls Manual bpf (2)

ENOENT
For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indi-
cates that the element with the given key was not found.

ENOMEM
Cannot allocate sufficient memory.

EPERM
The call was made without sufficient privilege (without the CAP_SYS_ADMIN
capability).

STANDARDS

Linux.

HISTORY
Linux 3.18.

NOTES
Prior to Linux 4.4, all bpf() commands require the caller to have the CAP_SYS_AD-
MIN capability. From Linux 4.4 onwards, an unprivileged user may create limited pro-
grams of type BPF_PROG_TYPE_SOCKET_FILTER and associated maps. How-
ever they may not store kernel pointers within the maps and are presently limited to the
following helper functions:

* get_random

e get_smp_processor_id
e tail_call

» ktime_get _ns

Unprivileged access may be blocked by writing the value 1 to the file /proc/sys/ker-
nel/unprivileged_bpf_disabled.

eBPF objects (maps and programs) can be shared between processes. For example, after
fork(2), the child inherits file descriptors referring to the same eBPF objects. In addi-
tion, file descriptors referring to eBPF objects can be transferred over UNIX domain
sockets. File descriptors referring to eBPF objects can be duplicated in the usual way,
using dup(2) and similar calls. An eBPF object is deallocated only after all file descrip-
tors referring to the object have been closed.

eBPF programs can be written in a restricted C that is compiled (using the clang com-
piler) into eBPF bytecode. Various features are omitted from this restricted C, such as
loops, global variables, variadic functions, floating-point numbers, and passing struc-
tures as function arguments. Some examples can be found in the samples/bpf/*_kern.c
files in the kernel source tree.

The kernel contains a just-in-time (JIT) compiler that translates eBPF bytecode into na-
tive machine code for better performance. Before Linux 4.15, the JIT compiler is dis-
abled by default, but its operation can be controlled by writing one of the following inte-
ger strings to the file /proc/sys/net/core/bpf_jit_enable:

0 Disable JIT compilation (default).

Linux man-pages 6.16 2025-09-21 89

bpf (2) System Calls Manual bpf (2)

1 Normal compilation.

2 Debugging mode. The generated opcodes are dumped in hexadecimal into the
kernel log. These opcodes can then be disassembled using the program
tools/net/bpf_jit_disasm.c provided in the kernel source tree.

Since Linux 4.15, the kernel may be configured with the CONFIG_BPF _JIT_AL-
WAYS_ON option. In this case, the JIT compiler is always enabled, and the bpf_jit_en-
able is initialized to 1 and is immutable. (This kernel configuration option was provided
as a mitigation for one of the Spectre attacks against the BPF interpreter.)

The JIT compiler for eBPF is currently available for the following architectures:

* x86-64 (since Linux 3.18; cBPF since Linux 3.0);

* ARMS32 (since Linux 3.18; cBPF since Linux 3.4);

* SPARC 32 (since Linux 3.18; cBPF since Linux 3.5);
* ARM-64 (since Linux 3.18);

e 5390 (since Linux 4.1; cBPF since Linux 3.7);

» PowerPC 64 (since Linux 4.8; cBPF since Linux 3.1);
e SPARC 64 (since Linux 4.12);

» Xx86-32 (since Linux 4.18);

* MIPS 64 (since Linux 4.18; cBPF since Linux 3.16);

* riscv (since Linux 5.1).

EXAMPLES
#define NITEMS(a) (sizeof(a) / sizeof(*(a)))

/* bpf+sockets example:

* 1. create array map of 256 elements

* 2. load program that counts number of packets received

* rO = skb—>data[ETH_HLEN + offsetof(struct iphdr, protocol)]
* map[ro]++

* 3. attach prog_fd to raw socket via setsockopt()

* 4. print number of received TCP/UDP packets every second

*/

int

main(int argc, char *argv[])

{

int sock, map_fd, prog_fd, key;
long long value = 0, tcp_cnt, udp_cnt;

map_fd = bpf_create_map(BPF_MAP_TYPE_ ARRAY, sizeof(key),
sizeof(value), 256);
if (map_fd < 0) {
printf(""failed to create map "%s"\n', strerror(errno));
/* likely not run as root */
return 1;

}

struct bpf _insn prog[] = {

Linux man-pages 6.16 2025-09-21 90

bpf (2) System Calls Manual bpf (2)

BPF_MOV64 REG(BPF_REG 6, BPF_REG_1), /* r6 = rl1 */
BPF_LD ABS(BPF_B, ETH HLEN + offsetof(struct iphdr, protocol)
/* rO = ip—>proto */
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG 0, -4),
/* *(u32 *) (fp - 4) = r0 */

BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* r2 = fp */
BPF_ALU64_IMM(BPF_ADD, BPF REG 2, -4), /5 r2 =r2 - 4 %/
BPF_LD MAP_FD(BPF_REG_1, map_fd), /* rl = map_fd */

BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),

/* rO = map_lookup(rl, r2) */
BPF_JMP_IMM(BPF_JEQ, BPF_REG 0, 0, 2),

/* if (rO == 0) goto pc+2 */
BPF_MOV64 IMM(BPF_REG 1, 1), /*rl =1%*/
BPF_XADD(BPF_DW, BPF_REG 0, BPF_REG 1, 0, 0),

/* lock *(u64 *) rO += rl1 */
BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 =0 */
BPF_EXIT_INSNQ), /* return rO */

33

prog fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_ FILTER, prog,
NITEMS(prog), "GPL™);

sock = open_raw_sock(l10");

assert(setsockopt(sock, SOL_SOCKET, SO _ATTACH BPF, &prog_fd,
sizeof(prog_fd)) == 0);

for (57) {
key = IPPROTO_TCP;
assert(bpf_lookup_elem(map_fd, &key, &tcp _cnt) == 0);
key = IPPROTO_UDP;
assert(bpf_lookup_elem(map_fd, &key, &udp _cnt) == 0);
printf(""TCP %11d UDP %l11d packets\n', tcp_cnt, udp_cnt);
sleep(1);

}

return O;
}

Some complete working code can be found in the samples/bpf directory in the kernel
source tree.

SEE ALSO
seccomp(2), bpf-helpers(7), socket(7), tc(8), tc-bpf (8)

Both classic and extended BPF are explained in the kernel source file Documenta-
tion/networking/filter.txt.

Linux man-pages 6.16 2025-09-21 91

brk(2) System Calls Manual brk(2)

NAME

brk, sbrk — change data segment size
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

brk(), sbrk():
Since glibc 2.19:
_DEFAULT_SOURCE
|| (_XOPEN_SOURCE >=500) &&
I (_POSIX_C_SOURCE >=200112L))
From glibc 2.12 to glibc 2.19:
_BSD_SOURCE || _SVID_SOURCE
|| (CXOPEN_SOURCE >=500) &&
I (_POSIX_C_SOURCE >=200112L))
Before glibc 2.12:
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
brk() and sbrk() change the location of the program break, which defines the end of the
process’s data segment (i.e., the program break is the first location after the end of the
uninitialized data segment). Increasing the program break has the effect of allocating
memory to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the value specified by addr, when that value is
reasonable, the system has enough memory, and the process does not exceed its maxi-
mum data size (see setrlimit(2)).

sbrk() increments the program’s data space by increment bytes. Calling sbrk() with an
increment of 0 can be used to find the current location of the program break.

RETURN VALUE
On success, brk() returns zero. On error, —1 is returned, and errno is set to ENOMEM.

On success, sbrk() returns the previous program break. (If the break was increased,
then this value is a pointer to the start of the newly allocated memory). On error,
(void *) =1 is returned, and errno is set to ENOMEM.

STANDARDS
None.

HISTORY
4.3BSD; SUSv1, marked LEGACY in SUSv2, removed in POSIX.1-2001.

NOTES
Avoid using brk() and sbrk(): the malloc(3) memory allocation package is the portable
and comfortable way of allocating memory.

Linux man-pages 6.16 2025-09-21 92

brk(2) System Calls Manual brk(2)

Various systems use various types for the argument of sbrk(). Common are int, ssize_t,
ptrdiff_t, intptr_t.

C library/kernel differences

The return value described above for brk() is the behavior provided by the glibc wrap-
per function for the Linux brk() system call. (On most other implementations, the re-
turn value from brk() is the same; this return value was also specified in SUSv2.) How-
ever, the actual Linux system call returns the new program break on success. On failure,
the system call returns the current break. The glibc wrapper function does some work
(i.e., checks whether the new break is less than addr) to provide the 0 and -1 return val-
ues described above.

On Linux, sbrk() is implemented as a library function that uses the brk() system call,
and does some internal bookkeeping so that it can return the old break value.

SEE ALSO
execve(2), getrlimit(2), end(3), malloc(3)

Linux man-pages 6.16 2025-09-21 93

cacheflush(2) System Calls Manual cacheflush(2)

NAME

cacheflush — flush contents of instruction and/or data cache
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/cachectl.h>

int cacheflush(int nbytes;
void addr[nbytes], int nbytes, int cache);

Note: On some architectures, there is no glibc wrapper for this system call; see VER-
SIONS.

DESCRIPTION
cacheflush() flushes the contents of the indicated cache(s) for the user addresses in the
range addr to (addr+nbytes-1). cache may be one of:

ICACHE
Flush the instruction cache.

DCACHE
Write back to memory and invalidate the affected valid cache lines.

BCACHE
Same as (ICACHE|DCACHE).

RETURN VALUE
cacheflush() returns 0 on success. On error, it returns —1 and sets errno to indicate the
error.

ERRORS
EFAULT
Some or all of the address range addr to (addr+nbytes—1) is not accessible.

EINVAL
cache is not one of ICACHE, DCACHE, or BCACHE (but see BUGS).

VERSIONS
cacheflush() should not be used in programs intended to be portable. On Linux, this
call first appeared on the MIPS architecture, but nowadays, Linux provides a
cacheflush() system call on some other architectures, but with different arguments.

Architecture-specific variants
glibc provides a wrapper for this system call, with the prototype shown in SYNOPSIS,
for the following architectures: ARC, CSKY, MIPS, and N10S2.

On some other architectures, Linux provides this system call, with different arguments:

M68K:
int cacheflush(unsigned long addr, int scope, int cache,
unsigned long size);

SH:
int cacheflush(unsigned long addr, unsigned long size, int op);

Linux man-pages 6.16 2025-09-21 94

cacheflush(2) System Calls Manual cacheflush(2)

NDS32:
int cacheflush(unsigned int start, unsigned int end, int cache);

On the above architectures, glibc does not provide a wrapper for this system call; call it
using syscall(2).

GCC alternative
Unless you need the finer grained control that this system call provides, you probably

want to use the GCC built-in function __ builtin___clear_cache(), which provides a
portable interface across platforms supported by GCC and compatible compilers:

void _ builtin clear_cache(void *begin, void *end);
On platforms that don’t require instruction cache flushes, _ builtin__ clear_cache()
has no effect.

Note: On some GCC-compatible compilers, the prototype for this built-in function uses
char * instead of void * for the parameters.

STANDARDS
Historically, this system call was available on all MIPS UNIX variants including
RISC/os, IRIX, Ultrix, NetBSD, OpenBSD, and FreeBSD (and also on some non-UNIX
MIPS operating systems), so that the existence of this call in MIPS operating systems is
a de-facto standard.

BUGS
Linux kernels older than Linux 2.6.11 ignore the addr and nbytes arguments, making
this function fairly expensive. Therefore, the whole cache is always flushed.

This function always behaves as if BCACHE has been passed for the cache argument
and does not do any error checking on the cache argument.

Linux man-pages 6.16 2025-09-21 95

cachestat(2) System Calls Manual cachestat(2)

NAME
cachestat — query the page cache statistics of a file

SYNOPSIS

#include <sys/mman.h>

int cachestat(unsigned int fd, struct cachestat_range *cstat_range,
struct cachestat *cstat, unsigned int flags);

struct cachestat_range {
__u64 off;
__u64d len;

};

struct cachestat {
___ub4 nr_cache;
__ub4d nr_dirty;
__ub4 nr_writeback;
__ub4 nr_evicted;
__ub4 nr_recently_evicted;

}:

DESCRIPTION
cachestat() queries the number of cached pages, dirty pages, pages marked for write-
back, evicted pages, and recently evicted pages in the byte range specified by .off and
Jen in the cachestat_range structure.

An evicted page is one that was previously in the page cache but has since been evicted.
A page is considered recently evicted if its reentry into the cache would indicate active
usage under memory pressure.

The results are returned in a cachestat structure, pointed to by the cstat argument.

The .off and .len fields must be non-negative. If .len > 0, the queried range is
[.off, .off+.len]. If len == 0, the range is from .off to the end of the file.

The flags argument is reserved for future use and must be set to 0.
Currently, hugetlbfs files are not supported.

RETURN VALUE
On success, cachestat() returns 0. On error, —1 is returned, and errno is set to indicate
the error.

ERRORS
EFAULT
cstat or cstat_range point to an invalid address.

EINVAL
Invalid flags value.

EBADF
Invalid file descriptor.

Linux man-pages 6.16 2025-06-28 96

cachestat(2) System Calls Manual cachestat(2)

EOPNOTSUPP
The file descriptor refers to a hugetlbfs file, which is unsupported.

STANDARDS

Linux.

HISTORY
Linux 6.5.

CAVEATS
Note that the status of a page may change after cachestat() retrieves it but before the
values are returned to the application; thus, the values may be slightly outdated.

Linux man-pages 6.16 2025-06-28 97

capget(2) System Calls Manual capget(2)

NAME

capget, capset — set/get capabilities of thread(s)
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/capability.h> /* Definition of CAP_* and

_LINUX_CAPABILITY_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_capget, cap_user_header_t hdrp,
cap_user_data_t datap);

int syscall(SYS_capset, cap_user_header _t hdrp,
const cap_user_data_t datap);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These two system calls are the raw kernel interface for getting and setting thread capa-
bilities. Not only are these system calls specific to Linux, but the kernel API is likely to

change and use of these system calls (in particular the format of the cap_user_*_t types)
is subject to extension with each kernel revision, but old programs will keep working.

The portable interfaces are cap_set proc(3) and cap_get proc(3); if possible, you
should use those interfaces in applications; see NOTES.

Current details
Now that you have been warned, some current kernel details. The structures are defined

as follows.
#define _LINUX CAPABILITY VERSION 1 0x19980330
#define _LINUX_CAPABILITY_U32S 1 1

/* V2 added In Linux 2.6.25; deprecated */
#define _LINUX_CAPABILITY_VERSION 2 0x20071026
#define _LINUX_CAPABILITY_U32S 2 2

/* V3 added in Linux 2.6.26 */
#define _LINUX CAPABILITY _VERSION 3 0x20080522
#define _LINUX_CAPABILITY_U32S 3 2

typedef struct __ _user_cap_header_struct {
__u32 version;
int pid;

} *cap_user_header_t;

typedef struct _ user_cap_data struct {

__u32 effective;
__u32 permitted;

Linux man-pages 6.16 2025-09-21 98

capget(2) System Calls Manual capget(2)

__u32 inheritable;
} *cap_user_data_t;

The effective, permitted, and inheritable fields are bit masks of the capabilities defined
in capabilities(7). Note that the CAP_* values are bit indexes and need to be bit-shifted
before ORing into the bit fields. To define the structures for passing to the system call,
you have to use the struct _ user_cap_header_struct and struct
__user_cap_data_struct names because the typedefs are only pointers.

Kernels prior to Linux 2.6.25 prefer 32-bit capabilities with version _LINUX_CAPA-
BILITY_VERSION_1. Linux 2.6.25 added 64-bit capability sets, with version
_LINUX_CAPABILITY_VERSION_2. There was, however, an API glitch, and
Linux 2.6.26 added _LINUX_CAPABILITY_VERSION_3 to fix the problem.

Note that 64-bit capabilities use datap[0] and datap[1], whereas 32-bit capabilities use
only datap[0].

On kernels that support file capabilities (VFS capabilities support), these system calls
behave slightly differently. This support was added as an option in Linux 2.6.24, and
became fixed (nonoptional) in Linux 2.6.33.

For capget() calls, one can probe the capabilities of any process by specifying its
process ID with the hdrp—>pid field value.

For details on the data, see capabilities(7).

With VFS capabilities support
VFS capabilities employ a file extended attribute (see xattr(7)) to allow capabilities to be
attached to executables. This privilege model obsoletes kernel support for one process
asynchronously setting the capabilities of another. That is, on kernels that have VFS ca-
pabilities support, when calling capset(), the only permitted values for hdrp—>pid are 0
or, equivalently, the value returned by gettid(2).

Without VFS capabilities support

On older kernels that do not provide VFS capabilities support capset() can, if the caller
has the CAP_SETPCAP capability, be used to change not only the caller’s own capabil-
ities, but also the capabilities of other threads. The call operates on the capabilities of
the thread specified by the pid field of hdrp when that is nonzero, or on the capabilities
of the calling thread if pid is 0. If pid refers to a single-threaded process, then pid can
be specified as a traditional process ID; operating on a thread of a multithreaded process
requires a thread 1D of the type returned by gettid(2). For capset(), pid can also be: -1,
meaning perform the change on all threads except the caller and init(1); or a value less
than -1, in which case the change is applied to all members of the process group whose
ID is -pid.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

The calls fail with the error EINVAL, and set the version field of hdrp to the kernel pre-
ferred value of _LINUX_CAPABILITY_VERSION_? when an unsupported version
value is specified. In this way, one can probe what the current preferred capability revi-
sion is.

Linux man-pages 6.16 2025-09-21 99

capget(2) System Calls Manual capget(2)

ERRORS
EFAULT
Bad memory address. hdrp must not be NULL. datap may be NULL only
when the user is trying to determine the preferred capability version format sup-
ported by the kernel.

EINVAL
One of the arguments was invalid.

EPERM
An attempt was made to add a capability to the permitted set, or to set a capabil-
ity in the effective set that is not in the permitted set.

EPERM
An attempt was made to add a capability to the inheritable set, and either:

 that capability was not in the caller’s bounding set; or

» the capability was not in the caller’s permitted set and the caller lacked the
CAP_SETPCAP capability in its effective set.

EPERM

The caller attempted to use capset() to modify the capabilities of a thread other
than itself, but lacked sufficient privilege. For kernels supporting VFS capabili-
ties, this is never permitted. For kernels lacking VFS support, the CAP_SETP-
CAP capability is required. (A bug in kernels before Linux 2.6.11 meant that
this error could also occur if a thread without this capability tried to change its
own capabilities by specifying the pid field as a nonzero value (i.e., the value re-
turned by getpid(2)) instead of 0.)

ESRCH
No such thread.

STANDARDS

Linux.

NOTES
The portable interface to the capability querying and setting functions is provided by the
libcap library and is available here:
(hittp://git.kernel.org/cgit/linux/kernel/git/morgan/libcap.git[]

SEE ALSO
clone(2), gettid(2), capabilities(7)

Linux man-pages 6.16 2025-09-21 100

chdir(2) System Calls Manual chdir(2)

NAME

chdir, fchdir — change working directory
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int chdir(const char * path);
int fchdir(int fd);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

fchdir():
_XOPEN_SOURCE >=500
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc up to and including 2.19: */ _BSD_SOURCE

DESCRIPTION
chdir() changes the current working directory of the calling process to the directory
specified in path.

fchdir() is identical to chdir(); the only difference is that the directory is given as an
open file descriptor.

RETURN VALUE

On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS

Depending on the filesystem, other errors can be returned. The more general errors for
chdir() are listed below:

EACCES
Search permission is denied for one of the components of path. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The directory specified in path does not exist.

ENOMEM
Insufficient kernel memory was available.

Linux man-pages 6.16 2025-10-29 101

chdir(2) System Calls Manual chdir(2)

ENOTDIR
A component of path is not a directory.

The general errors for fchdir() are listed below:

EACCES
Search permission was denied on the directory open on fd.

EBADF
fd is not a valid file descriptor.

ENOTDIR
fd does not refer to a directory.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

NOTES

The current working directory is the starting point for interpreting relative pathnames
(those not starting with /).

A child process created via fork(2) inherits its parent’s current working directory. The
current working directory is left unchanged by execve(2).

SEE ALSO
chroot(2), getcwd(3), path_resolution(7)

Linux man-pages 6.16 2025-10-29 102

chmod(2) System Calls Manual chmod(2)

NAME

chmod, fchmod, fchmodat — change permissions of a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/stat.h>

int chmod(const char * path, mode_t mode);
int fchmod(int fd, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fchmodat(int dirfd, const char * path, mode_t mode, int flags);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchmod():
Since glibc 2.24:
_POSIX_C_SOURCE >=199309L
glibc 2.19 to glibc 2.23
_POSIX_C_SOURCE
glibc 2.16 to glibc 2.19:
_BSD_SOURCE || _POSIX_C_SOURCE
glibc 2.12 to glibc 2.16:
_BSD_SOURCE || _XOPEN_SOURCE >= 500
|| _POSIX_C_SOURCE >= 200809L
glibc 2.11 and earlier:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

fchmodat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
The chmod() and fchmod() system calls change a file’s mode bits. (The file mode con-
sists of the file permission bits plus the set-user-1D, set-group-1D, and sticky bits.)
These system calls differ only in how the file is specified:

» chmod() changes the mode of the file specified whose pathname is given in path,
which is dereferenced if it is a symbolic link.

» fchmod() changes the mode of the file referred to by the open file descriptor fd.

The new file mode is specified in mode, which is a bit mask created by ORing together
zero or more of the following:

S_ISUID (04000) set-user-ID (set process effective user ID on execve(2))

Linux man-pages 6.16 2025-10-29 103

chmod(2) System Calls Manual chmod(2)

S_ISGID (02000) set-group-1D (set process effective group ID on execve(2); manda-
tory locking, as described in fcntl(2); take a new file’s group from
parent directory, as described in chown(2) and mkdir(2))

S_ISVTX (01000) sticky bit (restricted deletion flag, as described in unlink(2))
S _IRUSR (00400) read by owner
S_IWUSR (00200) write by owner

S _IXUSR (00100) execute/search by owner (“search" applies for directories, and
means that entries within the directory can be accessed)

S _IRGRP (00040) read by group

S_IWGRP (00020)
write by group

S _IXGRP (00010) execute/search by group
S _IROTH (00004) read by others

S_IWOTH (00002)
write by others

S IXOTH (00001) execute/search by others

The effective UID of the calling process must match the owner of the file, or the process
must be privileged (Linux: it must have the CAP_FOWNER capability).

If the calling process is not privileged (Linux: does not have the CAP_FSETID capabil-
ity), and the group of the file does not match the effective group 1D of the process or one
of its supplementary group IDs, the S_ISGID bit will be turned off, but this will not
cause an error to be returned.

As a security measure, depending on the filesystem, the set-user-ID and set-group-ID
execution bits may be turned off if a file is written. (On Linux, this occurs if the writing
process does not have the CAP_FSETID capability.) On some filesystems, only the su-
peruser can set the sticky bit, which may have a special meaning. For the sticky bit, and
for set-user-1D and set-group-ID bits on directories, see inode(7).

On NFS filesystems, restricting the permissions will immediately influence already open
files, because the access control is done on the server, but open files are maintained by
the client. Widening the permissions may be delayed for other clients if attribute
caching is enabled on them.

fchmodat()
The fchmodat() system call operates in exactly the same way as chmod(), except for
the differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by chmod() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like chmod())

If path is absolute, then dirfd is ignored.

Linux man-pages 6.16 2025-10-29 104

chmod(2) System Calls Manual chmod(2)

flags can either be 0, or include the following flags:

AT_EMPTY_PATH (since Linux 6.6)
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag). In this case, dirfd can re-
fer to any type of file, not just a directory. If dirfd is AT_FDCWD, the call op-
erates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT _SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead operate on the link itself.

See openat(2) for an explanation of the need for fchmodat().
RETURN VALUE

On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chmod() are listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchmod()) The file descriptor fd is not valid.

EBADF
(fchmodat()) path is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

EFAULT
path points outside your accessible address space.

EINVAL
(fchmodat()) Invalid flag specified in flags.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

Linux man-pages 6.16 2025-10-29 105

chmod(2) System Calls Manual chmod(2)

ENOTDIR
(fchmodat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

ENOTSUP
(fchmodat()) flags specified AT_SYMLINK_NOFOLLOW, which is not sup-
ported.

