Back to Multiple platform build/check report for BioC 3.14
AB[C]DEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2022-04-13 12:06:22 -0400 (Wed, 13 Apr 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.4 LTS)x86_644.1.3 (2022-03-10) -- "One Push-Up" 4324
tokay2Windows Server 2012 R2 Standardx644.1.3 (2022-03-10) -- "One Push-Up" 4077
machv2macOS 10.14.6 Mojavex86_644.1.3 (2022-03-10) -- "One Push-Up" 4137
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for ComplexHeatmap on tokay2


To the developers/maintainers of the ComplexHeatmap package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/ComplexHeatmap.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 380/2083HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
ComplexHeatmap 2.10.0  (landing page)
Zuguang Gu
Snapshot Date: 2022-04-12 01:55:07 -0400 (Tue, 12 Apr 2022)
git_url: https://git.bioconductor.org/packages/ComplexHeatmap
git_branch: RELEASE_3_14
git_last_commit: 170df82
git_last_commit_date: 2021-10-26 12:19:39 -0400 (Tue, 26 Oct 2021)
nebbiolo2Linux (Ubuntu 20.04.4 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
tokay2Windows Server 2012 R2 Standard / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
machv2macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: ComplexHeatmap
Version: 2.10.0
Command: C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:ComplexHeatmap.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings ComplexHeatmap_2.10.0.tar.gz
StartedAt: 2022-04-12 17:46:21 -0400 (Tue, 12 Apr 2022)
EndedAt: 2022-04-12 17:56:15 -0400 (Tue, 12 Apr 2022)
EllapsedTime: 594.4 seconds
RetCode: 0
Status:   OK  
CheckDir: ComplexHeatmap.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:ComplexHeatmap.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings ComplexHeatmap_2.10.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.14-bioc/meat/ComplexHeatmap.Rcheck'
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'ComplexHeatmap/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'ComplexHeatmap' version '2.10.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'ComplexHeatmap' can be installed ... OK
* checking installed package size ... NOTE
  installed size is  5.0Mb
  sub-directories of 1Mb or more:
    R         1.4Mb
    extdata   1.1Mb
    help      1.1Mb
    html      1.3Mb
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
** running examples for arch 'x64' ... OK
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'test-AnnotationFunction.R'
  Running 'test-ColorMapping-class.R'
  Running 'test-Heatmap-class.R'
  Running 'test-Heatmap-cluster.R'
  Running 'test-HeatmapAnnotation.R'
  Running 'test-HeatmapList-class.R'
  Running 'test-Legend.R'
  Running 'test-SingleAnnotation.R'
  Running 'test-annotation_axis.R'
  Running 'test-dendrogram.R'
  Running 'test-gridtext.R'
  Running 'test-interactive.R'
  Running 'test-multiple-page.R'
  Running 'test-oncoPrint.R'
  Running 'test-pheatmap.R'
  Running 'test-upset.R'
  Running 'test-utils.R'
  Running 'testthat-all.R'
 OK
** running tests for arch 'x64' ...
  Running 'test-AnnotationFunction.R'
  Running 'test-ColorMapping-class.R'
  Running 'test-Heatmap-class.R'
  Running 'test-Heatmap-cluster.R'
  Running 'test-HeatmapAnnotation.R'
  Running 'test-HeatmapList-class.R'
  Running 'test-Legend.R'
  Running 'test-SingleAnnotation.R'
  Running 'test-annotation_axis.R'
  Running 'test-dendrogram.R'
  Running 'test-gridtext.R'
  Running 'test-interactive.R'
  Running 'test-multiple-page.R'
  Running 'test-oncoPrint.R'
  Running 'test-pheatmap.R'
  Running 'test-upset.R'
  Running 'test-utils.R'
  Running 'testthat-all.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.14-bioc/meat/ComplexHeatmap.Rcheck/00check.log'
for details.



