CrossValidator¶
- 
class pyspark.ml.tuning.CrossValidator(*, estimator: Optional[pyspark.ml.base.Estimator] = None, estimatorParamMaps: Optional[List[ParamMap]] = None, evaluator: Optional[pyspark.ml.evaluation.Evaluator] = None, numFolds: int = 3, seed: Optional[int] = None, parallelism: int = 1, collectSubModels: bool = False, foldCol: str = '')[source]¶
- K-fold cross validation performs model selection by splitting the dataset into a set of non-overlapping randomly partitioned folds which are used as separate training and test datasets e.g., with k=3 folds, K-fold cross validation will generate 3 (training, test) dataset pairs, each of which uses 2/3 of the data for training and 1/3 for testing. Each fold is used as the test set exactly once. - New in version 1.4.0. - Examples - >>> from pyspark.ml.classification import LogisticRegression >>> from pyspark.ml.evaluation import BinaryClassificationEvaluator >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.tuning import CrossValidator, ParamGridBuilder, CrossValidatorModel >>> import tempfile >>> dataset = spark.createDataFrame( ... [(Vectors.dense([0.0]), 0.0), ... (Vectors.dense([0.4]), 1.0), ... (Vectors.dense([0.5]), 0.0), ... (Vectors.dense([0.6]), 1.0), ... (Vectors.dense([1.0]), 1.0)] * 10, ... ["features", "label"]) >>> lr = LogisticRegression() >>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() >>> evaluator = BinaryClassificationEvaluator() >>> cv = CrossValidator(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator, ... parallelism=2) >>> cvModel = cv.fit(dataset) >>> cvModel.getNumFolds() 3 >>> cvModel.avgMetrics[0] 0.5 >>> path = tempfile.mkdtemp() >>> model_path = path + "/model" >>> cvModel.write().save(model_path) >>> cvModelRead = CrossValidatorModel.read().load(model_path) >>> cvModelRead.avgMetrics [0.5, ... >>> evaluator.evaluate(cvModel.transform(dataset)) 0.8333... >>> evaluator.evaluate(cvModelRead.transform(dataset)) 0.8333... - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with a randomly generated uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of collectSubModels or its default value. - Gets the value of estimator or its default value. - Gets the value of estimatorParamMaps or its default value. - Gets the value of evaluator or its default value. - Gets the value of foldCol or its default value. - Gets the value of numFolds or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of parallelism or its default value. - getParam(paramName)- Gets a param by its name. - getSeed()- Gets the value of seed or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setCollectSubModels(value)- Sets the value of - collectSubModels.- setEstimator(value)- Sets the value of - estimator.- setEstimatorParamMaps(value)- Sets the value of - estimatorParamMaps.- setEvaluator(value)- Sets the value of - evaluator.- setFoldCol(value)- Sets the value of - foldCol.- setNumFolds(value)- Sets the value of - numFolds.- setParallelism(value)- Sets the value of - parallelism.- setParams(*[, estimator, …])- setParams(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3, seed=None, parallelism=1, collectSubModels=False, foldCol=””): Sets params for cross validator. - setSeed(value)- Sets the value of - seed.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → CrossValidator[source]¶
- Creates a copy of this instance with a randomly generated uid and some extra params. This copies creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over. - New in version 1.4.0. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- CrossValidator
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- :py:class:`Transformer` or a list ofpy:class:Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getCollectSubModels() → bool¶
- Gets the value of collectSubModels or its default value. 
 - 
getEstimator() → pyspark.ml.base.Estimator¶
- Gets the value of estimator or its default value. - New in version 2.0.0. 
 - 
getEstimatorParamMaps() → List[ParamMap]¶
- Gets the value of estimatorParamMaps or its default value. - New in version 2.0.0. 
 - 
getEvaluator() → pyspark.ml.evaluation.Evaluator¶
- Gets the value of evaluator or its default value. - New in version 2.0.0. 
 - 
getFoldCol() → str¶
- Gets the value of foldCol or its default value. - New in version 3.1.0. 
 - 
getNumFolds() → int¶
- Gets the value of numFolds or its default value. - New in version 1.4.0. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParallelism() → int¶
- Gets the value of parallelism or its default value. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getSeed() → int¶
- Gets the value of seed or its default value. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.tuning.CrossValidatorReader[source]¶
- Returns an MLReader instance for this class. - New in version 2.3.0. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setCollectSubModels(value: bool) → pyspark.ml.tuning.CrossValidator[source]¶
- Sets the value of - collectSubModels.
 - 
setEstimator(value: pyspark.ml.base.Estimator) → pyspark.ml.tuning.CrossValidator[source]¶
- Sets the value of - estimator.- New in version 2.0.0. 
 - 
setEstimatorParamMaps(value: List[ParamMap]) → CrossValidator[source]¶
- Sets the value of - estimatorParamMaps.- New in version 2.0.0. 
 - 
setEvaluator(value: pyspark.ml.evaluation.Evaluator) → pyspark.ml.tuning.CrossValidator[source]¶
- Sets the value of - evaluator.- New in version 2.0.0. 
 - 
setFoldCol(value: str) → pyspark.ml.tuning.CrossValidator[source]¶
- Sets the value of - foldCol.- New in version 3.1.0. 
 - 
setNumFolds(value: int) → pyspark.ml.tuning.CrossValidator[source]¶
- Sets the value of - numFolds.- New in version 1.4.0. 
 - 
setParallelism(value: int) → pyspark.ml.tuning.CrossValidator[source]¶
- Sets the value of - parallelism.
 - 
setParams(*, estimator: Optional[pyspark.ml.base.Estimator] = None, estimatorParamMaps: Optional[List[ParamMap]] = None, evaluator: Optional[pyspark.ml.evaluation.Evaluator] = None, numFolds: int = 3, seed: Optional[int] = None, parallelism: int = 1, collectSubModels: bool = False, foldCol: str = '') → CrossValidator[source]¶
- setParams(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3, seed=None, parallelism=1, collectSubModels=False, foldCol=””): Sets params for cross validator. - New in version 1.4.0. 
 - 
setSeed(value: int) → pyspark.ml.tuning.CrossValidator[source]¶
- Sets the value of - seed.
 - 
write() → pyspark.ml.util.MLWriter[source]¶
- Returns an MLWriter instance for this ML instance. - New in version 2.3.0. 
 - Attributes Documentation - 
collectSubModels= Param(parent='undefined', name='collectSubModels', doc='Param for whether to collect a list of sub-models trained during tuning. If set to false, then only the single best sub-model will be available after fitting. If set to true, then all sub-models will be available. Warning: For large models, collecting all sub-models can cause OOMs on the Spark driver.')¶
 - 
estimator= Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')¶
 - 
estimatorParamMaps= Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')¶
 - 
evaluator= Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')¶
 - 
foldCol= Param(parent='undefined', name='foldCol', doc="Param for the column name of user specified fold number. Once this is specified, :py:class:`CrossValidator` won't do random k-fold split. Note that this column should be integer type with range [0, numFolds) and Spark will throw exception on out-of-range fold numbers.")¶
 - 
numFolds= Param(parent='undefined', name='numFolds', doc='number of folds for cross validation')¶
 - 
parallelism= Param(parent='undefined', name='parallelism', doc='the number of threads to use when running parallel algorithms (>= 1).')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
seed= Param(parent='undefined', name='seed', doc='random seed.')¶
 
-