EPERM
The effective UID does not match the owner of the file, and the process is not
privileged (Linux: it does not have the CAP_FOWNER capability).

EPERM
The file is marked immutable or append-only. (See FS IOC SET-
FLAGS(2const).)
EROFS
The named file resides on a read-only filesystem.
VERSIONS

C library/kernel differences
The GNU C library fchmodat() wrapper function implements the POSIX-specified in-
terface described in this page. This interface differs from the underlying Linux system
call, which does not have a flags argument.

glibc notes
On older kernels where fchmodat() is unavailable, the glibc wrapper function falls back
to the use of chmod(). When path is a relative pathname, glibc constructs a pathname
based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
POSIX.1-2024.

HISTORY
chmod()
fchmod()
4.4BSD, SVr4, POSIX.1-2001.

fchmodat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

AT _SYMLINK_NOFOLLOW
glibc 2.32, Linux 6.5.

SEE ALSO
chmod(1), chown(2), execve(2), open(2), stat(2), inode(7), path_resolution(7), sym-
link(7)

Linux man-pages 6.16 2025-10-29 106

chown(2) System Calls Manual chown(2)

NAME

chown, fchown, Ichown, fchownat — change ownership of a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int Ichown(const char * path, uid_t owner, gid_t group);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int fchownat(int dirfd, const char * path,
uid_t owner, gid_t group, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchown(), Ichown():
/* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| _XOPEN_SOURCE >= 500
|| /* glibc <=2.19: */ _BSD_SOURCE

fchownat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
These system calls change the owner and group of a file. The chown(), fchown(), and
Ichown() system calls differ only in how the file is specified:

» chown() changes the ownership of the file specified by path, which is dereferenced
if it is a symbolic link.

» fchown() changes the ownership of the file referred to by the open file descriptor fd.
* Ichown() is like chown(), but does not dereference symbolic links.

Only a privileged process (Linux: one with the CAP_CHOWN capability) may change
the owner of a file. The owner of a file may change the group of the file to any group of
which that owner is a member. A privileged process (Linux: with CAP_CHOWN) may
change the group arbitrarily.

If the owner or group is specified as —1, then that ID is not changed.

When the owner or group of an executable file is changed by an unprivileged user, the
S_ISUID and S_ISGID mode bits are cleared. POSIX does not specify whether this
also should happen when root does the chown(); the Linux behavior depends on the ker-
nel version, and since Linux 2.2.13, root is treated like other users. In case of a non-
group-executable file (i.e., one for which the S_IXGRP bit is not set) the S_ISGID bit
indicates mandatory locking, and is not cleared by a chown().

Linux man-pages 6.16 2025-10-29 107

chown(2) System Calls Manual chown(2)

When the owner or group of an executable file is changed (by any user), all capability
sets for the file are cleared.

fchownat()
The fchownat() system call operates in exactly the same way as chown(), except for the
differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by chown() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like chown())

If path is absolute, then dirfd is ignored.

The flags argument is a bit mask created by ORing together O or more of the following
values;

AT_EMPTY_PATH (since Linux 2.6.39)
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag). In this case, dirfd can re-
fer to any type of file, not just a directory. If dirfd is AT_FDCWD, the call op-
erates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead operate on the link itself,
like Ichown(). (By default, fchownat() dereferences symbolic links, like
chown().)

See openat(2) for an explanation of the need for fchownat().

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chown() are listed below.

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchown()) fd is not a valid open file descriptor.

EBADF
(fchownat()) path is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

EFAULT
path points outside your accessible address space.

Linux man-pages 6.16 2025-10-29 108

chown(2) System Calls Manual chown(2)

EINVAL
(fchownat()) Invalid flag specified in flags.

EIO (fchown()) A low-level 1/O error occurred while modifying the inode.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(fchownat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

EPERM
The calling process did not have the required permissions (see above) to change
owner and/or group.

EPERM
The file is marked immutable or append-only. (See FS IOC SET-
FLAGS(2const).)
EROFS
The named file resides on a read-only filesystem.
VERSIONS

The 4.4BSD version can be used only by the superuser (that is, ordinary users cannot
give away files).

STANDARDS
POSIX.1-2024.

HISTORY

chown()

fchown()

Ichown()
4.4BSD, SVr4, POSIX.1-2001.

fchownat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Ownership of new files
When a new file is created (by, for example, open(2) or mkdir(2)), its owner is made the
same as the filesystem user ID of the creating process. The group of the file depends on
a range of factors, including the type of filesystem, the options used to mount the

Linux man-pages 6.16 2025-10-29 109

chown(2) System Calls Manual chown(2)

filesystem, and whether or not the set-group-ID mode bit is enabled on the parent direc-
tory. If the filesystem supports the —o grpid (or, synonymously -o bsdgroups) and
—0 nogrpid (or, synonymously -o sysvgroups) mount(8) options, then the rules are as
follows:

» If the filesystem is mounted with -o grpid, then the group of a new file is made the
same as that of the parent directory.

» If the filesystem is mounted with —o nogrpid and the set-group-ID bit is disabled on
the parent directory, then the group of a new file is made the same as the process’s
filesystem GID.

» If the filesystem is mounted with —0 nogrpid and the set-group-1D bit is enabled on
the parent directory, then the group of a new file is made the same as that of the par-
ent directory.

As at Linux 4.12, the —o grpid and —o nogrpid mount options are supported by ext2,
ext3, ext4, and XFS. Filesystems that don’t support these mount options follow the
—0 nogrpid rules.

glibc notes
On older kernels where fchownat() is unavailable, the glibc wrapper function falls back
to the use of chown() and Ichown(). When path is relative, glibc constructs a pathname
based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

NFS
The chown() semantics are deliberately violated on NFS filesystems which have UID
mapping enabled. Additionally, the semantics of all system calls which access the file
contents are violated, because chown() may cause immediate access revocation on al-
ready open files. Client side caching may lead to a delay between the time where own-
ership have been changed to allow access for a user and the time where the file can actu-
ally be accessed by the user on other clients.

Historical details
The original Linux chown(), fchown(), and Ichown() system calls supported only 16-bit
user and group IDs. Subsequently, Linux 2.4 added chown32(), fchown32(), and
Ichown32(), supporting 32-bit IDs. The glibc chown(), fchown(), and Ichown() wrap-
per functions transparently deal with the variations across kernel versions.

Before Linux 2.1.81 (except 2.1.46), chown() did not follow symbolic links. Since
Linux 2.1.81, chown() does follow symbolic links, and there is a new system call
Ichown() that does not follow symbolic links. Since Linux 2.1.86, this new call (that
has the same semantics as the old chown()) has got the same syscall number, and
chown() got the newly introduced number.

EXAMPLES
The following program changes the ownership of the file named in its second command-
line argument to the value specified in its first command-line argument. The new owner
can be specified either as a numeric user ID, or as a username (which is converted to a
user ID by using getpwnam(3) to perform a lookup in the system password file).

Linux man-pages 6.16 2025-10-29 110

chown(2)

System Calls Manual chown(2)

Program source
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
char *endptr;
uid_t uid;
struct passwd *pwd;
if (argc '= 3 || argv[1][0] == "\0") {
fprintf(stderr, "%s <owner> <file>\n", argv[0]);
exit(EXIT_FAILURE);
+
uid = strtol(argv[1l], &endptr, 10); /* Allow a numeric string */
if (endptr = "\0") { /* Was not pure numeric string */
pwd = getpwnam(argv[1l]); /* Try getting UID for username */
if (pwd == NULL) {
perror(‘'getpwnam');
exit(EXIT_FAILURE);
+
uid = pwd->pw_uid;
+
if (chown(argv[2], uid, -1) == -1) {
perror(‘'chown™);
exit(EXIT_FAILURE);
+
exit(EXIT_SUCCESS);
bs
SEE ALSO

chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 111

chroot(2) System Calls Manual chroot(2)

NAME

chroot — change root directory
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int chroot(const char * path);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

chroot():
Since glibc 2.2.2:
_XOPEN_SOURCE && ! (_ POSIX_C_SOURCE >=200112L)
|| /* Since glibc 2.20: */ _DEFAULT_SOURCE
|| /* glibc <=2.19: */ _BSD_SOURCE
Before glibc 2.2.2:
none

DESCRIPTION
chroot() changes the root directory of the calling process to that specified in path. This
directory will be used for pathnames beginning with /. The root directory is inherited
by all children of the calling process.

Only a privileged process (Linux: one with the CAP_SYS _CHROQT capability in its
user namespace) may call chroot().

This call changes an ingredient in the pathname resolution process and does nothing
else. In particular, it is not intended to be used for any kind of security purpose, neither
to fully sandbox a process nor to restrict filesystem system calls. In the past, chroot()
has been used by daemons to restrict themselves prior to passing paths supplied by un-
trusted users to system calls such as open(2). However, if a folder is moved out of the
chroot directory, an attacker can exploit that to get out of the chroot directory as well.
The easiest way to do that is to chdir(2) to the to-be-moved directory, wait for it to be
moved out, then open a path like ../../../etc/passwd.

A slightly trickier variation also works under some circumstances if chdir(2) is not per-
mitted. If a daemon allows a "chroot directory" to be specified, that usually means that
if you want to prevent remote users from accessing files outside the chroot directory, you
must ensure that folders are never moved out of it.

This call does not change the current working directory, so that after the call ." can be
outside the tree rooted at '/". In particular, the superuser can escape from a "chroot jail"
by doing:

mkdir foo;
chroot foo;
cd ..;

This call does not close open file descriptors, and such file descriptors may allow access
to files outside the chroot tree.

Linux man-pages 6.16 2025-09-21 112

chroot(2) System Calls Manual chroot(2)

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors are
listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of path is not a directory.

EPERM
The caller has insufficient privilege.

STANDARDS
None.

HISTORY
SVr4, 4.4BSD, SUSv2 (marked LEGACY). This function is not part of POSIX.1-2001.

NOTES
A child process created via fork(2) inherits its parent’s root directory. The root directory
is left unchanged by execve(2).

The magic symbolic link, /proc/ pid/root, can be used to discover a process’s root direc-
tory; see proc(5) for details.

FreeBSD has a stronger jail() system call.

SEE ALSO
chroot(1), chdir(2), pivot_root(2), path_resolution(7), switch_root(8)

Linux man-pages 6.16 2025-09-21 113

clock_getres(2) System Calls Manual clock_getres(2)

NAME

clock_getres, clock_gettime, clock_settime — clock and time functions

LIBRARY

Standard C library (libc, —Ic), since glibc 2.17
Before glibc 2.17, Real-time library (librt, —Irt)

SYNOPSIS

#include <time.h>
int clock_getres(clockid_t clockid, struct timespec *_Nullable res);

int clock_gettime(clockid_t clockid, struct timespec *tp);
int clock_settime(clockid_t clockid, const struct timespec *tp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_getres(), clock_gettime(), clock_settime():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION

The function clock_getres() finds the resolution (precision) of the specified clock
clockid, and, if res is non-NULL, stores it in the struct timespec pointed to by res. The
resolution of clocks depends on the implementation and cannot be configured by a par-
ticular process. If the time value pointed to by the argument tp of clock_settime() is not
a multiple of res, then it is truncated to a multiple of res.

The functions clock_gettime() and clock_settime() retrieve and set the time of the spec-
ified clock clockid.

The res and tp arguments are timespec(3) structures.

The clockid argument is the identifier of the particular clock on which to act. A clock
may be system-wide and hence visible for all processes, or per-process if it measures
time only within a single process.

All implementations support the system-wide real-time clock, which is identified by
CLOCK_REALTIME. Its time represents seconds and nanoseconds since the Epoch.
When its time is changed, timers for a relative interval are unaffected, but timers for an
absolute point in time are affected.

More clocks may be implemented. The interpretation of the corresponding time values
and the effect on timers is unspecified.

Sufficiently recent versions of glibc and the Linux kernel support the following clocks:

CLOCK_REALTIME

A settable system-wide clock that measures real (i.e., wall-clock) time. Setting
this clock requires appropriate privileges. This clock is affected by discontinu-
ous jumps in the system time (e.qg., if the system administrator manually changes
the clock), and by frequency adjustments performed by NTP and similar applica-
tions via adjtime(3), adjtimex(2), clock adjtime(2), and ntp_adjtime(3). This
clock normally counts the number of seconds since 1970-01-01 00:00:00 Coor-
dinated Universal Time (UTC) except that it ignores leap seconds; near a leap
second it is typically adjusted by NTP to stay roughly in sync with UTC.

Linux man-pages 6.16 2025-10-29 114

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_REALTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_REALTIME, but not settable. See timer_create(2) for further
details.

CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_REALTIME. This clock is not
settable. Use when you need very fast, but not fine-grained timestamps. Re-
quires per-architecture support, and probably also architecture support for this
flag in the vdso(7).

CLOCK_TAI (since Linux 3.10; Linux-specific)
A nonsettable system-wide clock derived from wall-clock time but counting leap
seconds. This clock does not experience discontinuities or frequency adjust-
ments caused by inserting leap seconds as CLOCK_REALTIME does.

The acronym TAI refers to International Atomic Time.

CLOCK_MONOTONIC
A nonsettable system-wide clock that represents monotonic time since—as de-
scribed by POSIX—"some unspecified point in the past”. On Linux, that point
corresponds to the number of seconds that the system has been running since it
was booted.

The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in
the system time (e.g., if the system administrator manually changes the clock),
but is affected by frequency adjustments. This clock does not count time that the
system is suspended. All CLOCK_MONOTONIC variants guarantee that the
time returned by consecutive calls will not go backwards, but successive calls
may—depending on the architecture—return identical (not-increased) time val-
ues.

CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_MONOTONIC. Use when you
need very fast, but not fine-grained timestamps. Requires per-architecture sup-
port, and probably also architecture support for this flag in the vdso(7).

CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)
Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-
based time that is not subject to frequency adjustments. This clock does not
count time that the system is suspended.

CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)
A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,
except that it also includes any time that the system is suspended. This allows
applications to get a suspend-aware monotonic clock without having to deal with
the complications of CLOCK_REALTIME, which may have discontinuities if
the time is changed using settimeofday(2) or similar.

CLOCK_BOOTTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_BOOTTIME. See timer_create(2) for further details.

Linux man-pages 6.16 2025-10-29 115

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this process (i.e., CPU
time consumed by all threads in the process). On Linux, this clock is not set-
table.

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this thread. On Linux, this
clock is not settable.

Linux also implements dynamic clock instances as described below.

Dynamic clocks
In addition to the hard-coded System-V style clock IDs described above, Linux also sup-
ports POSIX clock operations on certain character devices. Such devices are called "dy-
namic" clocks, and are supported since Linux 2.6.39.

Using the appropriate macros, open file descriptors may be converted into clock 1Ds and
passed to clock gettime(), clock_settime(), and clock adjtime(2). The following ex-
ample shows how to convert a file descriptor into a dynamic clock ID.

#define CLOCKFD 3
#define FD_TO_ CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD)
#define CLOCKID_TO FD(clk) ((unsigned int) ~((clk) >> 3))

struct timespec ts;
clockid_t clkid;
int fd;

fd = open('/dev/ptp0*”, O _RDWR);
clkid = FD_TO_CLOCKID(fd);
clock_gettime(clkid, &ts);

RETURN VALUE
clock_gettime(), clock_settime(), and clock_getres() return O for success. On error, -1
is returned and errno is set to indicate the error.

ERRORS
EACCES
clock_settime() does not have write permission for the dynamic POSIX clock
device indicated.

EFAULT
tp points outside the accessible address space.

EINVAL
The clockid specified is invalid for one of two reasons. Either the System-V
style hard coded positive value is out of range, or the dynamic clock 1D does not
refer to a valid instance of a clock object.

EINVAL
(clock_settime()): tp.tv_sec is negative or tp.tv_nsec is outside the range [0,
999,999,999].

Linux man-pages 6.16 2025-10-29 116

clock_getres(2) System Calls Manual clock_getres(2)

EINVAL
The clockid specified in a call to clock_settime() is not a settable clock.

EINVAL (since Linux 4.3)
A call to clock_settime() with a clockid of CLOCK_REALTIME attempted to
set the time to a value less than the current value of the CLOCK_MONOTO-
NIC clock.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk_id has disappeared after its character device was opened.

ENOTSUP
The operation is not supported by the dynamic POSIX clock device specified.

EOVERFLOW
The timestamp would not fit in time_t range. This can happen if an executable
with 32-bit time_t is run on a 64-bit kernel when the time is 2038-01-19
03:14:08 UTC or later. However, when the system time is out of time_t range in
other situations, the behavior is undefined.

EPERM
clock_settime() does not have permission to set the clock indicated.
ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
clock_getres(), clock_gettime(), clock_settime() Thread safety | MT-Safe
VERSIONS

POSIX.1 specifies the following:

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall
have no effect on threads that are blocked waiting for a relative time service
based upon this clock, including the nanosleep() function; nor on the expiration
of relative timers based upon this clock. Consequently, these time services shall
expire when the requested relative interval elapses, independently of the new or
old value of the clock.

According to POSIX.1-2001, a process with "appropriate privileges” may set the
CLOCK_PROCESS CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID
clocks using clock_settime(). On Linux, these clocks are not settable (i.e., no process
has "appropriate privileges™).

C library/kernel differences
On some architectures, an implementation of clock_gettime() is provided in the vdso(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SUSv2. Linux 2.6.

On POSIX systems on which these functions are available, the symbol
_POSIX_TIMERS is defined in <unistd.h> to a value greater than 0. POSIX.1-2008

Linux man-pages 6.16 2025-10-29 117

clock_getres(2) System Calls Manual clock_getres(2)

makes these functions mandatory.

The symbols _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME,
_POSIX_THREAD_CPUTIME indicate that CLOCK_MONOTONIC,
CLOCK_ PROCESS CPUTIME_ID, CLOCK_THREAD CPUTIME_ID are avail-
able. (See also sysconf(3).)

POSIX.1-2024 made CLOCK_MONOTONIC mandatory.

Historical note for SMP systems
Before Linux added kernel support for CLOCK_PROCESS CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many plat-
forms using timer registers from the CPUs (TSC on 1386, AR.ITC on Itanium). These
registers may differ between CPUs and as a consequence these clocks may return bogus
results if a process is migrated to another CPU.

If the CPUs in an SMP system have different clock sources, then there is no way to
maintain a correlation between the timer registers since each CPU will run at a slightly
different frequency. If that is the case, then clock_getcpuclockid(0) will return
ENOENT to signify this condition. The two clocks will then be useful only if it can be
ensured that a process stays on a certain CPU.

The processors in an SMP system do not start all at exactly the same time and therefore
the timer registers are typically running at an offset. Some architectures include code
that attempts to limit these offsets on bootup. However, the code cannot guarantee to ac-
curately tune the offsets. glibc contains no provisions to deal with these offsets (unlike
the Linux Kernel). Typically these offsets are small and therefore the effects may be
negligible in most cases.

Since glibc 2.4, the wrapper functions for the system calls described in this page avoid
the abovementioned problems by employing the kernel implementation of
CLOCK_PROCESS CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID, on
systems that provide such an implementation (i.e., Linux 2.6.12 and later).

EXAMPLES
The program below demonstrates the use of clock _gettime() and clock_getres() with
various clocks. This is an example of what we might see when running the program:

$./clock _times Xx;
CLOCK_REALTIME : 1585985459.446 (18356 days + 7h 30m 59s)

resolution: 0.000000001
CLOCK_TAI 1 1585985496.447 (18356 days + 7h 31m 36s)
resolution: 0.000000001
CLOCK_MONOTONIC: 52395.722 (14h 33m 15s)
resolution: 0.000000001
CLOCK _BOOTTIME : 72691.019 (20h 11m 31s)
resolution: 0.000000001

Program source

/* clock_times.c

Linux man-pages 6.16 2025-10-29 118

clock_getres(2) System Calls Manual clock_getres(2)

Licensed under GNU General Public License v2 or later.

*/

#define _XOPEN_SOURCE 600
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>

#define SECS_IN_DAY (24 * 60 * 60)

static void

displayClock(clockid_t clock, const char *name, bool showRes)

{
long days;
struct timespec ts;

iT (clock gettime(clock, &ts) == -1) {
perror(‘'clock_gettime™);
exit(EXIT_FAILURE);

}

printf("'%-15s: %10j3d.%031d (', name,
(intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

days = ts.tv_sec / SECS_IN_DAY;
it (days > 0)
printf("'%ld days + ', days);

printf("'%2dh %2dm %2ds'™,
(int) (ts.tv_sec % SECS_IN_DAY) / 3600,
(int) (ts.tv_sec % 3600) / 60,
(int) ts.tv_sec % 60);

printf("*)\n"");

ifT (clock getres(clock, &ts) == -1) {
perror(“'clock_getres™™);
exit(EXIT_FAILURE);

}

iT (showRes)
printf(” resolution: %10jd.%091d\n"",
(intmax_t) ts.tv_sec, ts.tv_nsec);

Linux man-pages 6.16 2025-10-29

119

clock_getres(2) System Calls Manual clock_getres(2)

main(int argc, char *[])

{

bool showRes = argc > 1;

displayClock(CLOCK_REALTIME, "CLOCK REALTIME™, showRes);
#ifdef CLOCK_ TAI

displayClock(CLOCK_TAl, "CLOCK_TAI"™, showRes);
#endi T

displayClock(CLOCK_MONOTONIC, "CLOCK_MONOTONIC'"™, showRes);
#ifdef CLOCK_BOOTTIME

displayClock(CLOCK_BOOTTIME, '"CLOCK BOOTTIME"™, showRes);
#endi f

exit(EXIT_SUCCESS);

}

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3), clock_getcpuclockid(3),
ctime(3), ftime(3), pthread_getcpuclockid(3), sysconf(3), timespec(3), time(7),
time_namespaces(7), vdso(7), hwclock(8)

Linux man-pages 6.16 2025-10-29 120

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

NAME

clock_nanosleep — high-resolution sleep with specifiable clock

LIBRARY

Standard C library (libc, —Ic), since glibc 2.17
Before glibc 2.17, Real-time library (librt, —Irt)

SYNOPSIS

#include <time.h>

int clock_nanosleep(clockid_t clockid, int flags,
const struct timespec *t,
struct timespec *_Nullable remain);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

clock_nanosleep():
_POSIX_C_SOURCE >=200112L

DESCRIPTION

Like nanosleep(2), clock_nanosleep() allows the calling thread to sleep for an interval
specified with nanosecond precision. It differs in allowing the caller to select the clock
against which the sleep interval is to be measured, and in allowing the sleep interval to
be specified as either an absolute or a relative value.

The time values passed to and returned by this call are specified using timespec(3) struc-
tures.

The clockid argument specifies the clock against which the sleep interval is to be mea-
sured. This argument can have one of the following values:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_TAI (since Linux 3.10)
A system-wide clock derived from wall-clock time but counting leap seconds.

CLOCK_MONOTONIC
A nonsettable, monotonically increasing clock that measures time since some
unspecified point in the past that does not change after system startup.

CLOCK_BOOTTIME (since Linux 2.6.39)
Identical to CLOCK_MONOTONIC, except that it also includes any time that
the system is suspended.

CLOCK_PROCESS_CPUTIME_ID
A settable per-process clock that measures CPU time consumed by all threads in
the process.

See clock_getres(2) for further details on these clocks. In addition, the CPU clock IDs
returned by clock_getcpuclockid(3) and pthread_getcpuclockid(3) can also be passed in
clockid.

If flags is 0, then the value specified in t is interpreted as an interval relative to the cur-
rent value of the clock specified by clockid.

Linux man-pages 6.16 2025-10-29 121

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

If flags is TIMER_ABSTIME, then t is interpreted as an absolute time as measured by
the clock, clockid. If t is less than or equal to the current value of the clock, then
clock_nanosleep() returns immediately without suspending the calling thread.

clock_nanosleep() suspends the execution of the calling thread until either at least the
time specified by t has elapsed, or a signal is delivered that causes a signal handler to be
called or that terminates the process.

If the call is interrupted by a signal handler, clock_nanosleep() fails with the error
EINTR. In addition, if remain is not NULL, and flags was not TIMER_ABSTIME, it
returns the remaining unslept time in remain. This value can then be used to call
clock_nanosleep() again and complete a (relative) sleep.