Installation output

ComplexHeatmap.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O http://155.52.207.166/BBS/3.14/bioc/src/contrib/ComplexHeatmap_2.10.0.tar.gz && rm -rf ComplexHeatmap.buildbin-libdir && mkdir ComplexHeatmap.buildbin-libdir && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=ComplexHeatmap.buildbin-libdir ComplexHeatmap_2.10.0.tar.gz && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL ComplexHeatmap_2.10.0.zip && rm ComplexHeatmap_2.10.0.tar.gz ComplexHeatmap_2.10.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
 26 4575k   26 1199k    0     0  1191k      0  0:00:03  0:00:01  0:00:02 1192k
 74 4575k   74 3405k    0     0  1699k      0  0:00:02  0:00:02 --:--:-- 1700k
100 4575k  100 4575k    0     0  1896k      0  0:00:02  0:00:02 --:--:-- 1897k

install for i386

* installing *source* package 'ComplexHeatmap' ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'ComplexHeatmap'
    finding HTML links ... done
    AdditiveUnit-class                      html  
    AdditiveUnit                            html  
    AnnotationFunction-class                html  
    AnnotationFunction                      html  
    ColorMapping-class                      html  
    ColorMapping                            html  
    ComplexHeatmap-package                  html  
    Extract.AnnotationFunction              html  
    Extract.Heatmap                         html  
    Extract.HeatmapAnnotation               html  
    Extract.HeatmapList                     html  
    Extract.SingleAnnotation                html  
    Extract.comb_mat                        html  
    Extract.gridtext                        html  
    Heatmap-class                           html  
    Heatmap                                 html  
    Heatmap3D                               html  
    HeatmapAnnotation-class                 html  
    HeatmapAnnotation                       html  
    HeatmapList-class                       html  
    HeatmapList                             html  
    Legend                                  html  
    Legends-class                           html  
    Legends                                 html  
    SingleAnnotation-class                  html  
    SingleAnnotation                        html  
    UpSet                                   html  
    add.AdditiveUnit                        html  
    add_heatmap-Heatmap-method              html  
    add_heatmap-HeatmapAnnotation-method    html  
    add_heatmap-HeatmapList-method          html  
    add_heatmap-dispatch                    html  
    adjust_dend_by_x                        html  
    adjust_heatmap_list-HeatmapList-method
                                            html  
    alter_graphic                           html  
    anno_barplot                            html  
    anno_block                              html  
    anno_boxplot                            html  
    anno_customize                          html  
    anno_density                            html  
    anno_empty                              html  
    anno_histogram                          html  
    anno_horizon                            html  
    anno_image                              html  
    anno_joyplot                            html  
    anno_lines                              html  
    anno_link                               html  
    anno_mark                               html  
    anno_oncoprint_barplot                  html  
    anno_points                             html  
    anno_simple                             html  
    anno_summary                            html  
    anno_text                               html  
    anno_zoom                               html  
    annotation_axis_grob                    html  
    annotation_legend_size-HeatmapList-method
                                            html  
    attach_annotation-Heatmap-method        html  
    bar3D                                   html  
    bin_genome                              html  
    c.ColorMapping                          html  
    c.HeatmapAnnotation                     html  
    cluster_between_groups                  html  
    cluster_within_group                    html  
    color_mapping_legend-ColorMapping-method
                                            html  
    columnAnnotation                        html  
    column_dend-Heatmap-method              html  
    column_dend-HeatmapList-method          html  
    column_dend-dispatch                    html  
    column_order-Heatmap-method             html  
    column_order-HeatmapList-method         html  
    column_order-dispatch                   html  
    comb_degree                             html  
    comb_name                               html  
    comb_size                               html  
    compare_heatmap.2                       html  
    compare_heatmap                         html  
    compare_pheatmap                        html  
    complement_size                         html  
    component_height-Heatmap-method         html  
    component_height-HeatmapList-method     html  
    component_height-dispatch               html  
    component_width-Heatmap-method          html  
    component_width-HeatmapList-method      html  
    component_width-dispatch                html  
    copy_all-AnnotationFunction-method      html  
    copy_all-SingleAnnotation-method        html  
    copy_all-dispatch                       html  
    decorate_annotation                     html  
    decorate_column_dend                    html  
    decorate_column_names                   html  
    decorate_column_title                   html  
    decorate_dend                           html  
    decorate_dimnames                       html  
    decorate_heatmap_body                   html  
    decorate_row_dend                       html  
    decorate_row_names                      html  
    decorate_row_title                      html  
    decorate_title                          html  
    default_axis_param                      html  
    default_get_type                        html  
    dend_heights                            html  
    dend_xy                                 html  
    dendrogramGrob                          html  
    densityHeatmap                          html  
    dim.Heatmap                             html  
    dist2                                   html  
    draw-AnnotationFunction-method          html  
    draw-Heatmap-method                     html  
    draw-HeatmapAnnotation-method           html  
    draw-HeatmapList-method                 html  
    draw-Legends-method                     html  
    draw-SingleAnnotation-method            html  
    draw-dispatch                           html  
    draw_annotation-Heatmap-method          html  
    draw_annotation_legend-HeatmapList-method
                                            html  
    draw_dend-Heatmap-method                html  
    draw_dimnames-Heatmap-method            html  
    draw_heatmap_body-Heatmap-method        html  
    draw_heatmap_legend-HeatmapList-method
                                            html  
    draw_heatmap_list-HeatmapList-method    html  
    draw_title-Heatmap-method               html  
    draw_title-HeatmapList-method           html  
    draw_title-dispatch                     html  
    extract_comb                            html  
    frequencyHeatmap                        html  
    full_comb_code                          html  
    getXY_in_parent_vp                      html  
    get_color_mapping_list-HeatmapAnnotation-method
                                            html  
    get_legend_param_list-HeatmapAnnotation-method
                                            html  
    grid.annotation_axis                    html  
    grid.boxplot                            html  
    grid.dendrogram                         html  
    grid.draw.Legends                       html  
    gt_render                               html  
    heatmap_legend_size-HeatmapList-method
                                            html  
    height.AnnotationFunction               html  
    height.Heatmap                          html  
    height.HeatmapAnnotation                html  
    height.HeatmapList                      html  
    height.Legends                          html  
    height.SingleAnnotation                 html  
    heightAssign.AnnotationFunction         html  
    heightAssign.HeatmapAnnotation          html  
    heightAssign.SingleAnnotation           html  
    heightDetails.annotation_axis           html  
    heightDetails.legend                    html  
    heightDetails.legend_body               html  
    heightDetails.packed_legends            html  
    ht_global_opt                           html  
    ht_opt                                  html  
    ht_size                                 html  
    is_abs_unit                             html  
    length.HeatmapAnnotation                html  
    length.HeatmapList                      html  
    list_components                         html  
    list_to_matrix                          html  
    make_column_cluster-Heatmap-method      html  
    make_comb_mat                           html  
    make_layout-Heatmap-method              html  
    make_layout-HeatmapList-method          html  
    make_layout-dispatch                    html  
    make_row_cluster-Heatmap-method         html  
    map_to_colors-ColorMapping-method       html  
    max_text_height                         html  
    max_text_width                          html  
    merge_dendrogram                        html  
    names.HeatmapAnnotation                 html  
    names.HeatmapList                       html  
    namesAssign.HeatmapAnnotation           html  
    ncol.Heatmap                            html  
    nobs.AnnotationFunction                 html  
    nobs.HeatmapAnnotation                  html  
    nobs.SingleAnnotation                   html  
    normalize_comb_mat                      html  
    normalize_genomic_signals_to_bins       html  
    nrow.Heatmap                            html  
    oncoPrint                               html  
    order.comb_mat                          html  
    packLegend                              html  
    pct_v_pct                               html  
    pheatmap                                html  
    pindex                                  html  
    plot.Heatmap                            html  
    plot.HeatmapAnnotation                  html  
    plot.HeatmapList                        html  
    prepare-Heatmap-method                  html  
    print.comb_mat                          html  
    re_size-HeatmapAnnotation-method        html  
    restore_matrix                          html  
    rowAnnotation                           html  
    row_anno_barplot                        html  
    row_anno_boxplot                        html  
    row_anno_density                        html  