RETURN VALUE
On successfully sleeping for the requested interval, clock_nanosleep() returns 0. If the
call is interrupted by a signal handler or encounters an error, then it returns one of the
positive error number listed in ERRORS.

ERRORS
EFAULT
t or remain specified an invalid address.

EINTR
The sleep was interrupted by a signal handler; see signal(7).

EINVAL
The value in the tv_nsec field was not in the range [0, 999999999] or tv_sec was
negative.

EINVAL
clockid was invalid. (CLOCK_THREAD_CPUTIME_ID is not a permitted
value for clockid.)

ENOTSUP
The kernel does not support sleeping against this clockid.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001. Linux 2.6, glibc 2.1.

NOTES
If the interval specified in t is not an exact multiple of the granularity underlying clock
(see time(7)), then the interval will be rounded up to the next multiple. Furthermore, af-
ter the sleep completes, there may still be a delay before the CPU becomes free to once
again execute the calling thread.

Using an absolute timer is useful for preventing timer drift problems of the type de-
scribed in nanosleep(2). (Such problems are exacerbated in programs that try to restart
a relative sleep that is repeatedly interrupted by signals.) To perform a relative sleep that
avoids these problems, call clock_gettime(2) for the desired clock, add the desired inter-
val to the returned time value, and then call clock_nanosleep() with the TIMER_AB-
STIME flag.

Linux man-pages 6.16 2025-10-29 122

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

clock_nanosleep() is never restarted after being interrupted by a signal handler, regard-
less of the use of the sigaction(2) SA_RESTART flag.

The remain argument is unused, and unnecessary, when flags is TIMER_ABSTIME.
(An absolute sleep can be restarted using the same t argument.)

POSIX.1 specifies that clock _nanosleep() has no effect on signals dispositions or the
signal mask.

POSIX.1 specifies that after changing the value of the CLOCK_REALTIME clock via
clock_settime(2), the new clock value shall be used to determine the time at which a
thread blocked on an absolute clock_nanosleep() will wake up; if the new clock value
falls past the end of the sleep interval, then the clock_nanosleep() call will return imme-
diately.

POSIX.1 specifies that changing the value of the CLOCK_REALTIME clock via
clock_settime(2) shall have no effect on a thread that is blocked on a relative
clock_nanosleep().

SEE ALSO

clock _getres(2), nanosleep(2), restart_syscall(2), timer_create(2), sleep(3), timespec(3),
usleep(3), time(7)

Linux man-pages 6.16 2025-10-29 123

clone(2) System Calls Manual clone(2)

NAME

clone, _clone2, clone3 - create a child process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

[* Prototype for the glibc wrapper function */

#define _ GNU_SOURCE
#include <sched.h>

int clone(typeof(int (void *_Nullable)) * fn,
void *stack,
int flags,
void *_Nullable arg, ...
/* pid_t *_Nullable parent _tid,
void *_Nullable tls,
pid_t *_Nullable child_tid */);
[* For the prototype of the raw clone() system call, see VERSIONS. */
#include <linux/sched.h> /* Definition of struct clone_args */
#include <sched.h> /* Definition of CLONE_* constants */

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_clone3, struct clone_args *cl_args, size_t size);
Note: glibc provides no wrapper for clone3(), necessitating the use of syscall(2).

DESCRIPTION

These system calls create a new (“'child") process, in a manner similar to fork(2).

By contrast with fork(2), these system calls provide more precise control over what
pieces of execution context are shared between the calling process and the child process.
For example, using these system calls, the caller can control whether or not the two
processes share the virtual address space, the table of file descriptors, and the table of
signal handlers. These system calls also allow the new child process to be placed in sep-
arate namespaces(7).

Note that in this manual page, "calling process” normally corresponds to "parent
process”. But see the descriptions of CLONE_PARENT and CLONE_THREAD be-
low.

This page describes the following interfaces:

» The glibc clone() wrapper function and the underlying system call on which it is
based. The main text describes the wrapper function; the differences for the raw sys-
tem call are described toward the end of this page.

e The newer clone3() system call.

In the remainder of this page, the terminology "the clone call” is used when noting de-
tails that apply to all of these interfaces.

Linux man-pages 6.16 2025-10-12 124

clone(2) System Calls Manual clone(2)

The clone() wrapper function
When the child process is created with the clone() wrapper function, it commences exe-
cution by calling the function pointed to by the argument fn. (This differs from fork(2),
where execution continues in the child from the point of the fork(2) call.) The arg argu-
ment is passed as the argument of the function fn.

When the fn(arg) function returns, the child process terminates. The integer returned
by fn is the exit status for the child process. The child process may also terminate ex-
plicitly by calling exit(2) or after receiving a fatal signal.

The stack argument specifies the location of the stack used by the child process. Since
the child and calling process may share memory, it is not possible for the child process
to execute in the same stack as the calling process. The calling process must therefore
set up memory space for the child stack and pass a pointer to this space to clone().
Stacks grow downward on all processors that run Linux (except the HP PA processors),
so stack usually points to the topmost address of the memory space set up for the child
stack. Note that clone() does not provide a means whereby the caller can inform the
kernel of the size of the stack area.

The remaining arguments to clone() are discussed below.

clone3()
The clone3() system call provides a superset of the functionality of the older clone() in-
terface. It also provides a number of APl improvements, including: space for additional
flags bits; cleaner separation in the use of various arguments; and the ability to specify
the size of the child’s stack area.

As with fork(2), clone3() returns in both the parent and the child. It returns O in the
child process and returns the PID of the child in the parent.

The cl_args argument of clone3() is a structure of the following form:

struct clone_args {

u64 flags; /* Flags bit mask */
ué4 pidfd; /* Where to store PID file descriptor
(int *) */

ué4 child_tid; /* Where to store child TID,

in child®s memory (pid_t *) */
ub4 parent_tid; /* Where to store child TID,

in parent"s memory (pid_t *) */
ué4 exit_signal; /* Signal to deliver to parent on

child termination */

u64 stack; /* Pointer to lowest byte of stack */
ub4 stack_size; /* Size of stack */

ué4 tlis; /* Location of new TLS */

ub4 set tid; /* Pointer to a pid_t array

(since Linux 5.5) */

u64 set_tid_size; /* Number of elements In set_ tid
(since Linux 5.5) */

u64 cgroup; /* File descriptor for target cgroup
of child (since Linux 5.7) */

Linux man-pages 6.16 2025-10-12 125

clone(2) System Calls Manual clone(2)

33
The size argument that is supplied to clone3() should be initialized to the size of this

structure. (The existence of the size argument permits future extensions to the
clone_args structure.)

The stack for the child process is specified via cl_args.stack, which points to the lowest
byte of the stack area, and cl_args.stack_size, which specifies the size of the stack in
bytes. In the case where the CLONE_VM flag (see below) is specified, a stack must be
explicitly allocated and specified. Otherwise, these two fields can be specified as NULL
and 0, which causes the child to use the same stack area as the parent (in the child’s own
virtual address space).

The remaining fields in the cl_args argument are discussed below.

Equivalence between clone() and clone3() arguments
Unlike the older clone() interface, where arguments are passed individually, in the newer
clone3() interface the arguments are packaged into the clone_args structure shown
above. This structure allows for a superset of the information passed via the clone() ar-
guments.

The following table shows the equivalence between the arguments of clone() and the
fields in the clone_args argument supplied to clone3():

clone() clone3() Notes
cl_args field
flags & ~Oxff ~ flags For most flags; details below
parent_tid pidfd See CLONE_PIDFD
child_tid child_tid See CLONE_CHILD_SETTID

parent_tid parent_tid See CLONE_PARENT_SETTID
flags & Oxff exit_signal

stack stack

stack_size

tls tls See CLONE_SETTLS

set_tid See below for details
set_tid_size

cgroup See CLONE_INTO_CGROUP

The child termination signal
When the child process terminates, a signal may be sent to the parent. The termination
signal is specified in the low byte of flags (clone()) or in cl_args.exit_signal (clone3()).
If this signal is specified as anything other than SIGCHLD, then the parent process
must specify the _ WALL or _ WCLONE options when waiting for the child with
wait(2). If no signal (i.e., zero) is specified, then the parent process is not signaled when
the child terminates.

The set_tid array
By default, the kernel chooses the next sequential PID for the new process in each of the
PID namespaces where it is present. When creating a process with clone3(), the set_tid
array (available since Linux 5.5) can be used to select specific PIDs for the process in
some or all of the PID namespaces where it is present. If the PID of the newly created
process should be set only for the current PID namespace or in the newly created PID

Linux man-pages 6.16 2025-10-12 126

clone(2) System Calls Manual clone(2)

namespace (if flags contains CLONE_NEWRPID) then the first element in the set tid
array has to be the desired PID and set_tid_size needs to be 1.

If the PID of the newly created process should have a certain value in multiple PID
namespaces, then the set_tid array can have multiple entries. The first entry defines the
PID in the most deeply nested PID namespace and each of the following entries contains
the PID in the corresponding ancestor PID namespace. The number of PID namespaces
in which a PID should be set is defined by set_tid_size which cannot be larger than the
number of currently nested PID namespaces.

To create a process with the following PIDs in a PID namespace hierarchy:
PID NS level Requested PID Notes

0 31496 Outermost PID namespace

1 42

2 7 Innermost PID namespace
Set the array to:

set_tid[0] = 7;

set_tid[1] = 42;

set_tid[2] = 31496;

set_tid_size = 3;
If only the PIDs in the two innermost PID namespaces need to be specified, set the array
to:
set_tid[0]
set_tid[1] 42;
set_tid_size = 2;

The PID in the PID namespaces outside the two innermost PID namespaces is selected
the same way as any other PID is selected.

The set_tid feature requires CAP_SYS_ADMIN or (since Linux 5.9) CAP_CHECK-
POINT_RESTORE in all owning user namespaces of the target PID namespaces.

Callers may only choose a PID greater than 1 in a given PID namespace if an init
process (i.e., a process with PID 1) already exists in that namespace. Otherwise the PID
entry for this PID namespace must be 1.

The flags mask
Both clone() and clone3() allow a flags bit mask that modifies their behavior and allows
the caller to specify what is shared between the calling process and the child process.
This bit mask—the flags argument of clone() or the cl_args.flags field passed to
clone3()—is referred to as the flags mask in the remainder of this page.

The flags mask is specified as a bitwise OR of zero or more of the constants listed be-
low. Except as noted below, these flags are available (and have the same effect) in both
clone() and clone3().

CLONE_CHILD_CLEARTID (since Linux 2.5.49)
Clear (zero) the child thread ID at the location pointed to by child_tid (clone())
or cl_args.child_tid (clone3()) in child memory when the child exits, and do a
wakeup on the futex at that address. The address involved may be changed by

Linux man-pages 6.16 2025-10-12 127

clone(2) System Calls Manual clone(2)

the set_tid_address(2) system call. This is used by threading libraries.

CLONE_CHILD_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by child_tid (clone()) or
cl_args.child_tid (clone3()) in the child’s memory. The store operation com-
pletes before the clone call returns control to user space in the child process.
(Note that the store operation may not have completed before the clone call re-
turns in the parent process, which is relevant if the CLONE_VM flag is also em-

ployed.)
CLONE_CLEAR_SIGHAND (since Linux 5.5)
By default, signal dispositions in the child thread are the same as in the parent.

If this flag is specified, then all signals that are handled in the parent (and not set
to SIG_IGN) are reset to their default dispositions (SIG_DFL) in the child.

Specifying this flag together with CLONE_SIGHAND is nonsensical and disal-
lowed.

CLONE_DETACHED (historical)
For a while (during the Linux 2.5 development series) there was a CLONE_DE-
TACHED flag, which caused the parent not to receive a signal when the child
terminated. Ultimately, the effect of this flag was subsumed under the
CLONE_THREAD flag and by the time Linux 2.6.0 was released, this flag had
no effect. Since Linux 2.6.2, the need to give this flag together with
CLONE_THREAD disappeared.

This flag is still defined, but it is usually ignored when calling clone(). However,
see the description of CLONE_PIDFD for some exceptions.

CLONE_FILES (since Linux 2.0)

If CLONE_FILES is set, the calling process and the child process share the
same file descriptor table. Any file descriptor created by the calling process or
by the child process is also valid in the other process. Similarly, if one of the
processes closes a file descriptor, or changes its associated flags (using the fc-
ntl(2) F_SETFD operation), the other process is also affected. If a process shar-
ing a file descriptor table calls execve(2), its file descriptor table is duplicated
(unshared).

If CLONE_FILES is not set, the child process inherits a copy of all file descrip-
tors opened in the calling process at the time of the clone call. Subsequent oper-
ations that open or close file descriptors, or change file descriptor flags, per-
formed by either the calling process or the child process do not affect the other
process. Note, however, that the duplicated file descriptors in the child refer to
the same open file descriptions as the corresponding file descriptors in the calling
process, and thus share file offsets and file status flags (see open(2)).

CLONE_FS (since Linux 2.0)
If CLONE_FS is set, the caller and the child process share the same filesystem
information. This includes the root of the filesystem, the current working direc-
tory, and the umask. Any call to chroot(2), chdir(2), or umask(2) performed by
the calling process or the child process also affects the other process.

Linux man-pages 6.16 2025-10-12 128

clone(2)

System Calls Manual clone(2)

If CLONE_FS is not set, the child process works on a copy of the filesystem in-
formation of the calling process at the time of the clone call. Calls to chroot(2),
chdir(2), or umask(2) performed later by one of the processes do not affect the
other process.

CLONE_INTO_CGROUP (since Linux 5.7)

By default, a child process is placed in the same version 2 cgroup as its parent.
The CLONE_INTO_CGROUP flag allows the child process to be created in a
different version 2 cgroup. (Note that CLONE_INTO_CGROUP has effect
only for version 2 cgroups.)

In order to place the child process in a different cgroup, the caller specifies
CLONE_INTO_CGROUP in cl_args.flags and passes a file descriptor that
refers to a version 2 cgroup in the cl_args.cgroup field. (This file descriptor can
be obtained by opening a cgroup v2 directory using either the O_RDONLY or
the O _PATH flag.) Note that all of the usual restrictions (described in
cgroups(7)) on placing a process into a version 2 cgroup apply.

Among the possible use cases for CLONE_INTO_CGROUP are the following:

* Spawning a process into a cgroup different from the parent’s cgroup makes it
possible for a service manager to directly spawn new services into dedicated
cgroups. This eliminates the accounting jitter that would be caused if the
child process was first created in the same cgroup as the parent and then
moved into the target cgroup. Furthermore, spawning the child process di-
rectly into a target cgroup is significantly cheaper than moving the child
process into the target cgroup after it has been created.

* The CLONE_INTO_CGROUP flag also allows the creation of frozen child
processes by spawning them into a frozen cgroup. (See cgroups(7) for a de-
scription of the freezer controller.)

» For threaded applications (or even thread implementations which make use
of cgroups to limit individual threads), it is possible to establish a fixed
cgroup layout before spawning each thread directly into its target cgroup.

CLONE_IO (since Linux 2.6.25)

If CLONE_IO is set, then the new process shares an 1/0 context with the calling
process. If this flag is not set, then (as with fork(2)) the new process has its own
I/O context.

The 1/0 context is the 1/0 scope of the disk scheduler (i.e., what the 1/O sched-
uler uses to model scheduling of a process’s 1/0). If processes share the same
I/0O context, they are treated as one by the 1/0 scheduler. As a consequence, they
get to share disk time. For some 1/O schedulers, if two processes share an 1/O
context, they will be allowed to interleave their disk access. If several threads
are doing 1/0O on behalf of the same process (aio_read(3), for instance), they
should employ CLONE_IO to get better 1/O performance.

If the kernel is not configured with the CONFIG_BLOCK option, this flag is a
no-op.

Linux man-pages 6.16 2025-10-12 129

clone(2) System Calls Manual clone(2)

CLONE_NEWCGROUP (since Linux 4.6)
Create the process in a new cgroup namespace. If this flag is not set, then (as
with fork(2)) the process is created in the same cgroup namespaces as the calling
process.

For further information on cgroup namespaces, see cgroup_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWC-
GROUP.

CLONE_NEWIPC (since Linux 2.6.19)
If CLONE_NEWIPC is set, then create the process in a new IPC namespace. If
this flag is not set, then (as with fork(2)), the process is created in the same IPC
namespace as the calling process.

For further information on IPC namespaces, see ipc_namespaces(7).

Only a privileged process (CAP_SYS ADMIN) can employ
CLONE_NEWIPC. This flag can’t be specified in conjunction with
CLONE_SYSVSEM.

CLONE_NEWNET (since Linux 2.6.24)
(The implementation of this flag was completed only by about Linux 2.6.29.)

If CLONE_NEWNET is set, then create the process in a new network name-
space. If this flag is not set, then (as with fork(2)) the process is created in the
same network namespace as the calling process.

For further information on network namespaces, see network _namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWNET.

CLONE_NEWNS (since Linux 2.4.19)
If CLONE_NEWNS is set, the cloned child is started in a new mount name-
space, initialized with a copy of the namespace of the parent. If
CLONE_NEWNS is not set, the child lives in the same mount namespace as the
parent.

For further information on mount namespaces, see namespaces(7) and
mount_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWNS. 1t is not permitted to specify both CLONE_NEWNS and
CLONE_FS in the same clone call.

CLONE_NEWRPID (since Linux 2.6.24)
If CLONE_NEWRPID is set, then create the process in a new PID namespace. If
this flag is not set, then (as with fork(2)) the process is created in the same PID
namespace as the calling process.

For further information on PID namespaces, see namespaces(7) and pid_name-
spaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEW-
PID. This flag can’t be specified in conjunction with CLONE_THREAD.

Linux man-pages 6.16 2025-10-12 130

clone(2) System Calls Manual clone(2)

CLONE_NEWUSER
(This flag first became meaningful for clone() in Linux 2.6.23, the current
clone() semantics were merged in Linux 3.5, and the final pieces to make the
user namespaces completely usable were merged in Linux 3.8.)

If CLONE_NEWUSER is set, then create the process in a new user namespace.
If this flag is not set, then (as with fork(2)) the process is created in the same user
namespace as the calling process.

For further information on user namespaces, see namespaces(7) and user_name-
spaces(7).

Before Linux 3.8, use of CLONE_NEWUSER required that the caller have
three capabilities: CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID.
Starting with Linux 3.8, no privileges are needed to create a user namespace.

This flag can’t be specified in conjunction with CLONE_THREAD or
CLONE_PARENT. For security reasons, CLONE_NEWUSER cannot be
specified in conjunction with CLONE_FS.

CLONE_NEWUTS (since Linux 2.6.19)
If CLONE_NEWUTS is set, then create the process in a new UTS namespace,
whose identifiers are initialized by duplicating the identifiers from the UTS
namespace of the calling process. If this flag is not set, then (as with fork(2)) the
process is created in the same UTS namespace as the calling process.

For further information on UTS namespaces, see uts_namespaces(7).

Only a privileged process (CAP_SYS ADMIN) can employ
CLONE_NEWUTS.

CLONE_PARENT (since Linux 2.3.12)
If CLONE_PARENT is set, then the parent of the new child (as returned by
getppid(2)) will be the same as that of the calling process.

If CLONE_PARENT is not set, then (as with fork(2)) the child’s parent is the
calling process.

Note that it is the parent process, as returned by getppid(2), which is signaled
when the child terminates, so that if CLONE_PARENT is set, then the parent of
the calling process, rather than the calling process itself, is signaled.

The CLONE_PARENT flag can’t be used in clone calls by the global init
process (PID 1 in the initial PID namespace) and init processes in other PID
namespaces. This restriction prevents the creation of multi-rooted process trees
as well as the creation of unreapable zombies in the initial PID namespace.

CLONE_PARENT_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by parent_tid (clone()) or
cl_args.parent_tid (clone3()) in the parent’s memory. (In Linux 2.5.32-2.5.48
there was a flag CLONE_SETTID that did this.) The store operation completes
before the clone call returns control to user space.

Linux man-pages 6.16 2025-10-12 131

clone(2) System Calls Manual clone(2)

CLONE_PID (Linux 2.0 to Linux 2.5.15)

If CLONE_PID is set, the child process is created with the same process ID as
the calling process. This is good for hacking the system, but otherwise of not
much use. From Linux 2.3.21 onward, this flag could be specified only by the
system boot process (PID 0). The flag disappeared completely from the kernel
sources in Linux 2.5.16. Subsequently, the kernel silently ignored this bit if it
was specified in the flags mask. Much later, the same bit was recycled for use as
the CLONE_PIDFD flag.

CLONE_PIDFD (since Linux 5.2)
If this flag is specified, a PID file descriptor referring to the child process is allo-
cated and placed at a specified location in the parent’s memory. The close-on-
exec flag is set on this new file descriptor. PID file descriptors can be used for
the purposes described in pidfd_open(2).

* When using clone3(), the PID file descriptor is placed at the location pointed
to by cl_args.pidfd.

* When using clone(), the PID file descriptor is placed at the location pointed
to by parent_tid. Since the parent _tid argument is used to return the PID
file descriptor, CLONE_PIDFD cannot be used with CLONE_PAR-
ENT_SETTID when calling clone().

If CLONE_PIDFD is specified together with CLONE_THREAD, the obtained
PID file descriptor refers to a specific thread, as opposed to a thread-group leader
if CLONE_THREAD is not specified. This feature is available since Linux 6.9.

If the obsolete CLONE_DETACHED flag is specified alongside
CLONE_PIDFD when calling clone(), an error is returned. An error also re-
sults if CLONE_DETACHED is specified when calling clone3(). This error be-
havior ensures that the bit corresponding to CLONE_DETACHED can be
reused for further PID file descriptor features in the future.

CLONE_PTRACE (since Linux 2.2)
If CLONE_PTRACE is specified, and the calling process is being traced, then
trace the child also (see ptrace(2)).

CLONE_SETTLS (since Linux 2.5.32)
The TLS (Thread Local Storage) descriptor is set to tls.

The interpretation of tls and the resulting effect is architecture dependent. On
x86, tls is interpreted as a struct user_desc * (see set thread area(2)). On
x86-64 it is the new value to be set for the %fs base register (see the
ARCH_SET_FS argument to arch_prctl(2)). On architectures with a dedicated
TLS register, it is the new value of that register.

Use of this flag requires detailed knowledge and generally it should not be used
except in libraries implementing threading.

CLONE_SIGHAND (since Linux 2.0)
If CLONE_SIGHAND is set, the calling process and the child process share the
same table of signal handlers. If the calling process or child process calls sigac-
tion(2) to change the behavior associated with a signal, the behavior is changed

Linux man-pages 6.16 2025-10-12 132

clone(2)

System Calls Manual clone(2)

in the other process as well. However, the calling process and child processes
still have distinct signal masks and sets of pending signals. So, one of them may
block or unblock signals using sigprocmask(2) without affecting the other
process.

If CLONE_SIGHAND is not set, the child process inherits a copy of the signal
handlers of the calling process at the time of the clone call. Calls to sigaction(2)
performed later by one of the processes have no effect on the other process.

Since Linux 2.6.0, the flags mask must also include CLONE_VM if
CLONE_SIGHAND is specified.

CLONE_STOPPED (since Linux 2.6.0)

If CLONE_STOPPED is set, then the child is initially stopped (as though it was
sent a SIGSTOP signal), and must be resumed by sending it a SIGCONT sig-
nal.

This flag was deprecated from Linux 2.6.25 onward, and was removed alto-
gether in Linux 2.6.38. Since then, the kernel silently ignores it without error.
Starting with Linux 4.6, the same bit was reused for the CLONE_NEWC-
GROUP flag.

CLONE_SYSVSEM (since Linux 2.5.10)

If CLONE_SYSVSEM is set, then the child and the calling process share a sin-
gle list of System V semaphore adjustment (semadj) values (see semop(2)). In
this case, the shared list accumulates semadj values across all processes sharing
the list, and semaphore adjustments are performed only when the last process
that is sharing the list terminates (or ceases sharing the list using unshare(2)). If
this flag is not set, then the child has a separate semadj list that is initially empty.

CLONE_THREAD (since Linux 2.4.0)

If CLONE_THREAD is set, the child is placed in the same thread group as the
calling process. To make the remainder of the discussion of
CLONE_THREAD more readable, the term "thread" is used to refer to the
processes within a thread group.

Thread groups were a feature added in Linux 2.4 to support the POSIX threads
notion of a set of threads that share a single PID. Internally, this shared PID is
the so-called thread group identifier (TGID) for the thread group. Since Linux
2.4, calls to getpid(2) return the TGID of the caller.

The threads within a group can be distinguished by their (system-wide) unique
thread IDs (TID). A new thread’s TID is available as the function result returned
to the caller, and a thread can obtain its own TID using gettid(2).

When a clone call is made without specifying CLONE_THREAD, then the re-
sulting thread is placed in a new thread group whose TGID is the same as the
thread’s TID. This thread is the leader of the new thread group.

A new thread created with CLONE_THREAD has the same parent process as
the process that made the clone call (i.e., like CLONE_PARENT), so that calls
to getppid(2) return the same value for all of the threads in a thread group.
When a CLONE_THREAD thread terminates, the thread that created it is not

Linux man-pages 6.16 2025-10-12 133

clone(2)

System Calls Manual clone(2)

sent a SIGCHLD (or other termination) signal; nor can the status of such a
thread be obtained using wait(2). (The thread is said to be detached.)

After all of the threads in a thread group terminate the parent process of the
thread group is sent a SIGCHLD (or other termination) signal.

If any of the threads in a thread group performs an execve(2), then all threads
other than the thread group leader are terminated, and the new program is exe-
cuted in the thread group leader.

If one of the threads in a thread group creates a child using fork(2), then any
thread in the group can wait(2) for that child.

Since Linux 2.5.35, the flags mask must also include CLONE_SIGHAND if
CLONE_THREAD is specified (and note that, since Linux 2.6.0,
CLONE_SIGHAND also requires CLONE_VM to be included).

Signal dispositions and actions are process-wide: if an unhandled signal is deliv-
ered to a thread, then it will affect (terminate, stop, continue, be ignored in) all
members of the thread group.

Each thread has its own signal mask, as set by sigprocmask(2).

A signal may be process-directed or thread-directed. A process-directed signal
is targeted at a thread group (i.e., a TGID), and is delivered to an arbitrarily se-
lected thread from among those that are not blocking the signal. A signal may
be process-directed because it was generated by the kernel for reasons other than
a hardware exception, or because it was sent using kill(2) or sigqueue(3). A
thread-directed signal is targeted at (i.e., delivered to) a specific thread. A signal
may be thread directed because it was sent using tgkill(2) or
pthread_siggqueue(3), or because the thread executed a machine language in-
struction that triggered a hardware exception (e.g., invalid memory access trig-
gering SIGSEGYV or a floating-point exception triggering SIGFPE).

A call to sigpending(2) returns a signal set that is the union of the pending
process-directed signals and the signals that are pending for the calling thread.

If a process-directed signal is delivered to a thread group, and the thread group
has installed a handler for the signal, then the handler is invoked in exactly one,
arbitrarily selected member of the thread group that has not blocked the signal.
If multiple threads in a group are waiting to accept the same signal using sig-
waitinfo(2), the kernel will arbitrarily select one of these threads to receive the
signal.

CLONE_UNTRACED (since Linux 2.5.46)

If CLONE_UNTRACED is specified, then a tracing process cannot force
CLONE_PTRACE on this child process.

CLONE_VFORK (since Linux 2.2)

If CLONE_VFORK is set, the execution of the calling process is suspended un-
til the child releases its virtual memory resources via a call to execve(2) or
_exit(2) (as with vfork(2)).

Linux man-pages 6.16 2025-10-12 134

clone(2) System Calls Manual clone(2)

If CLONE_VFORK is not set, then both the calling process and the child are
schedulable after the call, and an application should not rely on execution occur-
ring in any particular order.

CLONE_VM (since Linux 2.0)
If CLONE_VM is set, the calling process and the child process run in the same
memory space. In particular, memory writes performed by the calling process or
by the child process are also visible in the other process. Moreover, any memory
mapping or unmapping performed with mmap(2) or munmap(2) by the child or
calling process also affects the other process.

If CLONE_VM is not set, the child process runs in a separate copy of the mem-
ory space of the calling process at the time of the clone call. Memory writes or
file mappings/unmappings performed by one of the processes do not affect the
other, as with fork(2).

If the CLONE_VM flag is specified and the CLONE_VFORK flag is not speci-
fied, then any alternate signal stack that was established by sigaltstack(2) is
cleared in the child process.

RETURN VALUE
On success, the thread ID of the child process is returned in the caller’s thread of execu-
tion. On failure, —1 is returned in the caller’s context, no child process is created, and
errno is set to indicate the error.

ERRORS
EACCES (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the restrictions
(described in cgroups(7)) on placing the child process into the version 2 cgroup
referred to by cl_args.cgroup are not met.

EAGAIN
Too many processes are already running; see fork(2).

EBUSY (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor
specified in cl_args.cgroup refers to a version 2 cgroup in which a domain con-
troller is enabled.

EEXIST (clone3() only)
One (or more) of the PIDs specified in set_tid already exists in the correspond-
ing PID namespace.

EINVAL
Both CLONE_SIGHAND and CLONE_CLEAR_SIGHAND were specified
in the flags mask.

EINVAL
CLONE_SIGHAND was specified in the flags mask, but CLONE_VM was
not. (Since Linux 2.6.0.)

EINVAL
CLONE_THREAD was specified in the flags mask, but CLONE_SIGHAND
was not. (Since Linux 2.5.35.)

Linux man-pages 6.16 2025-10-12 135

clone(2) System Calls Manual clone(2)

EINVAL
CLONE_THREAD was specified in the flags mask, but the current process
previously called unshare(2) with the CLONE_NEWPID flag or used setns(2)
to reassociate itself with a PID namespace.

EINVAL
Both CLONE_FS and CLONE_NEWNS were specified in the flags mask.

EINVAL (since Linux 3.9)
Both CLONE_NEWUSER and CLONE_FS were specified in the flags mask.

EINVAL
Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in the flags
mask.

EINVAL
CLONE_NEWPID and one (or both) of CLONE_THREAD or
CLONE_PARENT were specified in the flags mask.

EINVAL
CLONE_NEWUSER and CLONE_THREAD were specified in the flags
mask.

EINVAL (since Linux 2.6.32)
CLONE_PARENT was specified, and the caller is an init process.

EINVAL
Returned by the glibc clone() wrapper function when fn or stack is specified as
NULL.

EINVAL
CLONE_NEWIPC was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL
CLONE_NEWNET was specified in the flags mask, but the kernel was not
configured with the CONFIG_NET _NS option.

EINVAL
CLONE_NEWPID was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_PID_NS option.

EINVAL
CLONE_NEWUSER was specified in the flags mask, but the kernel was not
configured with the CONFIG_USER_NS option.

EINVAL
CLONE_NEWUTS was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_UTS_NS option.

EINVAL
stack is not aligned to a suitable boundary for this architecture. For example, on
aarch64, stack must be a multiple of 16.

Linux man-pages 6.16 2025-10-12 136

clone(2) System Calls Manual clone(2)

EINVAL (clone3() only)
CLONE_DETACHED was specified in the flags mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_DETACHED in the
flags mask.

EINVAL (before Linux 6.9)
CLONE_PIDFD was specified together with CLONE_THREAD in the flags
mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_PARENT_SETTID in
the flags mask.

EINVAL (clone3() only)
set_tid_size is greater than the number of nested PID namespaces.

EINVAL (clone3() only)
One of the PIDs specified in set_tid was an invalid.

EINVAL (clone3() only)
CLONE_THREAD or CLONE_PARENT was specified in the flags mask, but
a signal was specified in exit_signal.

EINVAL (AArch64 only, Linux 4.6 and earlier)
stack was not aligned to a 128-bit boundary.

ENOMEM
Cannot allocate sufficient memory to allocate a task structure for the child, or to
copy those parts of the caller’s context that need to be copied.

ENOSPC (since Linux 3.7)
CLONE_NEWRPID was specified in the flags mask, but the limit on the nesting
depth of PID namespaces would have been exceeded; see pid_namespaces(7).

ENOSPC (since Linux 4.9; beforehand EUSERS)
CLONE_NEWUSER was specified in the flags mask, and the call would cause
the limit on the number of nested user namespaces to be exceeded. See
user_namespaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

ENOSPC (since Linux 4.9)
One of the values in the flags mask specified the creation of a new user name-
space, but doing so would have caused the limit defined by the corresponding file
in /proc/sys/user to be exceeded. For further details, see namespaces(7).

EOPNOTSUPP (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor
specified in cl_args.cgroup refers to a version 2 cgroup that is in the domain in-
valid state.

Linux man-pages 6.16 2025-10-12 137

clone(2) System Calls Manual clone(2)

EPERM
CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET,
CLONE_NEWNS, CLONE_NEWPID, or CLONE_NEWUTS was specified
by an unprivileged process (process without CAP_SYS_ADMIN).

EPERM
CLONE_PID was specified by a process other than process 0. (This error oc-
curs only on Linux 2.5.15 and earlier.)

EPERM
CLONE_NEWUSER was specified in the flags mask, but either the effective
user ID or the effective group ID of the caller does not have a mapping in the
parent namespace (see user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in the flags mask and the caller is in a ch-
root environment (i.e., the caller’s root directory does not match the root direc-
tory of the mount namespace in which it resides).

EPERM (clone3() only)
set_tid_size was greater than zero, and the caller lacks the CAP_SYS_ADMIN
capability in one or more of the user namespaces that own the corresponding
PID namespaces.

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be seen
only during a trace.)

EUSERS (Linux 3.11 to Linux 4.8)
CLONE_NEWUSER was specified in the flags mask, and the limit on the
number of nested user namespaces would be exceeded. See the discussion of the
ENOSPC error above.

VERSIONS
The glibc clone() wrapper function makes some changes in the memory pointed to by
stack (changes required to set the stack up correctly for the child) before invoking the
clone() system call. So, in cases where clone() is used to recursively create children, do
not use the buffer employed for the parent’s stack as the stack of the child.

On 386, clone() should not be called through vsyscall, but directly through int $0x80.

C library/kernel differences
The raw clone() system call corresponds more closely to fork(2) in that execution in the
child continues from the point of the call. As such, the fn and arg arguments of the
clone() wrapper function are omitted.

In contrast to the glibc wrapper, the raw clone() system call accepts NULL as a stack ar-
gument (and clone3() likewise allows cl_args.stack to be NULL). In this case, the child
uses a duplicate of the parent’s stack. (Copy-on-write semantics ensure that the child
gets separate copies of stack pages when either process modifies the stack.) In this case,
for correct operation, the CLONE_VM option should not be specified. (If the child
shares the parent’s memory because of the use of the CLONE_VM flag, then no copy-
on-write duplication occurs and chaos is likely to result.)

Linux man-pages 6.16 2025-10-12 138

clone(2) System Calls Manual clone(2)

The order of the arguments also differs in the raw system call, and there are variations in
the arguments across architectures, as detailed in the following paragraphs.

The raw system call interface on x86-64 and some other architectures (including sh, tile,
and alpha) is:
long clone(unsigned long flags, void *stack,
int *parent_tid, int *child_tid,
unsigned long tls);

On x86-32, and several other common architectures (including score, ARM, ARM 64,
PA-RISC, arc, Power PC, xtensa, and MIPS), the order of the last two arguments is re-
versed:

long clone(unsigned long flags, void *stack,
int *parent_tid, unsigned long tls,
int *child_tid);
On the cris and s390 architectures, the order of the first two arguments is reversed:

long clone(void *stack, unsigned long flags,
int *parent_tid, int *child_tid,
unsigned long tls);
On the microblaze architecture, an additional argument is supplied:

long clone(unsigned long flags, void *stack,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);

blackfin, m68k, and sparc
The argument-passing conventions on blackfin, m68k, and sparc are different from the
descriptions above. For details, see the kernel (and glibc) source.

STANDARDS
Linux.

HISTORY

clone3()
Linux 5.3.

Linux 2.4 and earlier
In the Linux 2.4.x series, CLONE_THREAD generally does not make the parent of the
new thread the same as the parent of the calling process. However, from Linux 2.4.7 to
Linux 2.4.18 the CLONE_THREAD flag implied the CLONE_PARENT flag (as in
Linux 2.6.0 and later).

In Linux 2.4 and earlier, clone() does not take arguments parent_tid, tls, and child_tid.
1a64
On ia64, a different interface is used:

int _ _clone2(typeof(int (void *)) *fn,
void *stack base, size_ t stack size,
int flags, void *arg,

Linux man-pages 6.16 2025-10-12 139

clone(2) System Calls Manual clone(2)

/* pid_t *parent_tid, struct user_desc *tls,
pid_t *child_tid */);

The prototype shown above is for the glibc wrapper function; for the system call itself,
the prototype can be described as follows (it is identical to the clone() prototype on mi-
croblaze):

long clone2(unsigned long flags, void *stack_base,
int stack_size, /* Size of stack */
int *parent_tid, Int *child_tid,
unsigned long tls);

_ clone2() operates in the same way as clone(), except that stack_base points to the
lowest address of the child’s stack area, and stack size specifies the size of the stack
pointed to by stack base.

NOTES
One use of these system calls is to implement threads: multiple flows of control in a pro-
gram that run concurrently in a shared address space.

The kecmp(2) system call can be used to test whether two processes share various re-
sources such as a file descriptor table, System V semaphore undo operations, or a virtual
address space.

Handlers registered using pthread_atfork(3) are not executed during a clone call.

BUGS

GNU C library versions 2.3.4 up to and including 2.24 contained a wrapper function for
getpid(2) that performed caching of PIDs. This caching relied on support in the glibc
wrapper for clone(), but limitations in the implementation meant that the cache was not
up to date in some circumstances. In particular, if a signal was delivered to the child im-
mediately after the clone() call, then a call to getpid(2) in a handler for the signal could
return the PID of the calling process (“the parent™), if the clone wrapper had not yet had
a chance to update the PID cache in the child. (This discussion ignores the case where
the child was created using CLONE_THREAD, when getpid(2) should return the same
value in the child and in the process that called clone(), since the caller and the child are
in the same thread group. The stale-cache problem also does not occur if the flags argu-
ment includes CLONE_VM.) To get the truth, it was sometimes necessary to use code
such as the following:

#include <syscall.h>
pid_t mypid;

mypid = syscall(SYS_getpid);

Because of the stale-cache problem, as well as other problems noted in getpid(2), the
PID caching feature was removed in glibc 2.25.

EXAMPLES
The following program demonstrates the use of clone() to create a child process that ex-
ecutes in a separate UTS namespace. The child changes the hostname in its UTS name-
space. Both parent and child then display the system hostname, making it possible to

Linux man-pages 6.16 2025-10-12 140

clone(2) System Calls Manual clone(2)

see that the hostname differs in the UTS namespaces of the parent and child. For an ex-
ample of the use of this program, see setns(2).

Within the sample program, we allocate the memory that is to be used for the child’s
stack using mmap(2) rather than malloc(3) for the following reasons:

 mmap(2) allocates a block of memory that starts on a page boundary and is a multi-
ple of the page size. This is useful if we want to establish a guard page (a page with
protection PROT_NONE) at the end of the stack using mprotect(2).

* We can specify the MAP_STACK flag to request a mapping that is suitable for a
stack. For the moment, this flag is a no-op on Linux, but it exists and has effect on
some other systems, so we should include it for portability.

Program source
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>

static iInt /* Start function for cloned child */
childFunc(void *arg)

{
struct utsname uts;

/* Change hostname in UTS namespace of child. */

if (sethostname(arg, strlen(arg)) == -1)
err(EXIT_FAILURE, 'sethostname™);

/* Retrieve and display hostname. */
it (uname(&uts) == -1)
err(EXIT_FAILURE, "uname™);
printf("'uts.nodename in child: %s\n", uts.nodename);
/* Keep the namespace open for a while, by sleeping.

This allows some experimentation——-for example, another
process might join the namespace. */

Linux man-pages 6.16 2025-10-12 141

clone(2) System Calls Manual clone(2)

sleep(200);

return O; /* Child terminates now */

}

#define STACK SIZE (1024 * 1024) /* Stack size for cloned child */

int

main(int argc, char *argv[])

{
char *stack; /* Start of stack buffer */
char *stackTop; /* End of stack buffer */
pid_t pid;

struct utsname Uuts;

if (argc < 2) {
fprintf(stderr, "Usage: %s <child-hostname>\n", argv[0]);
exit(EXIT_SUCCESS);

}

/* Allocate memory to be used for the stack of the child. */

stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
iT (stack == MAP_FAILED)
err(EXIT_FAILURE, "mmap');

stackTop = stack + STACK _SIZE; /* Assume stack grows downward */

/* Create child that has its own UTS namespace;
child commences execution in childFunc(). */

pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1l])
it (pid == -1)
err(EXIT_FAILURE, "clone™);
iT (munmap(stack, STACK_SIZE))
err(EXIT_FAILURE, "munmap'™);
printf("'clone() returned %jd\n*, (intmax_t) pid);
/* Parent falls through to here */
sleep(1); /* Give child time to change its hostname */

/* Display hostname in parent®s UTS namespace. This will be
different from hostname in child®s UTS namespace. */

ifT (uname(&uts) == -1)

Linux man-pages 6.16 2025-10-12 142

clone(2) System Calls Manual clone(2)

err(EXIT_FAILURE, "uname'™);
printf("'uts.nodename in parent: %s\n", uts.nodename);

it (waitpid(pid, NULL, O0) == -1) /* Wait for child */
err(EXIT_FAILURE, "waitpid™);
printf("'child has terminated\n');

exit(EXIT_SUCCESS);
}

SEE ALSO
fork(2), futex(2), getpid(2), gettid(2), kcmp(2), mmap(2), pidfd_open(2),
set_thread_area(2), set_tid_address(2), setns(2), tkill(2), unshare(2), wait(2), capabili-
ties(7), namespaces(7), pthreads(7)

Linux man-pages 6.16 2025-10-12 143

close(2) System Calls Manual close(2)

NAME

close — close a file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int close(int fd);

DESCRIPTION
close() closes a file descriptor, so that it no longer refers to any file and may be reused.
Any record locks (see fcntl(2)) held on the file it was associated with, and owned by the
process, are removed regardless of the file descriptor that was used to obtain the lock.
This has some unfortunate consequences and one should be extra careful when using ad-
visory record locking. See fcntl(2) for discussion of the risks and consequences as well
as for the (probably preferred) open file description locks.

If fd is the last file descriptor referring to the underlying open file description (see
open(2)), the resources associated with the open file description are freed; if the file de-
scriptor was the last reference to a file which has been removed using unlink(2), the file
is deleted.

RETURN VALUE
close() returns zero on success. On error, =1 is returned, and errno is set to indicate the
error.

ERRORS
EBADF
fd isn’t a valid open file descriptor.

EINTR
The close() call was interrupted by a signal; see signal(7).

EIO An /O error occurred.

ENOSPC

EDQUOT
On NFS, these errors are not normally reported against the first write which ex-
ceeds the available storage space, but instead against a subsequent write(2),
fsync(2), or close().

See CAVEATS for a discussion of why close() should not be retried after an error.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
The close-on-exec file descriptor flag can be used to ensure that a file descriptor is auto-
matically closed upon a successful execve(2); see fcntl(2) for details.

Linux man-pages 6.16 2025-10-29 144

close(2) System Calls Manual close(2)

CAVEATS
A successful close does not guarantee that the data has been successfully saved to disk,
as the kernel uses the buffer cache to defer writes. Typically, filesystems do not flush
buffers when a file is closed. If you need to be sure that the data is physically stored on
the underlying disk, use fsync(2). (It will depend on the disk hardware at this point.)

Multithreaded processes and close()
It is probably unwise to close file descriptors while they may be in use by system calls in
other threads in the same process. Since a file descriptor may be reused, there are some
obscure race conditions that may cause unintended side effects.

Furthermore, consider the following scenario where two threads are performing opera-
tions on the same file descriptor:

(1) One thread is blocked in an 1/0 system call on the file descriptor. For example, it
is trying to write(2) to a pipe that is already full, or trying to read(2) from a stream
socket which currently has no available data.

(2) Another thread closes the file descriptor.

The behavior in this situation varies across systems. On some systems, when the file de-
scriptor is closed, the blocking system call returns immediately with an error.

On Linux (and possibly some other systems), the behavior is different: the blocking 1/0
system call holds a reference to the underlying open file description, and this reference
keeps the description open until the 1/0 system call completes. (See open(2) for a dis-
cussion of open file descriptions.) Thus, the blocking system call in the first thread may
successfully complete after the close() in the second thread.

Dealing with error returns from close()
A careful programmer will check the return value of close(), since it is quite possible
that errors on a previous write(2) operation are reported only on the final close() that re-
leases the open file description. Failing to check the return value when closing a file
may lead to silent loss of data. This can especially be observed with NFS and with disk
quota.

Note, however, that a failure return should be used only for diagnostic purposes (i.e., a
warning to the application that there may still be 1/0 pending or there may have been
failed 1/0) or remedial purposes (e.g., writing the file once more or creating a backup).

Retrying the close() after a failure return is the wrong thing to do, since this may cause a
reused file descriptor from another thread to be closed. This can occur because the
Linux kernel always releases the file descriptor early in the close operation, freeing it for
reuse; the steps that may return an error, such as flushing data to the filesystem or de-
vice, occur only later in the close operation.

Many other implementations similarly always close the file descriptor (except in the
case of EBADF, meaning that the file descriptor was invalid) even if they subsequently
report an error on return from close(). POSIX.1-2008 was silent on this point.

A careful programmer who wants to know about 1/O errors may precede close() with a
call to fsync(2).

The EINTR error is a somewhat special case. Regarding the EINTR error,

Linux man-pages 6.16 2025-10-29 145

close(2) System Calls Manual close(2)

POSIX.1-2008 said:

If close() is interrupted by a signal that is to be caught, it shall return =1 with er-
rno set to EINTR and the state of fd is unspecified.

This permits the behavior that occurs on Linux and many other implementations, where,
as with other errors that may be reported by close(), the file descriptor is guaranteed to
be closed. However, it also permits another possibility: that the implementation returns
an EINTR error and keeps the file descriptor open. (According to its documentation,
HP-UX’s close() does this.) The caller must then once more use close() to close the file
descriptor, to avoid file descriptor leaks. This divergence in implementation behaviors
provides a difficult hurdle for portable applications, since on many implementations,
close() must not be called again after an EINTR error, and on at least one, close() must
be called again.

POSIX.1-2024 standardized the behavior of HP-UX, making Linux and many other im-
plementations non-conforming. There are no plans to change the behavior on Linux.

SEE ALSO
close_range(2), fcntl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

Linux man-pages 6.16 2025-10-29 146

close_range(2) System Calls Manual close_range(2)

NAME

close_range - close all file descriptors in a given range
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _GNU_SOURCE [* See feature_test_macros(7) */
#include <unistd.h>

#include <linux/close_range.h> /* Definition of CLOSE_RANGE_*
constants */

int close_range(unsigned int first, unsigned int last, int flags);

DESCRIPTION
The close_range() system call closes all open file descriptors from first to last (in-
cluded).

Errors closing a given file descriptor are currently ignored.
flags is a bit mask containing 0 or more of the following:

CLOSE_RANGE_CLOEXEC (since Linux 5.11)
Set the close-on-exec flag on the specified file descriptors, rather than immedi-
ately closing them.

CLOSE_RANGE_UNSHARE
Unshare the specified file descriptors from any other processes before closing
them, avoiding races with other threads sharing the file descriptor table.

RETURN VALUE

On success, close_range() returns 0. On error, =1 is returned and errno is set to indi-
cate the error.

ERRORS
EINVAL
flags is not valid, or first is greater than last.

The following can occur with CLOSE_RANGE_UNSHARE (when constructing the
new descriptor table):

EMFILE
The number of open file descriptors exceeds the limit specified in
Iproc/sys/fs/nr_open (see proc(5)). This error can occur in situations where that
limit was lowered Dbefore a call to close range() where the
CLOSE_RANGE_UNSHARE flag is specified.

ENOMEM
Insufficient kernel memory was available.

STANDARDS
None.

HISTORY
FreeBSD. Linux 5.9, glibc 2.34.