    row_anno_histogram                      html  
    row_anno_points                         html  
    row_anno_text                           html  
    row_dend-Heatmap-method                 html  
    row_dend-HeatmapList-method             html  
    row_dend-dispatch                       html  
    row_order-Heatmap-method                html  
    row_order-HeatmapList-method            html  
    row_order-dispatch                      html  
    set_component_height-Heatmap-method     html  
    set_component_width-Heatmap-method      html  
    set_name                                html  
    set_nameAssign                          html  
    set_size                                html  
    show-AnnotationFunction-method          html  
    show-ColorMapping-method                html  
    show-Heatmap-method                     html  
    show-HeatmapAnnotation-method           html  
    show-HeatmapList-method                 html  
    show-SingleAnnotation-method            html  
    show-dispatch                           html  
    size.AnnotationFunction                 html  
    size.HeatmapAnnotation                  html  
    size.SingleAnnotation                   html  
    sizeAssign.AnnotationFunction           html  
    sizeAssign.HeatmapAnnotation            html  
    sizeAssign.SingleAnnotation             html  
    smartAlign2                             html  
    str.comb_mat                            html  
    subset_gp                               html  
    subset_matrix_by_row                    html  
    subset_no                               html  
    subset_vector                           html  
    summary.Heatmap                         html  
    summary.HeatmapList                     html  
    t.comb_mat                              html  
    test_alter_fun                          html  
    unify_mat_list                          html  
    upset_left_annotation                   html  
    upset_right_annotation                  html  
    upset_top_annotation                    html  
    width.AnnotationFunction                html  
    width.Heatmap                           html  
    width.HeatmapAnnotation                 html  
    width.HeatmapList                       html  
    width.Legends                           html  
    width.SingleAnnotation                  html  
    widthAssign.AnnotationFunction          html  
    widthAssign.HeatmapAnnotation           html  
    widthAssign.SingleAnnotation            html  
    widthDetails.annotation_axis            html  
    widthDetails.legend                     html  
    widthDetails.legend_body                html  
    widthDetails.packed_legends             html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'ComplexHeatmap' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'ComplexHeatmap' as ComplexHeatmap_2.10.0.zip
* DONE (ComplexHeatmap)
* installing to library 'C:/Users/biocbuild/bbs-3.14-bioc/R/library'
package 'ComplexHeatmap' successfully unpacked and MD5 sums checked

Tests output

ComplexHeatmap.Rcheck/tests_i386/test-annotation_axis.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "left", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "left", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "left", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "left", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "right", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "right", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "right", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "right", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 90, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 45, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "top", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "bottom", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "bottom", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "bottom", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "bottom", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(labels_rot = 0, side = "left", facing = "outside")
> grid.rect()
> grid.text('side = "left", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(side = "left", direction = "reverse")
> grid.rect()
> grid.text('side = "left", direction = "reverse')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(side = "bottom", direction = "reverse")
> grid.rect()
> grid.text('side = "bottom", direction = "reverse"')
> grid.draw(gb)
> popViewport()
> 
> 
> 
> proc.time()
   user  system elapsed 
   2.42    0.17    2.56 

ComplexHeatmap.Rcheck/tests_x64/test-annotation_axis.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "left", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "left", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "left", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "left", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "right", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "right", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "right", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "right", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 90, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 45, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "top", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "bottom", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "bottom", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "bottom", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "bottom", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(labels_rot = 0, side = "left", facing = "outside")