Linux man-pages 6.16 2025-05-17 147

close_range(2) System Calls Manual close_range(2)

NOTES
Closing all open file descriptors
To avoid blindly closing file descriptors in the range of possible file descriptors, this is
sometimes implemented (on Linux) by listing open file descriptors in /proc/self/fd/ and
calling close(2) on each one. close_range() can take care of this without requiring
/proc and within a single system call, which provides significant performance benefits.

Closing file descriptors before exec
File descriptors can be closed safely using

/* we don’t want anything past stderr here */
close_range(3, ~0U, CLOSE_RANGE_UNSHARE);
execve(....);

CLOSE_RANGE_UNSHARE is conceptually equivalent to

unshare(CLONE_FILES);
close_range(first, last, 0);

but can be more efficient: if the unshared range extends past the current maximum num-
ber of file descriptors allocated in the caller’s file descriptor table (the common case
when last is ~0U), the kernel will unshare a new file descriptor table for the caller up to
first, copying as few file descriptors as possible. This avoids subsequent close(2) calls
entirely; the whole operation is complete once the table is unshared.

Closing files on exec

This is particularly useful in cases where multiple pre-exec setup steps risk conflicting
with each other. For example, setting up a seccomp(2) profile can conflict with a
close_range() call: if the file descriptors are closed before the seccomp(2) profile is set
up, the profile setup can’t use them itself, or control their closure; if the file descriptors
are closed afterwards, the seccomp profile can’t block the close_range() call or any fall-
backs. Using CLOSE_RANGE_CLOEXEC avoids this: the descriptors can be
marked before the seccomp(2) profile is set up, and the profile can control access to
close_range() without affecting the calling process.

EXAMPLES
The program shown below opens the files named in its command-line arguments, dis-
plays the list of files that it has opened (by iterating through the entries in /proc/PID/fd),
uses close_range() to close all file descriptors greater than or equal to 3, and then once
more displays the process’s list of open files. The following example demonstrates the
use of the program:

$ touch /tmp/a /tmp/b /tmp/c;

$./a.out /tmp/a /tmp/b /tmp/c;
/tmp/a opened as FD 3

/tmp/b opened as FD 4

/tmp/c opened as FD 5
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1l
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /tmp/a
/proc/self/fd/4 ==> /tmp/b

Linux man-pages 6.16 2025-05-17 148

close_range(2) System Calls Manual close_range(2)

/proc/self/fd/5 ==> /tmp/c

/proc/self/¥d/6 ==> /proc/9005/fd

========= About to call close_range() =======
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /proc/9005/fd

Note that the lines showing the pathname /proc/9005/fd result from the calls to
opendir(3).

Program source

#define _GNU_SOURCE
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

/* Show the contents of the symbolic links in /proc/self/fd */

static void
show_fds(void)

{
DIR *dirp;
char path[PATH_MAX], target[PATH_MAX];
ssize t len;

struct dirent *dp;

dirp = opendir(*'/proc/self/fd");

if (dirp == NULL) {
perror(opendir');
exit(EXIT_FAILURE);

+

for (55) {
dp = readdir(dirp);
if (dp == NULL)
break;

iT (dp—>d_type == DT_LNK) {
snprintf(path, sizeof(path), "/proc/self/fd/%s",
dp—>d_name);

len = readlink(path, target, sizeof(target));

Linux man-pages 6.16 2025-05-17 149

close_range(2)

System Calls Manual

close_range(2)

printf(""%s ==> %.*s\n", path, (int) len, target);

bs
+
closedir(dirp);
+
int
main(int argc, char *argv[])
{
int fd;
for (size_t j = 1; j < argc; j++) {
Tfd = open(argv[j], O_RDONLY);
it (fd == -1) {
perror(argvlj]);
exit(EXIT_FAILURE);
+
printf("'%s opened as FD %d\n', argv[j], fd);
+
show_fds();
printf("'========= About to call close_range() =======\n"");
iT (close_range(3, ~0U, 0) == -1) {
perror(‘'close_range'™);
ex1t(EXIT_FAILURE);
¥
show_fds(Q);
exit(EXIT_FAILURE);
b
SEE ALSO
close(2)
Linux man-pages 6.16 2025-05-17 150

connect(2) System Calls Manual connect(2)

NAME

connect — initiate a connection on a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
The connect() system call connects the socket referred to by the file descriptor sockfd to
the address specified by addr. The addrlen argument specifies the size of addr. The
format of the address in addr is determined by the address space of the socket sockfd;
see socket(2) for further details.

If the socket sockfd is of type SOCK_DGRAM, then addr is the address to which data-
grams are sent by default, and the only address from which datagrams are received. If
the socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call attempts to
make a connection to the socket that is bound to the address specified by addr.

Some protocol sockets (e.g., UNIX domain stream sockets) may successfully connect()
only once.

Some protocol sockets (e.g., datagram sockets in the UNIX and Internet domains) may
use connect() multiple times to change their association.

Some protocol sockets (e.g., TCP sockets as well as datagram sockets in the UNIX and
Internet domains) may dissolve the association by connecting to an address with the
sa_family member of sockaddr set to AF_UNSPEC,; thereafter, the socket can be con-
nected to another address. (AF_UNSPEC is supported since Linux 2.2.)

RETURN VALUE
If the connection or binding succeeds, zero is returned. On error, —1 is returned, and er-
rno is set to indicate the error.

ERRORS

The following are general socket errors only. There may be other domain-specific error
codes.

EACCES
For UNIX domain sockets, which are identified by pathname: Write permission
is denied on the socket file, or search permission is denied for one of the directo-
ries in the path prefix. (See also path_resolution(7).)

EACCES

EPERM
The user tried to connect to a broadcast address without having the socket broad-
cast flag enabled or the connection request failed because of a local firewall rule.

EACCES
It can also be returned if an SELinux policy denied a connection (for example, if
there is a policy saying that an HTTP proxy can only connect to ports associated

Linux man-pages 6.16 2025-10-29 151

connect(2) System Calls Manual connect(2)

with HTTP servers, and the proxy tries to connect to a different port).

EADDRINUSE
Local address is already in use.

EADDRNOTAVAIL
(Internet domain sockets) The socket referred to by sockfd had not previously
been bound to an address and, upon attempting to bind it to an ephemeral port, it
was determined that all port numbers in the ephemeral port range are currently in
use. See the discussion of /proc/sys/net/ipv4/ip_local_port_range in ip(7).

EAFNOSUPPORT
The passed address didn’t have the correct address family in its sa_family field.

EAGAIN
For nonblocking UNIX domain sockets, the socket is nonblocking, and the con-
nection cannot be completed immediately. For other socket families, there are
insufficient entries in the routing cache.

EALREADY
The socket is nonblocking and a previous connection attempt has not yet been
completed.

EBADF
sockfd is not a valid open file descriptor.

ECONNREFUSED
A connect() on a stream socket found no one listening on the remote address.

EFAULT
The socket structure address is outside the user’s address space.

EINPROGRESS

The socket is nonblocking and the connection cannot be completed immediately.
(UNIX domain sockets failed with EAGAIN instead.) It is possible to select(2)
or poll(2) for completion by selecting the socket for writing. After select(2) in-
dicates writability, use getsockopt(2) to read the SO_ERROR option at level
SOL_SOCKET to determine whether connect() completed successfully
(SO_ERROR is zero) or unsuccessfully (SO_ERROR is one of the usual error
codes listed here, explaining the reason for the failure).

EINTR
The system call was interrupted by a signal that was caught; see signal(7).

EISCONN
The socket is already connected.

ENETUNREACH
Network is unreachable.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

Linux man-pages 6.16 2025-10-29 152

connect(2) System Calls Manual connect(2)

EPROTOTYPE
The socket type does not support the requested communications protocol. This
error can occur, for example, on an attempt to connect a UNIX domain datagram
socket to a stream socket.

ETIMEDOUT
Timeout while attempting connection. The server may be too busy to accept new
connections. Note that for IP sockets the timeout may be very long when syn-
cookies are enabled on the server.

VERSIONS
Portable programs must ensure that addr.sun_path is a null-terminated string for
AF_UNIX sockets.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.2BSD.

NOTES

If connect() fails, consider the state of the socket as unspecified. Portable applications
should close the socket and create a new one for reconnecting.

EXAMPLES
An example of the use of connect() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), getsockname(2), listen(2), socket(2), path_resolution(7), selinux(8)

Linux man-pages 6.16 2025-10-29 153

copy_file_range(2) System Calls Manual copy_file_range(2)

NAME

copy_file_range — Copy a range of data from one file to another
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _GNU_SOURCE
#define FILE_OFFSET BITS 64
#include <unistd.h>

ssize_t copy_file_range(int fd_in, off_t*_ Nullable off in,
int fd_out, off_t*_ Nullable off_out,
size_t size, unsigned int flags);

DESCRIPTION
The copy_file_range() system call performs an in-kernel copy between two file descrip-
tors without the additional cost of transferring data from the kernel to user space and
then back into the kernel. It copies up to size bytes of data from the source file descrip-
tor fd_in to the target file descriptor fd_out, overwriting any data that exists within the
requested range of the target file.

The following semantics apply for off_in, and similar statements apply to off_out:

* If off_in is NULL, then bytes are read from fd_in starting from the file offset, and
the file offset is adjusted by the number of bytes copied.

* If off_in is not NULL, then off_in must point to a buffer that specifies the starting
offset where bytes from fd_in will be read. The file offset of fd_in is not changed,
but off_in is adjusted appropriately.

fd_in and fd out can refer to the same file. If they refer to the same file, then the
source and target ranges are not allowed to overlap.

The flags argument is provided to allow for future extensions and currently must be set
to 0.

RETURN VALUE
Upon successful completion, copy_file_range() will return the number of bytes copied
between files. This could be less than the size originally requested. If the file offset of
fd_in is at or past the end of file, no bytes are copied, and copy_file_range() returns
zero.

On error, copy_file_range() returns —1 and errno is set to indicate the error.

ERRORS
EBADF
One or more file descriptors are not valid.

EBADF
fd_in is not open for reading; or fd_out is not open for writing.

EBADF
The O_APPEND flag is set for the open file description (see open(2)) referred to
by the file descriptor fd_out.

Linux man-pages 6.16 2025-09-21 154

copy_file_range(2) System Calls Manual copy_file_range(2)

EFBIG
An attempt was made to write at a position past the maximum file offset the ker-
nel supports.

EFBIG
An attempt was made to write a range that exceeds the allowed maximum file
size. The maximum file size differs between filesystem implementations and can
be different from the maximum allowed file offset.

EFBIG
An attempt was made to write beyond the process’s file size resource limit. This
may also result in the process receiving a SIGXFSZ signal.

EINVAL
The flags argument is not 0.

EINVAL
fd_in and fd_out refer to the same file and the source and target ranges overlap.

EINVAL
Either fd_in or fd_out is not a regular file.

EIO A low-level I/O error occurred while copying.

EISDIR
Either fd_in or fd_out refers to a directory.

ENOMEM
Out of memory.

ENOSPC
There is not enough space on the target filesystem to complete the copy.

EOPNOTSUPP (since Linux 5.19)
The filesystem does not support this operation.

EOVERFLOW
The requested source or destination range is too large to represent in the speci-
fied data types.

EPERM
fd_out refers to an immutable file.

ETXTBSY
Either fd_in or fd_out refers to an active swap file.

EXDEYV (before Linux 5.3)
The files referred to by fd_in and fd_out are not on the same filesystem.

EXDEV (since Linux 5.19)
The files referred to by fd_in and fd_out are not on the same filesystem, and the
source and target filesystems are not of the same type, or do not support cross-
filesystem copy.

VERSIONS
A major rework of the kernel implementation occurred in Linux 5.3. Areas of the API
that weren’t clearly defined were clarified and the API bounds are much more strictly

Linux man-pages 6.16 2025-09-21 155

copy_file_range(2) System Calls Manual copy_file_range(2)

checked than on earlier kernels.

Since Linux 5.19, cross-filesystem copies can be achieved when both filesystems are of
the same type, and that filesystem implements support for it. See BUGS for behavior
prior to Linux 5.19.

Applications should target the behaviour and requirements of Linux 5.19, that was also
backported to earlier stable kernels.

STANDARDS
Linux, GNU.

HISTORY
Linux 4.5, but glibc 2.27 provides a user-space emulation when it is not available.

NOTES
If fd_in is a sparse file, then copy_file_range() may expand any holes existing in the re-
quested range. Users may benefit from calling copy_file_range() in a loop, and using
the Iseek(2) SEEK_DATA and SEEK_HOLE operations to find the locations of data
segments.

copy_file_range() gives filesystems an opportunity to implement "copy acceleration"
techniques, such as the use of reflinks (i.e., two or more inodes that share pointers to the
same copy-on-write disk blocks) or server-side-copy (in the case of NFS).

_FILE_OFFSET _BITS should be defined to be 64 in code that uses non-null off in or
off out or that takes the address of copy file_range, if the code is intended to be
portable to traditional 32-bit x86 and ARM platforms where off_t’s width defaults to 32
bits.

BUGS
In Linux 5.3 to Linux 5.18, cross-filesystem copies were implemented by the kernel, if
the operation was not supported by individual filesystems. However, on some virtual
filesystems, the call failed to copy, while still reporting success.

EXAMPLES

#define _GNU_SOURCE

#define FILE OFFSET BITS 64
#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int

main(int argc, char *argv[])

{
int fd_in, fd_out;
off_t size, ret;

struct stat stat;

Linux man-pages 6.16 2025-09-21 156

copy_file_range(2) System Calls Manual copy_file_range(2)

if (argc 1= 3) {
fprintf(stderr, "Usage: %s <source> <destination>\n", argv[O0]
exit(EXIT_FAILURE);

}

fd_1n = open(argv[1l], O _RDONLY);

if (fd_in == -1) {
perror(“‘open (argv[1])™):;
exit(EXIT_FAILURE);

}

if (fstat(fd_in, &stat) == -1) {
perror(“'fstat');
exit(EXIT_FAILURE);

}

size = stat.st size;

fd_out = open(argv[2], O CREAT | O_WRONLY | O_TRUNC, 0644);
if (fd_out == -1) {

perror(“'open (argv[2])');

exit(EXIT_FAILURE);
+

do {
ret = copy_fTile_range(fd_in, NULL, fd_out, NULL, size, 0);
if (ret == -1) {
perror(‘'copy_Tile_range™);
exit(EXIT_FAILURE);
be

size —= ret;
} while (size > 0 && ret > 0);

close(fd_in);
close(fd_out);
exit(EXIT_SUCCESS);

}

SEE ALSO
Iseek(2), sendfile(2), splice(2)

Linux man-pages 6.16 2025-09-21 157

create_module(2) System Calls Manual create_module(2)

NAME
create_module — create a loadable module entry

SYNOPSIS

#include <linux/module.h>

[[deprecated]] caddr _t create_module(const char *name, size_t size);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

create_module() attempts to create a loadable module entry and reserve the kernel
memory that will be needed to hold the module. This system call requires privilege.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On error, =1 is
returned and errno is set to indicate the error.

ERRORS
EEXIST
A module by that name already exists.

EFAULT
name is outside the program’s accessible address space.

EINVAL
The requested size is too small even for the module header information.

ENOMEM
The kernel could not allocate a contiguous block of memory large enough for the
module.

ENOSYS
create_module() is not supported in this version of the kernel (e.g., Linux 2.6 or
later).

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity).
STANDARDS

Linux.

HISTORY

Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in glibc
headers, but, through a quirk of history, glibc versions before glibc 2.23 did export an
ABI for this system call. Therefore, in order to employ this system call, it was sufficient
to manually declare the interface in your code; alternatively, you could invoke the sys-
tem call using syscall(2).

SEE ALSO
delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.16 2025-05-17 158

delete_module(2) System Calls Manual delete_module(2)

NAME
delete_module — unload a kernel module
LIBRARY
Standard C library (libc, —Ic)
SYNOPSIS
#include <fcntl.h> [* Definition of O_* constants */

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_delete_module, const char *name, unsigned int flags);

Note: glibc provides no wrapper for delete_module(), necessitating the use of
syscall(2).

DESCRIPTION
The delete_module() system call attempts to remove the unused loadable module entry
identified by name. If the module has an exit function, then that function is executed be-
fore unloading the module. The flags argument is used to modify the behavior of the
system call, as described below. This system call requires privilege.

Module removal is attempted according to the following rules:

1)

)

©)

If there are other loaded modules that depend on (i.e., refer to symbols defined in)
this module, then the call fails.

Otherwise, if the reference count for the module (i.e., the number of processes
currently using the module) is zero, then the module is immediately unloaded.

If a module has a nonzero reference count, then the behavior depends on the bits
set in flags. In normal usage (see NOTES), the O_NONBLOCK flag is always
specified, and the O_TRUNC flag may additionally be specified.

The various combinations for flags have the following effect:

flags == O_NONBLOCK
The call returns immediately, with an error.

flags == (O_NONBLOCK | O_TRUNC)
The module is unloaded immediately, regardless of whether it has a
nonzero reference count.

(flags & O_NONBLOCK) ==
If flags does not specify O_NONBLOCK, the following steps occur:

* The module is marked so that no new references are permitted.

» If the module’s reference count is nonzero, the caller is placed in an
uninterruptible sleep state (TASK_UNINTERRUPTIBLE) until the
reference count is zero, at which point the call unblocks.

» The module is unloaded in the usual way.

The O_TRUNC flag has one further effect on the rules described above. By default, if a
module has an init function but no exit function, then an attempt to remove the module
fails. However, if O_TRUNC was specified, this requirement is bypassed.

Linux man-pages 6.16 2025-10-05 159

delete_module(2) System Calls Manual delete_module(2)

Using the O _TRUNC flag is dangerous! If the kernel was not built with CON-
FIG_MODULE_FORCE_UNLOAD, this flag is silently ignored. (Normally, CON-
FIG_MODULE_FORCE_UNLOAD is enabled.) Using this flag taints the kernel
(TAINT_FORCED_RMMOD).

RETURN VALUE
On success, zero is returned. On error, =1 is returned and errno is set to indicate the er-
ror.

ERRORS
EBUSY
The module is not "live" (i.e., it is still being initialized or is already marked for
removal); or, the module has an init function but has no exit function, and
O_TRUNC was not specified in flags.

EFAULT
name refers to a location outside the process’s accessible address space.

ENOENT
No module by that name exists.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity), or module unloading is disabled (see /proc/sys/kernel/modules_disabled in
proc(5)).

EWOULDBLOCK
Other modules depend on this module; or, O_NONBLOCK was specified in
flags, but the reference count of this module is nonzero and O_TRUNC was not
specified in flags.

STANDARDS
Linux.

HISTORY
The delete_module() system call is not supported by glibc. No declaration is provided
in glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did ex-
port an ABI for this system call. Therefore, in order to employ this system call, it is (be-
fore glibc 2.23) sufficient to manually declare the interface in your code; alternatively,
you can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the system call took only one argument:

int delete_module(const char *name);
If name is NULL, all unused modules marked auto-clean are removed.

Some further details of differences in the behavior of delete_module() in Linux 2.4 and
earlier are not currently explained in this manual page.

NOTES
The uninterruptible sleep that may occur if O_NONBLOCK is omitted from flags is
considered undesirable, because the sleeping process is left in an unkillable state. As at
Linux 3.7, specifying O_NONBLOCK is optional, but in future kernels it is likely to

Linux man-pages 6.16 2025-10-05 160

delete_module(2) System Calls Manual delete_module(2)

become mandatory.

SEE ALSO
create_module(2), init_module(2), query_module(2), Ismod(8), modprobe(8), rmmod(8)

Linux man-pages 6.16 2025-10-05 161

dup(2) System Calls Manual dup(2)

NAME

dup, dup2, dup3 — duplicate a file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

#define _ GNU_SOURCE I* See feature_test_macros(7) */
#include <fcntl.h> [* Definition of O_* constants */
#include <unistd.h>

int dup3(int oldfd, int newfd, int flags);

DESCRIPTION
The dup() system call allocates a new file descriptor that refers to the same open file de-
scription as the descriptor oldfd. (For an explanation of open file descriptions, see
open(2).) The new file descriptor number is guaranteed to be the lowest-numbered file
descriptor that was unused in the calling process.

After a successful return, the old and new file descriptors may be used interchangeably.
Since the two file descriptors refer to the same open file description, they share file off-
set and file status flags; for example, if the file offset is modified by using Iseek(2) on
one of the file descriptors, the offset is also changed for the other file descriptor.

The two file descriptors do not share file descriptor flags (the close-on-exec flag). The
close-on-exec flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup2()
The dup2() system call performs the same task as dup(), but instead of using the lowest-
numbered unused file descriptor, it uses the file descriptor number specified in newfd.
In other words, the file descriptor newfd is adjusted so that it now refers to the same
open file description as oldfd.

If the file descriptor newfd was previously open, it is closed before being reused; the
close is performed silently (i.e., any errors during the close are not reported by dup2())

The steps of closing and reusing the file descriptor newfd are performed atomically.
This is important, because trying to implement equivalent functionality using close(2)
and dup() would be subject to race conditions, whereby newfd might be reused between
the two steps. Such reuse could happen because the main program is interrupted by a
signal handler that allocates a file descriptor, or because a parallel thread allocates a file
descriptor.

Note the following points:
» If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

» If oldfd is a valid file descriptor, and newfd has the same value as oldfd, then dup2()
does nothing, and returns newfd.

Linux man-pages 6.16 2025-10-29 162

dup(2) System Calls Manual dup(2)

dup3()
dup3() is the same as dup2(), except that:

» The caller can force the close-on-exec flag to be set for the new file descriptor by
specifying O_CLOEXEC in flags. See the description of the same flag in open(2)
for reasons why this may be useful.

» If oldfd equals newfd, then dup3() fails with the error EINVAL.

RETURN VALUE
On success, these system calls return the new file descriptor. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EBADF
oldfd isn’t an open file descriptor.

EBADF
newfd is out of the allowed range for file descriptors (see the discussion of
RLIMIT_NOFILE in getrlimit(2)).

EBUSY
(Linux only) This may be returned by dup2() or dup3() during a race condition
with open(2) and dup().

EINTR
The dup2() or dup3() call was interrupted by a signal; see signal(7).

EINVAL
(dup3()) flags contain an invalid value.

EINVAL
(dup3()) oldfd was equal to newfd.

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the discussion of RLIMIT_NOFILE in getrlimit(2)).

ENOMEM
Insufficient kernel memory was available.

STANDARDS
POSIX.1-2024.

HISTORY

dup()
dup2()
POSIX.1-2001, SVr4, 4.3BSD.
dup3()
POSIX.1-2024. Linux 2.6.27, glibc 2.9.
NOTES
The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...)

when newfd is out of range. On some systems, dup2() also sometimes returns EINVAL
like F_DUPFD.

Linux man-pages 6.16 2025-10-29 163

dup(2) System Calls Manual dup(2)

If newfd was open, any errors that would have been reported at close(2) time are lost. If
this is of concern, then—unless the program is single-threaded and does not allocate file
descriptors in signal handlers—the correct approach is not to close newfd before calling
dup?2(), because of the race condition described above. Instead, code something like the
following could be used:

/* Obtain a duplicate of "newfd" that can subsequently
be used to check for close() errors; an EBADF error
means that "newfd® was not open. */

tmpfd = dup(newfd);
it (tmpfd == -1 && errno != EBADF) {
/* Handle unexpected dup() error. */

}

/* Atomically duplicate “oldfd® on "newfd*. */

if (dup2(oldfd, newfd) == -1) {
/* Handle dup2() error. */
¥

/* Now check for close() errors on the file originally
referred to by "newfd". */

if (tmpfd '= -1) {
ifT (close(tmpfd) == -1) {
/* Handle errors from close. */

}
}

SEE ALSO
close(2), fentl(2), open(2), pidfd_getfd(2)

Linux man-pages 6.16 2025-10-29 164

epoll_create(2) System Calls Manual epoll_create(2)

NAME
epoll_create, epoll_createl — open an epoll file descriptor

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#include <sys/epoll.h>

int epoll_create(int size);
int epoll_createl(int flags);

DESCRIPTION
epoll_create() creates a new epoll(7) instance. Since Linux 2.6.8, the size argument is
ignored, but must be greater than zero; see HISTORY.

epoll_create() returns a file descriptor referring to the new epoll instance. This file de-
scriptor is used for all the subsequent calls to the epoll interface. When no longer re-
quired, the file descriptor returned by epoll_create() should be closed by using close(2).
When all file descriptors referring to an epoll instance have been closed, the kernel de-
stroys the instance and releases the associated resources for reuse.

epoll_createl()
If flags is O, then, other than the fact that the obsolete size argument is dropped,
epoll_createl() is the same as epoll_create(). The following value can be included in
flags to obtain different behavior:

EPOLL_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

RETURN VALUE
On success, these system calls return a file descriptor (a nonnegative integer). On error,
-1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL
size is not positive.
EINVAL
(epoll_createl()) Invalid value specified in flags.
EMFILE
The per-process limit on the number of open file descriptors has been reached.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENOMEM
There was insufficient memory to create the kernel object.
STANDARDS
Linux.

Linux man-pages 6.16 2025-09-21 165

epoll_create(2) System Calls Manual epoll_create(2)

HISTORY
epoll_create()
Linux 2.6, glibc 2.3.2.

epoll_createl()
Linux 2.6.27, glibc 2.9.

In the initial epoll_create() implementation, the size argument informed the kernel of
the number of file descriptors that the caller expected to add to the epoll instance. The
kernel used this information as a hint for the amount of space to initially allocate in in-
ternal data structures describing events. (If necessary, the kernel would allocate more
space if the caller’s usage exceeded the hint given in size.) Nowadays, this hint is no
longer required (the kernel dynamically sizes the required data structures without need-
ing the hint), but size must still be greater than zero, in order to ensure backward com-
patibility when new epoll applications are run on older kernels.

Prior to Linux 2.6.29, a /proc/sys/fs/epoll/max_user_instances kernel parameter limited
live epolls for each real user ID, and caused epoll_create() to fail with EMFILE on
overrun.

SEE ALSO
close(2), epoll_ctl(2), epoll_wait(2), ioctl_eventpoll(2), epoll(7)

Linux man-pages 6.16 2025-09-21 166

epoll_ctl(2) System Calls Manual epoll_ctl(2)

NAME

epoll_ctl - control interface for an epoll file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/epoll.h>

int epoll_ctl(int epfd, int op, int fd,
struct epoll_event *_Nullable event);

DESCRIPTION
This system call is used to add, modify, or remove entries in the interest list of the
epoll(7) instance referred to by the file descriptor epfd. It requests that the operation op
be performed for the target file descriptor, fd.

Valid values for the op argument are:

EPOLL_CTL_ADD
Add an entry to the interest list of the epoll file descriptor, epfd. The entry in-
cludes the file descriptor, fd, a reference to the corresponding open file descrip-
tion (see epoll(7) and open(2)), and the settings specified in event.

EPOLL_CTL_MOD
Change the settings associated with fd in the interest list to the new settings
specified in event.

EPOLL_CTL_DEL
Remove (deregister) the target file descriptor fd from the interest list. The event
argument is ignored and can be NULL (but see BUGS below).

The event argument describes the object linked to the file descriptor fd. The struct
epoll_event is described in epoll_event(3type).

The data member of the epoll_event structure specifies data that the kernel should save
and then return (via epoll_wait(2)) when this file descriptor becomes ready.

The events member of the epoll_event structure is a bit mask composed by ORing to-
gether zero or more event types, returned by epoll_wait(2), and input flags, which affect
its behaviour, but aren’t returned. The available event types are:

EPOLLIN
The associated file is available for read(2) operations.

EPOLLOUT
The associated file is available for write(2) operations.

EPOLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connection.
(This flag is especially useful for writing simple code to detect peer shutdown
when using edge-triggered monitoring.)

EPOLLPRI
There is an exceptional condition on the file descriptor. See the discussion of
POLLPRI in poll(2).

Linux man-pages 6.16 2025-09-21 167

epoll_ctl(2) System Calls Manual epoll_ctl(2)

EPOLLERR
Error condition happened on the associated file descriptor. This event is also re-
ported for the write end of a pipe when the read end has been closed.

epoll_wait(2) will always report for this event; it is not necessary to set it in
events when calling epoll_ctl().

EPOLLHUP
Hang up happened on the associated file descriptor.

epoll_wait(2) will always wait for this event; it is not necessary to set it in events
when calling epoll_ctl().

Note that when reading from a channel such as a pipe or a stream socket, this
event merely indicates that the peer closed its end of the channel. Subsequent
reads from the channel will return O (end of file) only after all outstanding data in
the channel has been consumed.

And the available input flags are:

EPOLLET
Requests edge-triggered notification for the associated file descriptor. The de-
fault behavior for epoll is level-triggered. See epoll(7) for more detailed infor-
mation about edge-triggered and level-triggered notification.

EPOLLONESHOT (since Linux 2.6.2)
Requests one-shot notification for the associated file descriptor. This means that
after an event notified for the file descriptor by epoll_wait(2), the file descriptor
is disabled in the interest list and no other events will be reported by the epoll in-
terface. The user must call epoll_ctl() with EPOLL_CTL_MOD to rearm the
file descriptor with a new event mask.

EPOLLWAKEUP (since Linux 3.5)

If EPOLLONESHOT and EPOLLET are clear and the process has the
CAP_BLOCK SUSPEND capability, ensure that the system does not enter
"suspend” or "hibernate” while this event is pending or being processed. The
event is considered as being "processed™" from the time when it is returned by a
call to epoll_wait(2) until the next call to epoll_wait(2) on the same epoll(7) file
descriptor, the closure of that file descriptor, the removal of the event file de-
scriptor with EPOLL_CTL_DEL, or the clearing of EPOLLWAKEUP for the
event file descriptor with EPOLL_CTL_MOD. See also BUGS.

EPOLLEXCLUSIVE (since Linux 4.5)

Sets an exclusive wakeup mode for the epoll file descriptor that is being attached
to the target file descriptor, fd. When a wakeup event occurs and multiple epoll
file descriptors are attached to the same target file using EPOLLEXCLUSIVE,
one or more of the epoll file descriptors will receive an event with epoll_wait(2).
The default in this scenario (when EPOLLEXCLUSIVE is not set) is for all
epoll file descriptors to receive an event. EPOLLEXCLUSIVE is thus useful
for avoiding thundering herd problems in certain scenarios.

If the same file descriptor is in multiple epoll instances, some with the
EPOLLEXCLUSIVE flag, and others without, then events will be provided to

Linux man-pages 6.16 2025-09-21 168

epoll_ctl(2) System Calls Manual epoll_ctl(2)

all epoll instances that did not specify EPOLLEXCLUSIVE, and at least one of
the epoll instances that did specify EPOLLEXCLUSIVE.

The following values may be specified in conjunction with EPOLLEXCLU-
SIVE: EPOLLIN, EPOLLOUT, EPOLLWAKEUP, and EPOLLET.
EPOLLHUP and EPOLLERR can also be specified, but this is not required: as
usual, these events are always reported if they occur, regardless of whether they
are specified in events. Attempts to specify other values in events yield the error
EINVAL.

EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD operation;
attempts to employ it with EPOLL_CTL_MOD vyield an error. If EPOLLEX-
CLUSIVE has been set using epoll _ctl(), then a subsequent
EPOLL_CTL_MOD on the same epfd, fd pair yields an error. A call to
epoll_ctl() that specifies EPOLLEXCLUSIVE in events and specifies the target
file descriptor fd as an epoll instance will likewise fail. The error in all of these
cases is EINVAL.

RETURN VALUE

When successful, epoll_ctl() returns zero. When an error occurs, epoll_ctl() returns -1
and errno is set to indicate the error.

ERRORS
EBADF
epfd or fd is not a valid file descriptor.

EEXIST
op was EPOLL_CTL_ADD, and the supplied file descriptor fd is already regis-
tered with this epoll instance.

EINVAL
epfd is not an epoll file descriptor, or fd is the same as epfd, or the requested op-
eration op is not supported by this interface.

EINVAL
An invalid event type was specified along with EPOLLEXCLUSIVE in events.

EINVAL
op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE.

EINVAL
op was EPOLL_CTL_MOD and the EPOLLEXCLUSIVE flag has previously
been applied to this epfd, fd pair.

EINVAL
EPOLLEXCLUSIVE was specified in event and fd refers to an epoll instance.

ELOOP
fd refers to an epoll instance and this EPOLL_CTL_ADD operation would re-
sult in a circular loop of epoll instances monitoring one another or a nesting
depth of epoll instances greater than 5.

Linux man-pages 6.16 2025-09-21 169

epoll_ctl(2) System Calls Manual epoll_ctl(2)

ENOENT
op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered
with this epoll instance.

ENOMEM
There was insufficient memory to handle the requested op control operation.

ENOSPC
The limit imposed by /proc/sys/fs/epoll/max_user_watches was encountered
while trying to register (EPOLL_CTL_ADD) a new file descriptor on an epoll
instance. See epoll(7) for further details.

EPERM
The target file fd does not support epoll. This error can occur if fd refers to, for
example, a regular file or a directory.

STANDARDS

Linux.

HISTORY
Linux 2.6, glibc 2.3.2.

NOTES
The epoll interface supports all file descriptors that support poll(2).

BUGS
Before Linux 2.6.9, the EPOLL_CTL_DEL operation required a non-null pointer in
event, even though this argument is ignored. Since Linux 2.6.9, event can be specified
as NULL when using EPOLL_CTL_DEL. Applications that need to be portable to
kernels before Linux 2.6.9 should specify a non-null pointer in event.

If EPOLLWAKEUP is specified in flags, but the caller does not have the
CAP_BLOCK_SUSPEND capability, then the EPOLLWAKEUP flag is silently ig-
nored. This unfortunate behavior is necessary because no validity checks were per-
formed on the flags argument in the original implementation, and the addition of the
EPOLLWAKEUP with a check that caused the call to fail if the caller did not have the
CAP_BLOCK _ SUSPEND capability caused a breakage in at least one existing user-
space application that happened to randomly (and uselessly) specify this bit. A robust
application should therefore double check that it has the CAP_BLOCK_SUSPEND ca-
pability if attempting to use the EPOLLWAKEUP flag.

SEE ALSO
epoll_create(2), epoll_wait(2), ioctl_eventpoll(2), poll(2), epoll(7)

Linux man-pages 6.16 2025-09-21 170

epoll_wait(2) System Calls Manual epoll_wait(2)

NAME

epoll_wait, epoll_pwait, epoll_pwait2 — wait for an 1/0 event on an epoll file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/epoll.h>

int epoll_wait(int n;
int epfd, struct epoll_event events[n], int n,
int timeout);

int epoll_pwait(int n;
int epfd, struct epoll_event events[n], int n,
int timeout,
const sigset_t *_ Nullable sigmask);

int epoll_pwait2(int n;
int epfd, struct epoll_event events[n], int n,
const struct timespec *_Nullable timeout,
const sigset_t * Nullable sigmask);

DESCRIPTION
The epoll_wait() system call waits for events on the epoll(7) instance referred to by the
file descriptor epfd. The buffer pointed to by events is used to return information from
the ready list about file descriptors in the interest list that have some events available.
Up to n are returned by epoll_wait(). The n argument must be greater than zero.

The timeout argument specifies the number of milliseconds that epoll_wait() will block.
Time is measured against the CLOCK_MONOTONIC clock.

A call to epoll_wait() will block until either:

» afile descriptor delivers an event;

» the call is interrupted by a signal handler; or
» the timeout expires.

Note that the timeout interval will be rounded up to the system clock granularity, and
kernel scheduling delays mean that the blocking interval may overrun by a small
amount. Specifying a timeout of —1 causes epoll_wait() to block indefinitely, while
specifying a timeout equal to zero causes epoll_wait() to return immediately, even if no
events are available.

The struct epoll_event is described in epoll_event(3type).

The data field of each returned epoll_event structure contains the same data as was
specified in the most recent call to epoll _ctl(2) (EPOLL_CTL_ADD,
EPOLL_CTL_MOD) for the corresponding open file descriptor.

The events field is a bit mask that indicates the events that have occurred for the corre-
sponding open file description. See epoll_ctl(2) for a list of the bits that may appear in
this mask.

Linux man-pages 6.16 2025-09-21 171

epoll_wait(2) System Calls Manual epoll_wait(2)

epoll_pwait()
The relationship between epoll_wait() and epoll_pwait() is analogous to the relation-
ship between select(2) and pselect(2): like pselect(2), epoll_pwait() allows an applica-
tion to safely wait until either a file descriptor becomes ready or until a signal is caught.

The following epoll_pwait() call:
ready = epoll_pwait(epfd, &events, n, timeout, &sigmask);
is equivalent to atomically executing the following calls:

sigset_t origmask;

pthread_sigmask(S1G_SETMASK, &sigmask, &origmask);
ready = epoll_wait(epfd, &events, n, timeout);
pthread_sigmask(S1G_SETMASK, &origmask, NULL);

The sigmask argument may be specified as NULL, in which case epoll_pwait() is
equivalent to epoll_wait().

epoll_pwait2()
The epoll_pwait2() system call is equivalent to epoll_pwait() except for the timeout ar-
gument. It takes an argument of type timespec to be able to specify nanosecond resolu-
tion timeout. This argument functions the same as in pselect(2) and ppoll(2). If timeout
is NULL, then epoll_pwait2() can block indefinitely.

RETURN VALUE
On success, epoll_wait() returns the number of file descriptors ready for the requested
I/O operation, or zero if no file descriptor became ready during the requested timeout
milliseconds. On failure, epoll_wait() returns —1 and errno is set to indicate the error.

ERRORS
EBADF
epfd is not a valid file descriptor.

EFAULT
The memory area pointed to by events is not accessible with write permissions.

EINTR
The call was interrupted by a signal handler before either (1) any of the re-
quested events occurred or (2) the timeout expired; see signal(7).

EINVAL
epfd is not an epoll file descriptor, or n is less than or equal to zero.

STANDARDS

Linux.

HISTORY
epoll_wait()
Linux 2.6, glibc 2.3.2.

epoll_pwait()
Linux 2.6.19, glibc 2.6.

Linux man-pages 6.16 2025-09-21 172

epoll_wait(2) System Calls Manual epoll_wait(2)

epoll_pwait2()
Linux 5.11.

NOTES
While one thread is blocked in a call to epoll_wait(), it is possible for another thread to
add a file descriptor to the waited-upon epoll instance. If the new file descriptor be-
comes ready, it will cause the epoll_wait() call to unblock.

If more than n file descriptors are ready when epoll_wait() is called, then successive
epoll_wait() calls will round robin through the set of ready file descriptors. This behav-
ior helps avoid starvation scenarios, where a process fails to notice that additional file
descriptors are ready because it focuses on a set of file descriptors that are already
known to be ready.

Note that it is possible to call epoll_wait() on an epoll instance whose interest list is cur-
rently empty (or whose interest list becomes empty because file descriptors are closed or
removed from the interest in another thread). The call will block until some file descrip-
tor is later added to the interest list (in another thread) and that file descriptor becomes
ready.

C library/kernel differences
The raw epoll_pwait() and epoll_pwait2() system calls have a sixth argument, size_t
sigsetsize, which specifies the size in bytes of the sigmask argument. The glibc
epoll_pwait() wrapper function specifies this argument as a fixed value (equal to
sizeof(sigset_t)).

BUGS
Before Linux 2.6.37, a timeout value larger than approximately LONG_MAX / HZ mil-
liseconds is treated as —1 (i.e., infinity). Thus, for example, on a system where
sizeof(long) is 4 and the kernel HZ value is 1000, this means that timeouts greater than
35.79 minutes are treated as infinity.

SEE ALSO
epoll_create(2), epoll_ctl(2), epoll(7)

Linux man-pages 6.16 2025-09-21 173

eventfd(2) System Calls Manual eventfd(2)

NAME

eventfd — create a file descriptor for event notification
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/eventfd.h>

int eventfd(unsigned int initval, int flags);

DESCRIPTION
eventfd() creates an "eventfd object" that can be used as an event wait/notify mechanism
by user-space applications, and by the kernel to notify user-space applications of events.
The object contains an unsigned 64-bit integer (uint64_t) counter that is maintained by
the kernel. This counter is initialized with the value specified in the argument initval.

As its return value, eventfd() returns a new file descriptor that can be used to refer to the
eventfd object.

The following values may be bitwise ORed in flags to change the behavior of eventfd():

EFD_CLOEXEC (since Linux 2.6.27)
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

EFD_NONBLOCK (since Linux 2.6.27)
Set the O_NONBLOCK file status flag on the open file description (see
open(2)) referred to by the new file descriptor. Using this flag saves extra calls
to fcntl(2) to achieve the same result.

EFD_SEMAPHORE (since Linux 2.6.30)
Provide semaphore-like semantics for reads from the new file descriptor. See be-
low.

Up to Linux 2.6.26, the flags argument is unused, and must be specified as zero.
The following operations can be performed on the file descriptor returned by eventfd():

read(2)
Each successful read(2) returns an 8-byte integer. A read(2) fails with the error
EINVAL if the size of the supplied buffer is less than 8 bytes.

The value returned by read(2) is in host byte order—that is, the native byte order
for integers on the host machine.

The semantics of read(2) depend on whether the eventfd counter currently has a
nonzero value and whether the EFD_SEMAPHORE flag was specified when
creating the eventfd file descriptor:

* If EFD_SEMAPHORE was not specified and the eventfd counter has a
nonzero value, then a read(2) returns 8 bytes containing that value, and the
counter’s value is reset to zero.

Linux man-pages 6.16 2025-09-21 174

eventfd(2) System Calls Manual eventfd(2)

» |If EFD_SEMAPHORE was specified and the eventfd counter has a nonzero
value, then a read(2) returns 8 bytes containing the value 1, and the counter’s
value is decremented by 1.

» If the eventfd counter is zero at the time of the call to read(2), then the call
either blocks until the counter becomes nonzero (at which time, the read(2)
proceeds as described above) or fails with the error EAGAIN if the file de-
scriptor has been made nonblocking.

write(2)

A write(2) call adds the 8-byte integer value supplied in its buffer to the counter.

The maximum value that may be stored in the counter is the largest unsigned

64-bit value minus 1 (i.e., Oxfffffffffffffffe). If the addition would cause the

counter’s value to exceed the maximum, then the write(2) either blocks until a

read(2) is performed on the file descriptor, or fails with the error EAGAIN if the

file descriptor has been made nonblocking.

A write(2) fails with the error EINVAL if the size of the supplied buffer is less

than 8 bytes, or if an attempt is made to write the value Oxfffffffffffff.

poll(2)
select(2)
(and similar)

The returned file descriptor supports poll(2) (and analogously epoll(7)) and se-

lect(2), as follows:

» The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if the counter has a value greater than 0.

* The file descriptor is writable (the select(2) writefds argument; the poll(2)
POLLOUT flag) if it is possible to write a value of at least "1" without
blocking.

» If an overflow of the counter value was detected, then select(2) indicates the
file descriptor as being both readable and writable, and poll(2) returns a
POLLERR event. As noted above, write(2) can never overflow the counter.
However an overflow can occur if 2764 eventfd "signal posts" were per-
formed by the KAIO subsystem (theoretically possible, but practically un-
likely). If an overflow has occurred, then read(2) will return that maximum
uint64_t value (i.e., OXfFfFFFfee).

The eventfd file descriptor also supports the other file-descriptor multiplexing

APIs: pselect(2) and ppoll(2).

close(2)

When the file descriptor is no longer required it should be closed. When all file
descriptors associated with the same eventfd object have been closed, the re-
sources for object are freed by the kernel.

A copy of the file descriptor created by eventfd() is inherited by the child produced by
fork(2). The duplicate file descriptor is associated with the same eventfd object. File
descriptors created by eventfd() are preserved across execve(2), unless the close-on-exec
flag has been set.

Linux man-pages 6.16 2025-09-21 175

eventfd(2) System Calls Manual eventfd(2)

RETURN VALUE

On success, eventfd() returns a new eventfd file descriptor. On error, —1 is returned and
errno is set to indicate the error.

ERRORS
EINVAL
An unsupported value was specified in flags.
EMFILE
The per-process limit on the number of open file descriptors has been reached.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENODEV
Could not mount (internal) anonymous inode device.
ENOMEM
There was insufficient memory to create a new eventfd file descriptor.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
eventfd() Thread safety | MT-Safe
VERSIONS

C library/kernel differences
There are two underlying Linux system calls: eventfd() and the more recent eventfd2().
The former system call does not implement a flags argument. The latter system call im-
plements the flags values described above. The glibc wrapper function will use
eventfd2() where it is available.

Additional glibc features

The GNU C library defines an additional type, and two functions that attempt to abstract
some of the details of reading and writing on an eventfd file descriptor:

typedef uint64_t eventfd _t;

int eventfd _read(int fd, eventfd _t *value);
int eventfd write(int fd, eventfd_t value);

The functions perform the read and write operations on an eventfd file descriptor, return-
ing 0 if the correct number of bytes was transferred, or —1 otherwise.

STANDARDS
Linux, GNU.

HISTORY
eventfd()
Linux 2.6.22, glibc 2.8.

eventfd2()

Linux 2.6.27 (see VERSIONS). Since glibc 2.9, the eventfd() wrapper will em-
ploy the eventfd2() system call, if it is supported by the kernel.

Linux man-pages 6.16 2025-09-21 176

eventfd(2) System Calls Manual eventfd(2)

NOTES
Applications can use an eventfd file descriptor instead of a pipe (see pipe(2)) in all cases
where a pipe is used simply to signal events. The kernel overhead of an eventfd file de-
scriptor is much lower than that of a pipe, and only one file descriptor is required (versus
the two required for a pipe).

When used in the kernel, an eventfd file descriptor can provide a bridge from kernel to
user space, allowing, for example, functionalities like KAIO (kernel AlO) to signal to a
file descriptor that some operation is complete.

A key point about an eventfd file descriptor is that it can be monitored just like any other
file descriptor using select(2), poll(2), or epoll(7). This means that an application can si-
multaneously monitor the readiness of "traditional™ files and the readiness of other ker-
nel mechanisms that support the eventfd interface. (Without the eventfd() interface,
these mechanisms could not be multiplexed via select(2), poll(2), or epoll(7).)

The current value of an eventfd counter can be viewed via the entry for the correspond-
ing file descriptor in the process’s /proc/ pid/fdinfo directory. See proc(5) for further de-
tails.

EXAMPLES
The following program creates an eventfd file descriptor and then forks to create a child
process. While the parent briefly sleeps, the child writes each of the integers supplied in
the program’s command-line arguments to the eventfd file descriptor. When the parent
has finished sleeping, it reads from the eventfd file descriptor.

The following shell session shows a sample run of the program:

$ Ja.out 1 2 47 14

Chilld writing 1 to efd

Child writing 2 to efd

Child writing 4 to efd

Child writing 7 to efd

Child writing 14 to efd

Child completed write loop
Parent about to read

Parent read 28 (0Oxl1lc) from efd

Program source

#include <err.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/eventfd.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])

{

Linux man-pages 6.16 2025-09-21 177

eventfd(2)

int

System Calls Manual

efd;

uinté4_t u;
ssize_ t s;

if (argc < 2) {

}

fprintf(stderr, "Usage: %s <num>..._.\n'
ex1t(EXIT_FAILURE);

efd = eventfd(0, 0);
if (efd == -1)

err(EXIT_FAILURE, "eventfd™);

switch (fork(Q)) {
case O:

for (size_t j = 1; jJ < argc; j++) {

printf("'Child writing %s to efd\n", argv[jl):;

u = strtoull(argv|[j], NULL, 0);

/* strtoull() allows various bases */

eventfd(2)

", argv[0]);

s = write(efd, &u, sizeof(uint64_t));

iIT (s '= sizeof(uint64_t))
err(EXIT_FAILURE, "write™);

}

printf("*Child completed write loop\n™);

exit(EXIT_SUCCESS);

default:

sleep(2);

printf("'Parent about to read\n™);

s = read(efd, &u, sizeof(uint64 t));

iIT (s '= sizeof(uint64_t))
err(EXIT_FAILURE, "read™);

printf("'Parent read %"PRIu64"™ (%#'"'PRIx64") from efd\n", u,

exit(EXIT_SUCCESS);

case -1:

}
}

SEE ALSO

err(EXIT_FAILURE, "fork'™);

futex(2), pipe(2), poll(2), read(2), select(2), signalfd(2), timerfd_create(2), write(2),
epoll(7), sem_overview(7)

Linux man-pages 6.16 2025-09-21

178

u)

execve(2) System Calls Manual execve(2)

NAME

execve — execute program

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#include <unistd.h>

int execve(const char *path, char *const _Nullable argv[],
char *const _Nullable envpl]);

DESCRIPTION
execve() executes the program referred to by path. This causes the program that is cur-
rently being run by the calling process to be replaced with a new program, with newly
initialized stack, heap, and (initialized and uninitialized) data segments.

path must be either a binary executable, or a script starting with a line of the form:
#linterpreter [optional-arg]
For details of the latter case, see "Interpreter scripts™ below.

argv is an array of pointers to strings passed to the new program as its command-line ar-
guments. By convention, the first of these strings (i.e., argv[0]) should contain the file-
name associated with the file being executed. The argv array must be terminated by a
null pointer. (Thus, in the new program, argv[argc] will be a null pointer.)

envp is an array of pointers to strings, conventionally of the form key=value, which are
passed as the environment of the new program. The envp array must be terminated by a
null pointer.