> grid.rect()
> grid.text('side = "left", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(side = "left", direction = "reverse")
> grid.rect()
> grid.text('side = "left", direction = "reverse')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(side = "bottom", direction = "reverse")
> grid.rect()
> grid.text('side = "bottom", direction = "reverse"')
> grid.draw(gb)
> popViewport()
> 
> 
> 
> proc.time()
   user  system elapsed 
   2.39    0.18    2.56 

ComplexHeatmap.Rcheck/tests_i386/test-AnnotationFunction.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("normalize_graphic_param_to_mat")) {
+ 	normalize_graphic_param_to_mat = ComplexHeatmap:::normalize_graphic_param_to_mat
+ }
> 
> if(!exists("height")) {
+ 	height = ComplexHeatmap:::height
+ }
> 
> if(!exists("width")) {
+ 	width = ComplexHeatmap:::width
+ }
> 
> normalize_graphic_param_to_mat(1, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    1
[2,]    1    1
[3,]    1    1
[4,]    1    1
> normalize_graphic_param_to_mat(1:2, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    2
[2,]    1    2
[3,]    1    2
[4,]    1    2
> normalize_graphic_param_to_mat(1:4, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    1
[2,]    2    2
[3,]    3    3
[4,]    4    4
> 
> ### AnnotationFunction constructor #####
> fun = function(index) {
+ 	x = runif(10)
+ 	pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1)))
+ 	grid.points(index, x[index])
+ 	popViewport()
+ }
> anno = AnnotationFunction(fun = fun)
> 
> x = runif(10)
> fun = function(index) {
+ 	pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1)))
+ 	grid.points(index, x[index])
+ 	popViewport()
+ }
> anno = AnnotationFunction(fun = fun, var_import = "x")
> anno = AnnotationFunction(fun = fun, var_import = list(x))
> 
> 
> x = runif(10)
> cell_fun = function(i) {
+ 	pushViewport(viewport(yscale = c(0, 1)))
+ 	grid.points(unit(0.5, "npc"), x[i])
+ 	popViewport()
+ }
> anno = AnnotationFunction(cell_fun = cell_fun, var_import = "x")
> ha = HeatmapAnnotation(foo = anno)
> draw(ha, 1:10, test = T)
> 
> cell_fun = function(i) {
+ 	pushViewport(viewport(xscale = c(0, 1)))
+ 	grid.points(x[i], unit(0.5, "npc"))
+ 	popViewport()
+ }
> anno = AnnotationFunction(cell_fun = cell_fun, var_import = "x", which = "row")
> ha = rowAnnotation(foo = anno)
> draw(ha, 1:10, test = T)
> 
> # devAskNewPage(ask = dev.interactive())
> 
> ########### testing anno_simple ############
> anno = anno_simple(1:10)
> draw(anno, test = "as a simple vector")
> draw(anno[1:5], test = "subset of column annotation")
> anno = anno_simple(1:10, which = "row")
> draw(anno, test = "as row annotation")
> draw(anno[1:5], test = "subste of row annotation")
> 
> anno = anno_simple(1:10, col = structure(rand_color(10), names = 1:10))
> draw(anno, test = "self-define colors")
> 
> anno = anno_simple(1:10, border = TRUE)
> draw(anno, test = "border")
> anno = anno_simple(1:10, gp = gpar(col = "red"))
> draw(anno, test = "gp for the grids")
> 
> anno = anno_simple(c(1:9, NA))
> draw(anno, test = "vector has NA values")
> 
> anno = anno_simple(cbind(1:10, 10:1))
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "subste of a matrix")
> 
> anno = anno_simple(1:10, pch = 1, pt_gp = gpar(col = "red"), pt_size = unit(seq(1, 10), "mm"))
> draw(anno, test = "with symbols + pt_gp + pt_size")
> anno = anno_simple(1:10, pch = 1:10)
> draw(anno, test = "pch is a vector")
> anno = anno_simple(1:10, pch = c(1:4, NA, 6:8, NA, 10, 11))
> draw(anno, test = "pch has NA values")
> 
> anno = anno_simple(cbind(1:10, 10:1), pch = 1, pt_gp = gpar(col = "blue"))
> draw(anno, test = "matrix with symbols")
> anno = anno_simple(cbind(1:10, 10:1), pch = 1:2)
> draw(anno, test = "matrix, length of pch is number of annotations")
> anno = anno_simple(cbind(1:10, 10:1), pch = 1:10)
> draw(anno, test = "matrix, length of pch is length of samples")
> anno = anno_simple(cbind(1:10, 10:1), pch = matrix(1:20, nc = 2))
> draw(anno, test = "matrix, pch is a matrix")
> pch = matrix(1:20, nc = 2)
> pch[sample(length(pch), 10)] = NA
> anno = anno_simple(cbind(1:10, 10:1), pch = pch)
> draw(anno, test = "matrix, pch is a matrix with NA values")
> 
> 
> ####### test anno_empty ######
> anno = anno_empty()
> draw(anno, test = "anno_empty")
> anno = anno_empty(border = FALSE)
> draw(anno, test = "anno_empty without border")
> 
> if(0) {
+ ###### test anno_image #####
+ image1 = sample(dir("~/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
+ anno = anno_image(image1)
+ draw(anno, test = "png")
+ draw(anno[1:5], test = "subset of png")
+ anno = anno_image(image1, which = "row")
+ draw(anno, test = "png on rows")
+ image2 = sample(dir("~/Downloads/IcoMoon-Free-master/SVG/", full.names = TRUE), 10)
+ anno = anno_image(image2)
+ draw(anno, test = "svg")
+ image3 = sample(dir("~/Downloads/IcoMoon-Free-master/EPS/", full.names = TRUE), 10)
+ anno = anno_image(image3)
+ draw(anno, test = "eps")
+ image4 = sample(dir("~/Downloads/IcoMoon-Free-master/PDF/", full.names = TRUE), 10)
+ anno = anno_image(image4)
+ draw(anno, test = "pdf")
+ 
+ anno = anno_image(c(image1[1:3], image2[1:3], image3[1:3], image4[1:3]))
+ draw(anno, test = "png+svg+eps+pdf")
+ 
+ anno = anno_image(image1, gp = gpar(fill = 1:10, col = "black"))
+ draw(anno, test = "png + gp")
+ draw(anno[1:5], test = "png + gp")
+ 
+ anno = anno_image(image1, space = unit(3, "mm"))
+ draw(anno, test = "space")
+ 
+ image1[1] = ""
+ anno = anno_image(image1)
+ draw(anno, test = "png")
+ }
> 
> ######## test anno_points #####
> anno = anno_points(runif(10))
> draw(anno, test = "anno_points")
> anno = anno_points(matrix(runif(20), nc = 2), pch = 1:2)
> draw(anno, test = "matrix")
> anno = anno_points(c(1:5, 1:5))
> draw(anno, test = "anno_points")
> anno = anno_points(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
> draw(anno, test = "matrix")
> 
> anno = anno_points(1:10, gp = gpar(col = rep(2:3, each = 5)), pch = rep(2:3, each = 5))
> draw(anno, test = "anno_points")
> draw(anno, index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10), test = "anno_points")
> 
> anno = anno_points(c(1:5, NA, 7:10))
> draw(anno, test = "anno_points")
> 
> 
> anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1))
> draw(anno, test = "anno_points")
> 
> anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1), which = "row")
> draw(anno, test = "anno_points")
> 
> # pch as image
> if(0) {
+ image1 = sample(dir("/desktop-home/guz/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
+ x = runif(10)
+ anno1 = anno_points(x, pch = image1, pch_as_image = TRUE, size = unit(5, "mm"), height = unit(4, "cm"))
+ anno2 = anno_points(x, height = unit(4, "cm"))
+ draw(anno1, test = "anno_points")
+ draw(anno2, test = "anno_points")
+ }
> 
> ##### test anno_lines ###
> anno = anno_lines(runif(10))
> draw(anno, test = "anno_lines")
> anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
> draw(anno, test = "matrix")
> anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3),
+ 	add_points = TRUE, pt_gp = gpar(col = 5:6), pch = c(1, 16))
> draw(anno, test = "matrix")
> anno = anno_lines(sort(rnorm(10)), height = unit(2, "cm"), smooth = TRUE, add_points = TRUE)
> draw(anno, test = "anno_lines, smooth")
> anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), 
+ 	height = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3))
> draw(anno, test = "anno_lines, smooth, matrix")
> 
> anno = anno_lines(sort(rnorm(10)), width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, which = "row")
> draw(anno, test = "anno_lines, smooth, by row")
> anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), 
+ 	width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3), which = "row")
> draw(anno, test = "anno_lines, smooth, matrix, by row")
> 
> anno = anno_lines(c(1:5, NA, 7:10))
> draw(anno, test = "anno_lines")
> 
> anno = anno_lines(runif(10), axis_param = list(direction = "reverse"))
> draw(anno, test = "anno_lines")
> 
> ###### test anno_text #######
> anno = anno_text(month.name)
> draw(anno, test = "month names")
> anno = anno_text(month.name, gp = gpar(fontsize = 16))
> draw(anno, test = "month names with fontsize")
> anno = anno_text(month.name, gp = gpar(fontsize = 1:12+4))
> draw(anno, test = "month names with changing fontsize")
> anno = anno_text(month.name, which = "row")
> draw(anno, test = "month names on rows")
> anno = anno_text(month.name, location = 0, rot = 45, just = "left", gp = gpar(col = 1:12))
> draw(anno, test = "with rotations")
> anno = anno_text(month.name, location = 1, rot = 45, just = "right", gp = gpar(fontsize = 1:12+4))
> draw(anno, test = "with rotations")
> 
> 
> for(rot in seq(0, 360, by = 45)) {
+ 	anno = anno_text(month.name, which = "row", location = 0, rot = rot, 
+ 		just = "left")
+ 	draw(anno, test = paste0("rot =", rot))
+ }
> 
> 
> ##### test anno_barplot #####
> anno = anno_barplot(1:10)
> draw(anno, test = "a vector")
> draw(anno[1:5], test = "a vector, subset")
> anno = anno_barplot(1:10, which = "row")
> draw(anno, test = "a vector")
> anno = anno_barplot(1:10, bar_width = 1)
> draw(anno, test = "bar_width")
> anno = anno_barplot(1:10, gp = gpar(fill = 1:10))
> draw(anno, test = "fill colors")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)))
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "a matrix, subset")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row")
> draw(anno, test = "a matrix, on rows")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), gp = gpar(fill = 2:3, col = 2:3))
> draw(anno, test = "a matrix with fill")
> 
> m = matrix(runif(4*10), nc = 4)
> m = t(apply(m, 1, function(x) x/sum(x)))
> anno = anno_barplot(m)
> draw(anno, test = "proportion matrix")
> anno = anno_barplot(m, gp = gpar(fill = 2:5), bar_width = 1, height = unit(6, "cm"))
> draw(anno, test = "proportion matrix")
> 
> anno = anno_barplot(c(1:5, NA, 7:10))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(1:10, which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(1:10, baseline = 5, which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE)
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "a matrix, subset")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE, which = "row")
> draw(anno, test = "a matrix, on rows")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE, gp = gpar(fill = 2:3, col = 2:3))
> draw(anno, test = "a matrix with fill")
> 
> 
> 
> ##### test anno_boxplot #####
> set.seed(123)
> m = matrix(rnorm(100), 10)
> anno = anno_boxplot(m, height = unit(4, "cm"))
> draw(anno, test = "anno_boxplot")
> draw(anno[1:5], test = "subset")
> anno = anno_boxplot(m, height = unit(4, "cm"), gp = gpar(fill = 1:10))
> draw(anno, test = "anno_boxplot with gp")
> anno = anno_boxplot(m, height = unit(4, "cm"), box_width = 0.9)
> draw(anno, test = "anno_boxplot with box_width")
> 
> m = matrix(rnorm(100), 10)
> m[1, ] = NA
> anno = anno_boxplot(m, height = unit(4, "cm"))
> draw(anno, test = "anno_boxplot")
> 
> 
> ####### test anno_joyplot ####
> m = matrix(rnorm(1000), nc = 10)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row")