This manual page describes the Linux system call in detail, for an overview of the
nomenclature and the many, often preferable, standardised variants of this function pro-
vided by libc, including ones that search the PATH environment variable, see exec(3).

The argument vector and environment can be accessed by the new program’s main func-
tion, when it is defined as:

int main(int argc, char *argv[], char *envp[l)

Note, however, that the use of a third argument to the main function is not specified in
POSIX.1; according to POSIX.1, the environment should be accessed via the external
variable environ(7).

execve() does not return on success, and the text, initialized data, uninitialized data
(bss), and stack of the calling process are overwritten according to the contents of the
newly loaded program.

If the current program is being ptraced, a SIGTRAP signal is sent to it after a successful
execve().

If the set-user-1D bit is set on the program file referred to by path, then the effective user
ID of the calling process is changed to that of the owner of the program file. Similarly,
if the set-group-1D bit is set on the program file, then the effective group ID of the call-
ing process is set to the group of the program file.

Linux man-pages 6.16 2025-10-29 179

execve(2) System Calls Manual execve(2)

The aforementioned transformations of the effective IDs are not performed (i.e., the set-
user-I1D and set-group-ID bits are ignored) if any of the following is true:

» the no_new_privs attribute is set for the calling thread (see prctl(2));

» the underlying filesystem is mounted nosuid (the MS_NOSUID flag for mount(2));
or

» the calling process is being ptraced.

The capabilities of the program file (see capabilities(7)) are also ignored if any of the
above are true.

The effective user ID of the process is copied to the saved set-user-1D; similarly, the ef-
fective group ID is copied to the saved set-group-1D. This copying takes place after any
effective ID changes that occur because of the set-user-I1D and set-group-1D mode bits.

The process’s real UID and real GID, as well as its supplementary group IDs, are un-
changed by a call to execve().

If the executable is an a.out dynamically linked binary executable containing shared-li-
brary stubs, the Linux dynamic linker Id.so(8) is called at the start of execution to bring
needed shared objects into memory and link the executable with them.

If the executable is a dynamically linked ELF executable, the interpreter named in the
PT_INTERP segment is used to load the needed shared objects. This interpreter is typi-
cally /lib/ld—linux.so0.2 for binaries linked with glibc (see Id-linux.so(8)).

Effect on process attributes
All process attributes are preserved during an execve(), except the following:

» The dispositions of any signals that are being caught are reset to the default (sig-
nal(7)).

* Any alternate signal stack is not preserved (sigaltstack(2)).

* Memory mappings are not preserved (mmap(2)).

» Attached System V shared memory segments are detached (shmat(2)).
* POSIX shared memory regions are unmapped (shm_open(3)).

* Open POSIX message queue descriptors are closed (mq_overview(7)).
* Any open POSIX named semaphores are closed (sem_overview(7)).

e POSIX timers are not preserved (timer_create(2)).

» Any open directory streams are closed (opendir(3)).

e Memory locks are not preserved (mlock(2), mlockall(2)).

» Exit handlers are not preserved (atexit(3), on_exit(3)).

* The floating-point environment is reset to the default (see fenv(3)).

The process attributes in the preceding list are all specified in POSIX.1. The following
Linux-specific process attributes are also not preserved during an execve():

Linux man-pages 6.16 2025-10-29 180

execve(2) System Calls Manual execve(2)

The process’s "dumpable™ attribute is set to the value 1, unless a set-user-1D pro-
gram, a set-group-ID program, or a program with capabilities is being executed, in
which case the dumpable flag may instead be reset to the wvalue in
/proc/sys/fs/suid_dumpable, in the circumstances described under
PR_SET _DUMPABLE in prctl(2). Note that changes to the "dumpable™ attribute
may cause ownership of files in the process’s /proc/pid directory to change to
root:root, as described in proc(5).

The prctl(2) PR_SET_KEEPCAPS flag is cleared.

(Since Linux 2.4.36 / 2.6.23) If a set-user-1D or set-group-1D program is being exe-
cuted, then the parent death signal set by prctl(2) PR_SET _PDEATHSIG flag is
cleared.

The process name, as set by prctl(2) PR_SET_NAME (and displayed by ps-o
comm), is reset to the name of the new executable file.

The SECBIT_KEEP_CAPS securebits flag is cleared. See capabilities(7).
The termination signal is reset to SIGCHLD (see clone(2)).

The file descriptor table is unshared, undoing the effect of the CLONE_FILES flag
of clone(2).

Note the following further points:

All threads other than the calling thread are destroyed during an execve(). Mutexes,
condition variables, and other pthreads objects are not preserved.

The equivalent of setlocale(LC_ALL, "C") is executed at program start-up.

POSIX.1 specifies that the dispositions of any signals that are ignored or set to the
default are left unchanged. POSIX.1 specifies one exception: if SIGCHLD is being
ignored, then an implementation may leave the disposition unchanged or reset it to
the default; Linux does the former.

Any outstanding asynchronous 1/O operations are canceled (aio_read(3),
aio_write(3)).

For the handling of capabilities during execve(), see capabilities(7).

By default, file descriptors remain open across an execve(). File descriptors that are
marked close-on-exec are closed; see the description of FD_CLOEXEC in fcntl(2).
(If a file descriptor is closed, this will cause the release of all record locks obtained
on the underlying file by this process. See fcntl(2) for details.) POSIX.1 says that if
file descriptors 0, 1, and 2 would otherwise be closed after a successful execve(), and
the process would gain privilege because the set-user-ID or set-group-ID mode bit
was set on the executed file, then the system may open an unspecified file for each of
these file descriptors. As a general principle, no portable program, whether privi-
leged or not, can assume that these three file descriptors will remain closed across an
execve().

Interpreter scripts
An interpreter script is a text file that has execute permission enabled and whose first
line is of the form:

Linux man-pages 6.16 2025-10-29 181

execve(2) System Calls Manual execve(2)

#linterpreter [optional-arg]
The interpreter must be a valid pathname for an executable file.
interpreter will be invoked with the following arguments:
interpreter [optional-arg] path arg...

where arg... is the series of words pointed to by the argv argument of execve(), starting
at argv[1]. Note that there is no way to get the argv[0] that was passed to the execve()
call.

For portable use, optional-arg should either be absent, or be specified as a single word
(i.e., it should not contain white space); see VERSIONS below.

Since Linux 2.6.28, the kernel permits the interpreter of a script to itself be a script.
This permission is recursive, up to a limit of four recursions, so that the interpreter may
be a script which is interpreted by a script, and so on.

Limits on size of arguments and environment
Most UNIX implementations impose some limit on the total size of the command-line
argument (argv) and environment (envp) strings that may be passed to a new program.
POSIX.1 allows an implementation to advertise this limit using the ARG_MAX con-
stant (either defined in <limits.h> or available at run time using the call
sysconf(_SC_ARG_MAX)).

Before Linux 2.6.23, the memory used to store the environment and argument strings
was limited to 32 pages (defined by the kernel constant MAX_ARG_PAGES). On ar-
chitectures with a 4-kB page size, this yields a maximum size of 128 kB.

On Linux 2.6.23 and later, most architectures support a size limit derived from the soft
RLIMIT_STACK resource limit (see getrlimit(2)) that is in force at the time of the ex-
ecve() call. (Architectures with no memory management unit are excepted: they main-
tain the limit that was in effect before Linux 2.6.23.) This change allows programs to
have a much larger argument and/or environment list. For these architectures, the total
size is limited to 1/4 of the allowed stack size. (Imposing the 1/4-limit ensures that the
new program always has some stack space.) Additionally, the total size is limited to 3/4
of the value of the kernel constant _STK_LIM (8 MiB). Since Linux 2.6.25, the kernel
also places a floor of 32 pages on this size limit, so that, even when RLIMIT_STACK
is set very low, applications are guaranteed to have at least as much argument and envi-
ronment space as was provided by Linux 2.6.22 and earlier. (This guarantee was not
provided in Linux 2.6.23 and 2.6.24.) Additionally, the limit per string is 32 pages (the
kernel constant MAX_ARG_STRLEN), and the maximum number of strings is
OX7FFFFFFF.

RETURN VALUE
On success, execve() does not return, on error —1 is returned, and errno is set to indicate
the error.

ERRORS
E2BIG

The total number of bytes in the environment (envp) and argument list (argv) is

too large, an argument or environment string is too long, or the full path of the

executable is too long. The terminating null byte is counted as part of the string

Linux man-pages 6.16 2025-10-29 182

execve(2) System Calls Manual execve(2)

length.

EACCES
Search permission is denied on a component of the path prefix of path or the
name of a script interpreter. (See also path_resolution(7).)

EACCES
The file or a script interpreter is not a regular file.

EACCES
Execute permission is denied for the file or a script or ELF interpreter.

EACCES
The filesystem is mounted noexec.

EAGAIN (since Linux 3.1)
Having changed its real UID using one of the set*uid() calls, the caller was—
and is now still—above its RLIMIT_NPROC resource limit (see setrlimit(2)).
For a more detailed explanation of this error, see NOTES.

EFAULT
path or one of the pointers in the vectors argv or envp points outside your acces-
sible address space.

EINVAL
An ELF executable had more than one PT_INTERP segment (i.e., tried to name
more than one interpreter).

EIO An /O error occurred.

EISDIR
An ELF interpreter was a directory.

ELIBBAD
An ELF interpreter was not in a recognized format.

ELOOP
Too many symbolic links were encountered in resolving path or the name of a
script or ELF interpreter.

ELOOP
The maximum recursion limit was reached during recursive script interpretation
(see "Interpreter scripts”, above). Before Linux 3.8, the error produced for this
case was ENOEXEC.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
path is too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
path or a script or ELF interpreter does not exist.

Linux man-pages 6.16 2025-10-29 183

execve(2) System Calls Manual execve(2)

ENOEXEC
An executable is not in a recognized format, is for the wrong architecture, or has
some other format error that means it cannot be executed.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix of path or a script or ELF interpreter is not a di-
rectory.

EPERM
The filesystem is mounted nosuid, the user is not the superuser, and the file has
the set-user-1D or set-group-1D bit set.

EPERM
The process is being traced, the user is not the superuser and the file has the set-
user-1D or set-group-ID bit set.

EPERM
A "capability-dumb™ applications would not obtain the full set of permitted capa-
bilities granted by the executable file. See capabilities(7).

ETXTBSY
The specified executable was open for writing by one or more processes.

VERSIONS
POSIX does not document the #! behavior, but it exists (with some variations) on other
UNIX systems.

On Linux, argv and envp can be specified as NULL. In both cases, this has the same ef-
fect as specifying the argument as a pointer to a list containing a single null pointer. Do
not take advantage of this nonstandard and nonportable misfeature! On many
other UNIX systems, specifying argv as NULL will result in an error (EFAULT). Some
other UNIX systems treat the envp==NULL case the same as Linux.

POSIX.1 says that values returned by sysconf(3) should be invariant over the lifetime of
a process. However, since Linux 2.6.23, if the RLIMIT_STACK resource limit
changes, then the value reported by _SC_ARG_MAX will also change, to reflect the
fact that the limit on space for holding command-line arguments and environment vari-
ables has changed.

Interpreter scripts
The kernel imposes a maximum length on the text that follows the "#!" characters at the
start of a script; characters beyond the limit are ignored. Before Linux 5.1, the limit is
127 characters. Since Linux 5.1, the limit is 255 characters.

The semantics of the optional-arg argument of an interpreter script vary across imple-
mentations. On Linux, the entire string following the interpreter name is passed as a
single argument to the interpreter, and this string can include white space. However, be-
havior differs on some other systems. Some systems use the first white space to termi-
nate optional-arg. On some systems, an interpreter script can have multiple arguments,
and white spaces in optional-arg are used to delimit the arguments.

Linux man-pages 6.16 2025-10-29 184

execve(2) System Calls Manual execve(2)

Linux (like most other modern UNIX systems) ignores the set-user-1D and set-group-1D
bits on scripts.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

With UNIX V6, the argument list of an exec() call was ended by 0, while the argument
list of main was ended by —1. Thus, this argument list was not directly usable in a fur-
ther exec() call. Since UNIX V7, both are NULL.

NOTES
One sometimes sees execve() (and the related functions described in exec(3)) described
as "executing a new process™ (or similar). This is a highly misleading description: there
IS N0 new process; many attributes of the calling process remain unchanged (in particu-
lar, its PID). All that execve() does is arrange for an existing process (the calling
process) to execute a new program.

Set-user-1D and set-group-1D processes can not be ptrace(2)d.

The result of mounting a filesystem nosuid varies across Linux kernel versions: some
will refuse execution of set-user-1D and set-group-1D executables when this would give
the user powers they did not have already (and return EPERM), some will just ignore
the set-user-1D and set-group-ID bits and exec() successfully.

In most cases where execve() fails, control returns to the original executable image, and
the caller of execve() can then handle the error. However, in (rare) cases (typically
caused by resource exhaustion), failure may occur past the point of no return: the origi-
nal executable image has been torn down, but the new image could not be completely
built. In such cases, the kernel kills the process with a SIGSEGV (SIGKILL until
Linux 3.17) signal.

execve() and EAGAIN
A more detailed explanation of the EAGAIN error that can occur (since Linux 3.1)
when calling execve() is as follows.

The EAGAIN error can occur when a preceding call to setuid(2), setreuid(2), or setre-
suid(2) caused the real user ID of the process to change, and that change caused the
process to exceed its RLIMIT_NPROC resource limit (i.e., the number of processes
belonging to the new real UID exceeds the resource limit). From Linux 2.6.0 to Linux
3.0, this caused the set*uid() call to fail. (Before Linux 2.6, the resource limit was not
imposed on processes that changed their user IDs.)

Since Linux 3.1, the scenario just described no longer causes the set*uid() call to fail,
because it too often led to security holes where buggy applications didn’t check the re-
turn status and assumed that—if the caller had root privileges—the call would always
succeed. Instead, the set*uid() calls now successfully change the real UID, but the ker-
nel sets an internal flag, named PF_NPROC _EXCEEDED, to note that the
RLIMIT_NPROC resource limit has been exceeded. If the PF_NPROC_EX-
CEEDED flag is set and the resource limit is still exceeded at the time of a subsequent
execve() call, that call fails with the error EAGAIN. This kernel logic ensures that the

Linux man-pages 6.16 2025-10-29 185

execve(2) System Calls Manual execve(2)

RLIMIT_NPROC resource limit is still enforced for the common privileged daemon
workflow—namely, fork(2) + set*uid() + execve().

If the resource limit was not still exceeded at the time of the execve() call (because other
processes belonging to this real UID terminated between the set*uid() call and the ex-
ecve() call), then the execve() call succeeds and the kernel clears the PF_NPROC_EX-
CEEDED process flag. The flag is also cleared if a subsequent call to fork(2) by this
process succeeds.

EXAMPLES
The following program is designed to be execed by the second program below. It just
echoes its command-line arguments, one per line.

/* myecho.c */

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
for (size_t j = 0; j < argc; j++)
printf('argv[%zu]: %s\n", j, argv[j]);
ex1t(EXIT_SUCCESS);
+

This program can be used to exec the program named in its command-line argument:

/* execve.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
static char *newargv[] = { NULL, "hello™, "world™, NULL };

static char *newenviron[] = { NULL };

if (argc 1= 2) {
fprintf(stderr, "Usage: %s <file-to-exec>\n", argv[0]);
exit(EXIT_FAILURE);

+

newargv[0] = argv[1]:;

execve(argv|[1l], newargv, newenviron);
perror(‘'execve'™); /* execve() returns only on error */

Linux man-pages 6.16 2025-10-29 186

execve(2) System Calls Manual execve(2)

exit(EXIT_FAILURE);
}

We can use the second program to exec the first as follows:

$ cc myecho.c -o myecho
$ cc execve.c -0 execve
$./execve ./myecho
argv[0]: ./myecho
argv[1]: hello

argv[2]: world

We can also use these programs to demonstrate the use of a script interpreter. To do this
we create a script whose "interpreter" is our myecho program:

$ cat > script
#1_/myecho script-arg
D

$ chmod +x script

We can then use our program to exec the script:

$./execve ./script
argv[0]: ./myecho

argv[1l]: script-arg
argv[2]: ./script

argv[3]: hello

argv[4]: world

SEE ALSO
chmod(2), execveat(2), fork(2), get_robust_list(2), ptrace(2), exec(3), fexecve(3), getaux-

val(3), getopt(3), system(3), capabilities(7), credentials(7), environ(7), path_resolu-
tion(7), 1d.so(8)

Linux man-pages 6.16 2025-10-29 187

execveat(2) System Calls Manual execveat(2)

NAME

execveat — execute program relative to a directory file descriptor

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <linux/fcntl.n> /* Definition of AT _* constants */
#include <unistd.h>

int execveat(int dirfd, const char * path,
char *const _Nullable argv(],
char *const _Nullable envp([],
int flags);

DESCRIPTION

The execveat() system call executes the program referred to by the combination of dirfd
and path. It operates in exactly the same way as execve(2), except for the differences
described in this manual page.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by execve(2) for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like execve(2)).

If path is absolute, then dirfd is ignored.

If path is an empty string and the AT_EMPTY _PATH flag is specified, then the file de-
scriptor dirfd specifies the file to be executed (i.e., dirfd refers to an executable file,
rather than a directory).

The flags argument is a bit mask that can include zero or more of the following flags:

AT_EMPTY_PATH
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag).

AT _SYMLINK_NOFOLLOW
If the file identified by dirfd and a non-NULL path is a symbolic link, then the
call fails with the error ELOOP.

RETURN VALUE

On success, execveat() does not return. On error, —1 is returned, and errno is set to in-
dicate the error.

ERRORS

The same errors that occur for execve(2) can also occur for execveat(). The following
additional errors can occur for execveat():

path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EINVAL
Invalid flag specified in flags.

Linux man-pages 6.16 2025-05-17 188

execveat(2) System Calls Manual execveat(2)

ELOOP
flags includes AT_SYMLINK_ NOFOLLOW and the file identified by dirfd
and a non-NULL path is a symbolic link.

ENOENT
The program identified by dirfd and path requires the use of an interpreter pro-
gram (such as a script starting with "#!"), but the file descriptor dirfd was opened
with the O_CLOEXEC flag, with the result that the program file is inaccessible
to the launched interpreter. See BUGS.

ENOTDIR
path is relative and dirfd is a file descriptor referring to a file other than a direc-
tory.

STANDARDS
Linux.

HISTORY
Linux 3.19, glibc 2.34.

NOTES
In addition to the reasons explained in openat(2), the execveat() system call is also
needed to allow fexecve(3) to be implemented on systems that do not have the /proc
filesystem mounted.

When asked to execute a script file, the argv[0] that is passed to the script interpreter is
a string of the form /dev/fd/N or /dev/fd/N/P, where N is the number of the file descrip-
tor passed via the dirfd argument. A string of the first form occurs when
AT_EMPTY_PATH is employed. A string of the second form occurs when the script
is specified via both dirfd and path; in this case, P is the value given in path.

For the same reasons described in fexecve(3), the natural idiom when using execveat() is
to set the close-on-exec flag on dirfd. (But see BUGS.)

BUGS
The ENOENT error described above means that it is not possible to set the close-on-
exec flag on the file descriptor given to a call of the form:

execveat(fd, "', argv, envp, AT_EMPTY_PATH);

However, the inability to set the close-on-exec flag means that a file descriptor referring
to the script leaks through to the script itself. As well as wasting a file descriptor, this
leakage can lead to file-descriptor exhaustion in scenarios where scripts recursively em-
ploy execveat().

SEE ALSO
execve(2), openat(2), fexecve(3)

Linux man-pages 6.16 2025-05-17 189

_exit(2) System Calls Manual _exit(2)

NAME

_exit, _Exit — terminate the calling process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
[[noreturn]] void _exit(int status);
#include <stdlib.h>
[[noreturn]] void _Exit(int status);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

_Exit():
_ISOC99_SOURCE || _POSIX_C_SOURCE >=200112L

DESCRIPTION
_exit() terminates the calling process "immediately”. Any open file descriptors belong-
ing to the process are closed. Any children of the process are inherited by init(1) (or by
the nearest "subreaper” process as defined through the use of the prctl(2)
PR_SET_CHILD _SUBREAPER operation). The process’s parent is sent a
SIGCHLD signal.

The value status & OxFF is returned to the parent process as the process’s exit status,
and can be collected by the parent using one of the wait(2) family of calls.

The function _Exit() is equivalent to _exit().

RETURN VALUE
These functions do not return.

STANDARDS
_exit()
POSIX.1-2024.

_Exit()
C11, POSIX.1-2024.

HISTORY
_exit()
POSIX.1-2001, SVr4, 4.3BSD.

_Exit()
C99, POSIX.1-2001.

NOTES

For a discussion on the effects of an exit, the transmission of exit status, zombie
processes, signals sent, and so on, see exit(3).

The function _exit() is like exit(3), but does not call any functions registered with
atexit(3) or on_exit(3). Open stdio(3) streams are not flushed. On the other hand,
_exit() does close open file descriptors, and this may cause an unknown delay, waiting
for pending output to finish. If the delay is undesired, it may be useful to call functions

Linux man-pages 6.16 2025-10-29 190

_exit(2) System Calls Manual _exit(2)

like tcflush(3) before calling _exit(). Whether any pending 1/O is canceled, and which
pending I/0O may be canceled upon _exit(), is implementation-dependent.

C library/kernel differences
The text above in DESCRIPTION describes the traditional effect of _exit(), which is to
terminate a process, and these are the semantics specified by POSIX.1 and implemented
by the C library wrapper function. On modern systems, this means termination of all
threads in the process.

By contrast with the C library wrapper function, the raw Linux _exit() system call termi-
nates only the calling thread, and actions such as reparenting child processes or sending
SIGCHLD to the parent process are performed only if this is the last thread in the
thread group.

Up to glibc 2.3, the _exit() wrapper function invoked the kernel system call of the same
name. Since glibc 2.3, the wrapper function invokes exit_group(2), in order to terminate
all of the threads in a process.

SEE ALSO
execve(2), exit_group(2), fork(2), kill(2), wait(2), wait4(2), waitpid(2), atexit(3), exit(3),
on_exit(3), termios(3)

Linux man-pages 6.16 2025-10-29 191

exit_group(2) System Calls Manual exit_group(2)

NAME

exit_group - exit all threads in a process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[noreturn]] void syscall(SYS_exit_group, int status);

Note: glibc provides no wrapper for exit_group(), necessitating the use of syscall(2).

DESCRIPTION
This system call terminates all threads in the calling process’s thread group.

RETURN VALUE
This system call does not return.

STANDARDS
Linux.

HISTORY
Linux 2.5.35.

NOTES

Since glibc 2.3, this is the system call invoked when the _exit(2) wrapper function is
called.

SEE ALSO
_exit(2)

Linux man-pages 6.16 2025-05-17 192

fallocate(2) System Calls Manual fallocate(2)

NAME
fallocate — manipulate file space
LIBRARY
Standard C library (libc, —Ic)
SYNOPSIS
#define _GNU_SOURCE [* See feature_test_macros(7) */

#include <fcntl.h>

int fallocate(int fd, int mode, off_t offset, off _t size);

DESCRIPTION
This is a nonportable, Linux-specific system call. For the portable, POSIX.1-specified
method of ensuring that space is allocated for a file, see posix_fallocate(3).

fallocate() allows the caller to directly manipulate the allocated disk space for the file
referred to by fd for the byte range starting at offset and continuing for size bytes.