> draw(anno, test = "joyplot")
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = 1:10))
> draw(anno, test = "joyplot + col")
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", scale = 1)
> draw(anno, test = "joyplot + scale")
> 
> m = matrix(rnorm(5000), nc = 50)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = NA), scale = 4)
> draw(anno, test = "joyplot")
> 
> ######## test anno_horizon ######
> lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, which = "row")
> draw(anno, test = "horizon chart")
> anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = "orange", neg_fill = "darkgreen"))
> draw(anno, test = "horizon chart, col")
> anno = anno_horizon(lt, which = "row", negative_from_top = TRUE)
> draw(anno, test = "horizon chart + negative_from_top")
> anno = anno_horizon(lt, which = "row", gap = unit(1, "mm"))
> draw(anno, test = "horizon chart + gap")
> anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = rep(c("orange", "red"), each = 10),
+ 	neg_fill = rep(c("darkgreen", "blue"), each = 10)))
> draw(anno, test = "horizon chart, col")
> 
> ####### test anno_histogram ####
> m = matrix(rnorm(1000), nc = 10)
> anno = anno_histogram(t(m), which = "row")
> draw(anno, test = "row histogram")
> draw(anno[1:5], test = "subset row histogram")
> anno = anno_histogram(t(m), which = "row", gp = gpar(fill = 1:10))
> draw(anno, test = "row histogram with color")
> anno = anno_histogram(t(m), which = "row", n_breaks = 20)
> draw(anno, test = "row histogram with color")
> m[1, ] = NA
> anno = anno_histogram(t(m), which = "row")
> draw(anno, test = "row histogram")
> 
> 
> ####### test anno_density ######
> anno = anno_density(t(m), which = "row")
> draw(anno, test = "normal density")
> draw(anno[1:5], test = "normal density, subset")
> anno = anno_density(t(m), which = "row", type = "violin")
> draw(anno, test = "violin")
> anno = anno_density(t(m), which = "row", type = "heatmap")
> draw(anno, test = "heatmap")
> anno = anno_density(t(m), which = "row", type = "heatmap", heatmap_colors = c("white", "orange"))
> draw(anno, test = "heatmap, colors")
> 
> 
> ###### anno_mark ###
> if(0) {
+ library(gridtext)
+ grid.text = function(text, x = 0.5, y = 0.5, gp = gpar(), rot = 0, default.units = "npc", just = "center") {
+ 	if(length(just) == 1) {
+ 		if(just == "center") {
+ 			just = c("center", "center")
+ 		} else if(just == "bottom") {
+ 			just = c("center", "bottom")
+ 		} else if (just == "top") {
+ 			just = c("center", "top")
+ 		} else if(just == "left") {
+ 			just = c("left", "center")
+ 		} else if(just == "right") {
+ 			just = c("right", "center")
+ 		}
+ 	}
+ 	just2 = c(0.5, 0.5)
+ 	if(is.character(just)) {
+ 		just2[1] = switch(just[1], "center" = 0.5, "left" = 0, "right" = 1)
+ 		just2[2] = switch(just[2], "center" = 0.5, "bottom" = 0, "top" = 1)
+ 	}
+ 	gb = richtext_grob(text, x = x, y = y, gp = gpar(fontsize = 10), box_gp = gpar(col = "black"),
+ 		default.units = default.units, hjust = just2[1], vjust = just2[2], rot = rot)
+ 	grid.draw(gb)
+ }
+ }
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row")
> draw(anno, index = 1:100, test = "anno_mark")
> 
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], labels_rot = 30, which = "column")
> draw(anno, index = 1:100, test = "anno_mark")
> 
> m = matrix(1:1000, byrow = TRUE, nr = 100)
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row", labels_rot = 30)
> Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno)
> Heatmap(m) + rowAnnotation(mark = anno)
> 
> ht_list = Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno)
> draw(ht_list, row_split = c(rep("a", 95), rep("b", 5)))
> 
> 
> grid.newpage()
> pushViewport(viewport(x = 0.45, w = 0.7, h = 0.95))
> h = unit(0, "mm")
> for(rot in seq(0, 360, by = 30)[-13]) {
+ 	anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "column", side = "bottom")
+ 	h = h + height(anno)
+ 	pushViewport(viewport(y = h, height = height(anno), just = "top"))
+ 	grid.rect()
+ 	draw(anno, index = 1:100)
+ 	grid::grid.text(qq("labels_rot = @{rot}"), unit(1, "npc") + unit(2, "mm"), just = "left")
+ 	popViewport()
+ }
> 
> 
> grid.newpage()
> pushViewport(viewport(w = 0.9, h = 0.9))
> w = unit(0, "mm")
> for(rot in seq(0, 360, by = 30)) {
+ 	anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "row", side = "left")
+ 	w = w + width(anno)
+ 	pushViewport(viewport(x = w, width = width(anno), just = "right"))
+ 	grid.rect()
+ 	draw(anno, index = 1:100)
+ 	popViewport()
+ }
> 
> 
> 
> ### graphic parameters after reordering
> index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)
> anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	pt_size = unit(1:10, "mm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	pt_size = unit(1:10, "mm"), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), add_points = TRUE)
> draw(anno, index, test = "a numeric vector")
> anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), add_points = TRUE, which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2))
> draw(anno, index, test = "a numeric vector")
> anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> m = matrix(rnorm(100), 10)
> m = m[, order(apply(m, 2, median))]
> anno = anno_boxplot(m, pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), height = unit(4, "cm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_boxplot(t(m), pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), which = "row", width = unit(4, "cm"))