The mode argument determines the operation to be performed on the given range. De-
tails of the supported operations are given in the subsections below.

Allocating disk space
The default operation (i.e., mode is zero) of fallocate() allocates the disk space within
the range specified by offset and size. The file size (as reported by stat(2)) will be
changed if offset+size is greater than the file size. Any subregion within the range spec-
ified by offset and size that did not contain data before the call will be initialized to zero.
This default behavior closely resembles the behavior of the posix_fallocate(3) library
function, and is intended as a method of optimally implementing that function.

After a successful call, subsequent writes into the range specified by offset and size are
guaranteed not to fail because of lack of disk space.

If the FALLOC_FL_KEEP_SIZE flag is specified in mode, the behavior of the call is
similar, but the file size will not be changed even if offset+size is greater than the file
size. Preallocating zeroed blocks beyond the end of the file in this manner is useful for
optimizing append workloads.

If the FALLOC_FL_UNSHARE_RANGE flag is specified in mode, shared file data
extents will be made private to the file to guarantee that a subsequent write will not fail
due to lack of space. Typically, this will be done by performing a copy-on-write opera-
tion on all shared data in the file. This flag may not be supported by all filesystems.

Because allocation is done in block size chunks, fallocate() may allocate a larger range
of disk space than was specified.

Deallocating file space
Specifying the FALLOC_FL_PUNCH_HOLE flag (available since Linux 2.6.38) in
mode deallocates space (i.e., creates a hole) in the byte range starting at offset and con-
tinuing for size bytes. Within the specified range, partial filesystem blocks are zeroed,
and whole filesystem blocks are removed from the file. After a successful call, subse-
quent reads from this range will return zeros.

The FALLOC_FL_PUNCH_HOLE flag must be ORed with FAL-
LOC_FL_KEEP_SIZE in mode; in other words, even when punching off the end of

Linux man-pages 6.16 2025-09-21 193

fallocate(2) System Calls Manual fallocate(2)

the file, the file size (as reported by stat(2)) does not change.

Not all filesystems support FALLOC_FL_PUNCH_HOLE; if a filesystem doesn’t
support the operation, an error is returned. The operation is supported on at least the
following filesystems:

e XFS (since Linux 2.6.38)
» ext4 (since Linux 3.0)
» Btrfs (since Linux 3.7)
o tmpfs(5) (since Linux 3.5)
» gfs2(5) (since Linux 4.16)

Collapsing file space
Specifying the FALLOC_FL_COLLAPSE_RANGE flag (available since Linux 3.15)
in mode removes a byte range from a file, without leaving a hole. The byte range to be
collapsed starts at offset and continues for size bytes. At the completion of the opera-
tion, the contents of the file starting at the location offset+size will be appended at the
location offset, and the file will be size bytes smaller.

A filesystem may place limitations on the granularity of the operation, in order to ensure
efficient implementation. Typically, offset and size must be a multiple of the filesystem
logical block size, which varies according to the filesystem type and configuration. If a
filesystem has such a requirement, fallocate() fails with the error EINVAL if this re-
quirement is violated.

If the region specified by offset plus size reaches or passes the end of file, an error is re-
turned; instead, use ftruncate(2) to truncate a file.

No other flags may be specified in mode in conjunction with FALLOC FL_COL-
LAPSE_RANGE.

As at Linux 3.15, FALLOC_FL_COLLAPSE_RANGE is supported by ext4 (only for
extent-based files) and XFS.

Zeroing file space
Specifying the FALLOC_FL_ZERO_RANGE flag (available since Linux 3.15) in
mode zeros space in the byte range starting at offset and continuing for size bytes.
Within the specified range, blocks are preallocated for the regions that span the holes in
the file. After a successful call, subsequent reads from this range will return zeros.

Zeroing is done within the filesystem preferably by converting the range into unwritten
extents. This approach means that the specified range will not be physically zeroed out
on the device (except for partial blocks at the either end of the range), and 1/O is (other-
wise) required only to update metadata.

If the FALLOC_FL_KEEP_SIZE flag is additionally specified in mode, the behavior
of the call is similar, but the file size will not be changed even if offset+size is greater
than the file size. This behavior is the same as when preallocating space with FAL-
LOC_FL_KEEP_SIZE specified.

Not all filesystems support FALLOC_FL_ZERO_ RANGE; if a filesystem doesn’t sup-
port the operation, an error is returned. The operation is supported on at least the

Linux man-pages 6.16 2025-09-21 194

fallocate(2) System Calls Manual fallocate(2)

following filesystems:

* XFS (since Linux 3.15)

e ext4, for extent-based files (since Linux 3.15)
e SMB3 (since Linux 3.17)

» Birfs (since Linux 4.16)

Increasing file space
Specifying the FALLOC_FL_INSERT_RANGE flag (available since Linux 4.1) in
mode increases the file space by inserting a hole within the file size without overwriting
any existing data. The hole will start at offset and continue for size bytes. When insert-
ing the hole inside file, the contents of the file starting at offset will be shifted upward
(i.e., to a higher file offset) by size bytes. Inserting a hole inside a file increases the file
size by size bytes.

This mode has the same limitations as FALLOC_FL_COLLAPSE_RANGE regarding
the granularity of the operation. If the granularity requirements are not met, fallocate()
fails with the error EINVAL. If the offset is equal to or greater than the end of file, an
error is returned. For such operations (i.e., inserting a hole at the end of file), ftrun-
cate(2) should be used.

No other flags may be specified in mode in conjunction with FALLOC_FL_IN-
SERT_RANGE.

FALLOC_FL_INSERT_RANGE requires filesystem support. Filesystems that sup-
port this operation include XFS (since Linux 4.1) and ext4 (since Linux 4.2).

RETURN VALUE

On success, fallocate() returns zero. On error, —1 is returned and errno is set to indicate
the error.

ERRORS
EBADF
fd is not a valid file descriptor, or is not opened for writing.

EFBIG
offset+size exceeds the maximum file size.

EFBIG
mode is FALLOC FL_INSERT_RANGE, and the current file size+len ex-
ceeds the maximum file size.

EINTR
A signal was caught during execution; see signal(7).

EINVAL
offset was less than 0, or size was less than or equal to 0.

EINVAL
mode is FALLOC _FL_COLLAPSE_RANGE and the range specified by offset
plus size reaches or passes the end of the file.

Linux man-pages 6.16 2025-09-21 195

fallocate(2) System Calls Manual fallocate(2)

EINVAL
mode is FALLOC_FL_INSERT_RANGE and the range specified by offset
reaches or passes the end of the file.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE, but either offset or size is not a multiple of the filesystem block
size.

EINVAL
mode contains one of FALLOC FL COLLAPSE RANGE or FAL-
LOC_FL_INSERT_RANGE and also other flags; no other flags are permitted
with FALLOC _FL_COLLAPSE_RANGE or FALLOC FL_IN-

SERT_RANGE.
EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE, FAL-

LOC_FL_ZERO_RANGE, or FALLOC_FL_INSERT_RANGE, but the file
referred to by fd is not a regular file.

EIO An 1/O error occurred while reading from or writing to a filesystem.

ENODEV
fd does not refer to a regular file or a directory. (If fd is a pipe or FIFO, a dif-
ferent error results.)

ENOSPC
There is not enough space left on the device containing the file referred to by fd.

ENOSYS
This kernel does not implement fallocate().

EOPNOTSUPP
The filesystem containing the file referred to by fd does not support this opera-
tion; or the mode is not supported by the filesystem containing the file referred to
by fd.

EPERM
The file referred to by fd is marked immutable (see chattr(1)).

EPERM
mode specifies FALLOC_FL_PUNCH_HOLE, FALLOC_FL_COL-
LAPSE_RANGE, or FALLOC_FL_INSERT_RANGE and the file referred to
by fd is marked append-only (see chattr(1)).

EPERM
The operation was prevented by a file seal; see fcntl(2).

ESPIPE
fd refers to a pipe or FIFO.

ETXTBSY
mode specifiess FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE, but the file referred to by fd is currently being executed.

Linux man-pages 6.16 2025-09-21 196

fallocate(2) System Calls Manual fallocate(2)

STANDARDS

Linux.

HISTORY
fallocate()
Linux 2.6.23, glibc 2.10.

FALLOC FL_*
glibc 2.18.

SEE ALSO
fallocate(1), ftruncate(2), posix_fadvise(3), posix_fallocate(3)

Linux man-pages 6.16 2025-09-21 197

fanotify_init(2) System Calls Manual fanotify_init(2)

NAME

fanotify_init — create and initialize fanotify group
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <fcntl.h> [* Definition of O_* constants */

#include <sys/fanotify.h>
int fanotify_init(unsigned int flags, unsigned int event_f flags);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_init() initializes a new fanotify group and returns a file descriptor for the event
queue associated with the group.

The file descriptor is used in calls to fanotify_mark(2) to specify the files, directories,
mounts, or filesystems for which fanotify events shall be created. These events are re-
ceived by reading from the file descriptor. Some events are only informative, indicating
that a file has been accessed. Other events can be used to determine whether another ap-
plication is permitted to access a file or directory. Permission to access filesystem ob-
jects is granted by writing to the file descriptor.

Multiple programs may be using the fanotify interface at the same time to monitor the
same files.

The number of fanotify groups per user is limited. See fanotify(7) for details about this
limit.

The flags argument contains a multi-bit field defining the notification class of the listen-
ing application and further single bit fields specifying the behavior of the file descriptor.

If multiple listeners for permission events exist, the notification class is used to establish
the sequence in which the listeners receive the events.

Only one of the following notification classes may be specified in flags:

FAN_CLASS PRE_CONTENT
This value allows the receipt of events notifying that a file has been accessed and
events for permission decisions if a file may be accessed. It is intended for event
listeners that may need to write data to files before their final data can be ac-
cessed. This notification class might be used by hierarchical storage managers,
for example. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_CLASS_CONTENT
This value allows the receipt of events notifying that a file has been accessed and
events for permission decisions if a file may be accessed. It is intended for event
listeners that need to access files when they already contain their final content.
This notification class might be used by malware detection programs, for exam-
ple. Use of this flag requires the CAP_SYS_ADMIN capability.

Linux man-pages 6.16 2025-05-17 198

fanotify_init(2) System Calls Manual fanotify_init(2)

FAN_CLASS _NOTIF
This is the default value. It does not need to be specified. This value only allows
the receipt of events notifying that a file has been accessed. Permission deci-
sions before the file is accessed are not possible.

Listeners with different notification classes will receive events in the order
FAN_CLASS PRE_CONTENT, FAN_CLASS CONTENT, FAN_CLASS_NOTIF.
The order of notification for listeners in the same notification class is undefined.

The following bits can additionally be set in flags:

FAN_CLOEXEC
Set the close-on-exec flag (FD_CLOEXEC) on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2).

FAN_NONBLOCK
Enable the nonblocking flag (O_NONBLOCK) for the file descriptor. Reading
from the file descriptor will not block. Instead, if no data is available, read(2)
fails with the error EAGAIN.

FAN_UNLIMITED_QUEUE
Remove the limit on the number of events in the event queue. See fanotify(7) for
details about this limit. Use of this flag requires the CAP_SYS_ ADMIN capa-
bility.

FAN_UNLIMITED_MARKS
Remove the limit on the number of fanotify marks per user. See fanotify(7) for
details about this limit. Use of this flag requires the CAP_SYS_ ADMIN capa-
bility.

FAN_REPORT _TID (since Linux 4.20)
Report thread ID (TID) instead of process ID (PID) in the pid field of the struct
fanotify_event_metadata supplied to read(2) (see fanotify(7)). Use of this flag
requires the CAP_SYS_ADMIN capability.

FAN_ENABLE_AUDIT (since Linux 4.15)
Enable generation of audit log records about access mediation performed by per-
mission events. The permission event response has to be marked with the
FAN_AUDIT flag for an audit log record to be generated. Use of this flag re-
quires the CAP_AUDIT_WRITE capability.

FAN_REPORT _FID (since Linux 5.1)
This value allows the receipt of events which contain additional information
about the underlying filesystem object correlated to an event. An additional
record of type FAN_EVENT _INFO_TYPE_FID encapsulates the information
about the object and is included alongside the generic event metadata structure.
The file descriptor that is used to represent the object correlated to an event is in-
stead substituted with a file handle. It is intended for applications that may find
the use of a file handle to identify an object more suitable than a file descriptor.
Additionally, it may be used for applications monitoring a directory or a filesys-
tem that are interested in the directory entry modification events FAN_CRE-
ATE, FAN_DELETE, FAN_MOVE, and FAN_RENAME, or in events such as

Linux man-pages 6.16 2025-05-17 199

fanotify_init(2) System Calls Manual fanotify_init(2)

FAN_ATTRIB, FAN_DELETE_SELF, and FAN_MOVE_SELF. All the
events above require an fanotify group that identifies filesystem objects by file
handles. Note that without the flag FAN_REPORT_TARGET _FID, for the di-
rectory entry modification events, there is an information record that identifies
the modified directory and not the created/deleted/moved child object. The use
of FAN_CLASS_CONTENT or FAN_CLASS_PRE_CONTENT is not per-
mitted with this flag and will result in the error EINVAL. See fanotify(7) for ad-
ditional details.

FAN_REPORT_DIR_FID (since Linux 5.9)

Events for fanotify groups initialized with this flag will contain (see exceptions
below) additional information about a directory object correlated to an event. An
additional record of type FAN_EVENT _INFO_TYPE_DFID encapsulates the
information about the directory object and is included alongside the generic
event metadata structure. For events that occur on a non-directory object, the ad-
ditional structure includes a file handle that identifies the parent directory filesys-
tem object. Note that there is no guarantee that the directory filesystem object
will be found at the location described by the file handle information at the time
the event is received. When combined with the flag FAN_REPORT_FID, two
records may be reported with events that occur on a non-directory object, one to
identify the non-directory object itself and one to identify the parent directory
object. Note that in some cases, a filesystem object does not have a parent, for
example, when an event occurs on an unlinked but open file. In that case, with
the FAN_REPORT _FID flag, the event will be reported with only one record to
identify the non-directory object itself, because there is no directory associated
with the event. Without the FAN_REPORT_FID flag, no event will be re-
ported. See fanotify(7) for additional details.

FAN_REPORT_NAME (since Linux 5.9)
Events for fanotify groups initialized with this flag will contain additional infor-
mation about the name of the directory entry correlated to an event. This flag
must be provided in conjunction with the flag FAN_REPORT_DIR_FID. Pro-
viding this flag value without FAN_REPORT_DIR_FID will result in the error
EINVAL. This flag may be combined with the flag FAN_REPORT_FID. An
additional record of type FAN_EVENT _INFO_TYPE_DFID_NAME, which
encapsulates the information about the directory entry, is included alongside the
generic event metadata structure and substitutes the additional information
record of type FAN_EVENT _INFO_TYPE_DFID. The additional record in-
cludes a file handle that identifies a directory filesystem object followed by a
name that identifies an entry in that directory. For the directory entry modifica-
tion events FAN_CREATE, FAN_DELETE, and FAN_MOVE, the reported
name is that of the created/deleted/moved directory entry. The event FAN_RE-
NAME may contain two information records. One of type
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME identifying the old direc-
tory entry, and another of type
FAN_EVENT_INFO_TYPE_NEW_DFID_NAME identifying the new direc-
tory entry. For other events that occur on a directory object, the reported file
handle is that of the directory object itself and the reported name is °.”. For other

Linux man-pages 6.16 2025-05-17 200

fanotify_init(2) System Calls Manual fanotify_init(2)

events that occur on a non-directory object, the reported file handle is that of the
parent directory object and the reported name is the name of a directory entry
where the object was located at the time of the event. The rationale behind this
logic is that the reported directory file handle can be passed to open_by han-
dle_at(2) to get an open directory file descriptor and that file descriptor along
with the reported name can be used to call fstatat(2). The same rule that applies
to record type FAN_EVENT _INFO_TYPE_DFID also applies to record type
FAN_EVENT_INFO_TYPE_DFID_NAME: if a non-directory object has no
parent, either the event will not be reported or it will be reported without the di-
rectory entry information. Note that there is no guarantee that the filesystem ob-
ject will be found at the location described by the directory entry information at
the time the event is received. See fanotify(7) for additional details.

FAN_REPORT DFID_NAME
This is a synonym for (FAN_REPORT DIR_FID|FAN_REPORT_NAME).

FAN_REPORT_TARGET_FID (since Linux 5.17, 5.15.154, and 5.10.220)

Events for fanotify groups initialized with this flag will contain additional infor-
mation about the child correlated with directory entry modification events. This
flag must be provided in conjunction with the flags FAN_REPORT _FID,
FAN_REPORT_DIR_FID and FAN_REPORT_NAME. or else the error
EINVAL will be returned. For the directory entry modification events
FAN_CREATE, FAN_DELETE, FAN_MOVE, and FAN_RENAME, an addi-
tional record of type FAN_EVENT INFO_TYPE_FID, is reported in addition
to the information records of type FAN_EVENT_INFO_TYPE_DFID,
FAN_EVENT_INFO_TYPE_DFID_NAME,
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME, and
FAN_EVENT_INFO_TYPE_NEW_DFID_NAME. The additional record in-
cludes a file handle that identifies the filesystem child object that the directory
entry is referring to.

FAN_REPORT DFID_NAME_TARGET
This is a synonym for (FAN_REPORT DFID NAME|FAN_RE-
PORT_FID|FAN_REPORT TARGET FID).

FAN_REPORT_MNT (since Linux 6.14)

This value allows the receipt of events which contain additional information
about the underlying mount correlated to an event. An additional record of type
FAN_EVENT_INFO_TYPE_MNT encapsulates the information about the
mount and is included alongside the generic event metadata structure. The use
of FAN_CLASS_CONTENT, FAN_CLASS_PRE_CONTENT, or any of the
FAN_REPORT_DFID_NAME_TARGET flags along with this flag is not per-
mitted and will result in the error EINVAL. See fanotify(7) for additional de-
tails.

FAN_REPORT _PIDFD (since Linux 5.15 and 5.10.220)
Events for fanotify groups initialized with this flag will contain an additional in-
formation record alongside the generic fanotify_event_metadata structure. This
information record will be of type FAN_EVENT _INFO_TYPE_PIDFD and
will contain a pidfd for the process that was responsible for generating an event.

Linux man-pages 6.16 2025-05-17 201

fanotify_init(2) System Calls Manual fanotify_init(2)

A pidfd returned in this information record object is no different to the pidfd that
is returned when calling pidfd_open(2). Usage of this information record are for
applications that may be interested in reliably determining whether the process
responsible for generating an event has been recycled or terminated. The use of
the FAN_REPORT _TID flag along with FAN_REPORT _PIDFD is currently
not supported and attempting to do so will result in the error EINVAL being re-
turned. This limitation is currently imposed by the pidfd API as it currently only
supports the creation of pidfds for thread-group leaders. Creating pidfds for non-
thread-group leaders may be supported at some point in the future, so this re-
striction may eventually be lifted. For more details on information records, see
fanotify(7).

FAN_REPORT_FD_ERROR (since Linux 6.13 and 6.12.4 and 6.6.66)

Events for fanotify groups initialized with this flag may contain an error code
that explains the reason for failure to open a file descriptor. The .fd member of
the fanotify_event _metadata structure normally contains an open file descriptor
associated with the object of the event or FAN_NOFD in case a file descriptor
could not be opened. For a group initialized with this flag, instead of
FAN_NOFD, the .fd member of the fanotify_event_metadata structure will con-
tain a negative error value. When the group is also initialized with flag
FAN_REPORT_PIDFD, in case a process file descriptor could not be opened,
the .pidfd member of the fanotify_event_info_pidfd structure will also contain a
negative error value. For more details, see fanotify(7).

The event_f_flags argument defines the file status flags that will be set on the open file
descriptions that are created for fanotify events. For details of these flags, see the de-
scription of the flags values in open(2). event f flags includes a multi-bit field for the
access mode. This field can take the following values:

O_RDONLY
This value allows only read access.

O_WRONLY
This value allows only write access.

O_RDWR
This value allows read and write access.

Additional bits can be set in event_f_flags. The most useful values are:

O_LARGEFILE
Enable support for files exceeding 2 GB. Failing to set this flag will result in an
EOVERFLOW error when trying to open a large file which is monitored by an
fanotify group on a 32-bit system.

O_CLOEXEC (since Linux 3.18)
Enable the close-on-exec flag for the file descriptor. See the description of the
O_CLOEXEC flag in open(2) for reasons why this may be useful.

The following are also allowable: O_APPEND, O_DSYNC, O_NOATIME, O_NON-
BLOCK, and O_SYNC. Specifying any other flag in event_f flags yields the error
EINVAL (but see BUGS).

Linux man-pages 6.16 2025-05-17 202

fanotify_init(2) System Calls Manual fanotify_init(2)

RETURN VALUE
On success, fanotify_init() returns a new file descriptor. On error, —1 is returned, and
errno is set to indicate the error.

ERRORS
EINVAL
An invalid value was passed in flags or event f flags.
FAN_ALL_INIT_FLAGS (deprecated since Linux 4.20) defines all allowable
bits for flags.

EMFILE
The number of fanotify groups for this user exceeds the limit. See fanotify(7) for
details about this limit.

EMFILE

The per-process limit on the number of open file descriptors has been reached.
ENOMEM

The allocation of memory for the notification group failed.
ENOSYS

This kernel does not implement fanotify_init(). The fanotify API is available
only if the kernel was configured with CONFIG_FANOTIFY.

EPERM
The operation is not permitted because the caller lacks a required capability.

VERSIONS
Prior to Linux 5.13 (and 5.10.220), calling fanotify_init() required the CAP_SYS_AD-
MIN capability. Since Linux 5.13 (and 5.10.220), users may call fanotify_init() with-
out the CAP_SYS_ADMIN capability to create and initialize an fanotify group with
limited functionality.

The limitations imposed on an event listener created by a user without the
CAP_SYS_ADMIN capability are as follows:

* The user cannot request for an unlimited event queue by using FAN_UN-
LIMITED_QUEUE.

e The user cannot request for an unlimited number of marks by using
FAN_UNLIMITED MARKS.

e The user cannot request to use either notification classes
FAN_CLASS CONTENT or FAN_CLASS PRE_CONTENT. This
means that user cannot request permission events.

e The user is required to create a group that identifies filesystem objects by file
handles, for example, by providing the FAN_REPORT _FID flag.

* The user is limited to only mark inodes. The ability to mark a mount or
filesystem via fanotify_mark() through the use of FAN_MARK_MOUNT
or FAN_MARK_FILESYSTEM is not permitted.

Linux man-pages 6.16 2025-05-17 203

fanotify_init(2) System Calls Manual fanotify_init(2)

» The event object in the event queue is limited in terms of the information that
is made available to the unprivileged user. A user will also not receive the

pid that generated the event, unless the listening process itself generated the
event.

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

BUGS
The following bug was present before Linux 3.18:

 The O_CLOEXEC is ignored when passed in event_f flags.
The following bug was present before Linux 3.14:

» The event_f flags argument is not checked for invalid flags. Flags that are intended
only for internal use, such as FMODE_EXEC, can be set, and will consequently be
set for the file descriptors returned when reading from the fanotify file descriptor.

SEE ALSO
fanotify_mark(2), fanotify(7)

Linux man-pages 6.16 2025-05-17 204

fanotify_mark(2) System Calls Manual fanotify_mark(2)

NAME

fanotify_mark — add, remove, or modify an fanotify mark on a filesystem object
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/fanotify.h>

int fanotify_mark(int fanotify_fd, unsigned int flags,
uint64 _t mask, int dirfd,
const char *_Nullable path);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_mark() adds, removes, or modifies an fanotify mark on a filesystem object.
The caller must have read permission on the filesystem object that is to be marked.

The fanotify_fd argument is a file descriptor returned by fanotify_init(2).

flags is a bit mask describing the modification to perform. It must include exactly one
of the following values:

FAN_MARK_ADD
The events in mask will be added to the mark mask (or to the ignore mask).
mask must be nonempty or the error EINVAL will occur.

FAN_MARK_REMOVE
The events in argument mask will be removed from the mark mask (or from the
ignore mask). mask must be nonempty or the error EINVAL will occur.

FAN_MARK