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_histogram(m, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_histogram(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_density(m, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_density(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_density(m, type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_density(t(m), type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5)), which= "row")
> draw(anno, index, test = "a numeric vector")
> 
> lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, gp = gpar(pos_fill = rep(c(1, 2), each = 5), neg_fill = rep(c(3, 4), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> m = matrix(rnorm(1000), nc = 10)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, gp = gpar(fill = rep(c(1, 2), each = 5)), 
+ 	width = unit(4, "cm"), which = "row")
> draw(anno, index, test = "joyplot")
> 
> 
> anno = anno_block(gp = gpar(fill = 1:4))
> draw(anno, index = 1:10, k = 1, n = 4, test = "anno_block")
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> 
> anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white"))
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> draw(anno, index = 1:10, k = 4, n = 4, test = "anno_block")
> # draw(anno, index = 1:10, k = 2, n = 2, test = "anno_block")
> 
> anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white"), which = "row")
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> 
> 
> ### anno_zoom
> fa = sort(sample(letters[1:3], 100, replace = TRUE, prob = c(1, 2, 3)))
> panel_fun = function(index, nm) {
+ 	grid.rect()
+ 	grid.text(nm)
+ }
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> anno = anno_zoom(align_to = list(a = which(fa == "a")), which = "row", panel_fun = panel_fun)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> 
> panel_fun = function(index, nm) {
+ 	grid.rect(gp = gpar(fill = "grey", col = NA))
+ 	grid.text(nm)
+ }
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, link_gp = gpar(fill = "grey", col = "black"), internal_line = FALSE)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, set gap")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3)
> draw(anno, index = 1:100, test = "anno_zoom, size set as relative values")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3, extend = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, extend")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(c(2, 20, 40), "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, big size")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3, gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as relative values, gap")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values, gap")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), side = "left")
> draw(anno, index = 1:100, test = "anno_zoom, side")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3))
> draw(anno, index = 1:100, test = "anno_zoom, link_gp")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3),
+ 	link_width = unit(2, "cm"), width = unit(4, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, width")
> 
> anno = anno_zoom(align_to = list(a = 1:10, b = 30:45, c = 70:90), 
+ 	which = "row", panel_fun = panel_fun, size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, a list of indices")
> 
> anno = anno_zoom(align_to = fa, which = "column", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, column annotation")
> 
> 
> m = matrix(rnorm(100*10), nrow = 100)
> hc = hclust(dist(m))
> fa2 = cutree(hc, k = 4)
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun)
> draw(anno, index = hc$order, test = "anno_zoom, column annotation")
> 
> anno = anno_zoom(align_to = fa2, which = "column", panel_fun = panel_fun)
> draw(anno, index = hc$order, test = "anno_zoom, column annotation")
> 
> 
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun)
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno)))
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno), row_split = 2))
> 
> 
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun, size = unit(1:4, "cm"))
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno)))
> 
> set.seed(123)
> m = matrix(rnorm(100*10), nrow = 100)
> subgroup = sample(letters[1:3], 100, replace = TRUE, prob = c(1, 5, 10))
> rg = range(m)
> panel_fun = function(index, nm) {
+ 	pushViewport(viewport(xscale = rg, yscale = c(0, 2)))
+ 	grid.rect()
+ 	grid.xaxis(gp = gpar(fontsize = 8))
+ 	grid.boxplot(m[index, ], pos = 1, direction = "horizontal")
+ 	grid.text(paste("distribution of group", nm), mean(rg), y = 1.9, 
+ 		just = "top", default.units = "native", gp = gpar(fontsize = 10))
+ 	popViewport()
+ }
> anno = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun, 
+ 	size = unit(2, "cm"), gap = unit(1, "cm"), width = unit(4, "cm"))
> draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), row_split = subgroup))
> 
> panel_fun2 = function(index, nm) {
+ 	pushViewport(viewport())
+ 	grid.rect()
+ 	n = floor(length(index)/4)
+ 	txt = paste("gene function", 1:n, collapse = "\n")
+ 	grid.text(txt, 0.95, 0.5, default.units = "npc", just = "right", gp = gpar(fontsize = 8))
+ 	popViewport()
+ }
> anno2 = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun2, 
+ 	gap = unit(1, "cm"), width = unit(3, "cm"), side = "left")
> 
> draw(Heatmap(m, right_annotation = rowAnnotation(subgroup = subgroup, foo = anno,
+ 	show_annotation_name = FALSE), 
+ 	left_annotation = rowAnnotation(bar = anno2, subgroup = subgroup, show_annotation_name = FALSE),
+ 	show_row_dend = FALSE,
+ 	row_split = subgroup))
> 
> draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), 
+ 	left_annotation = rowAnnotation(bar = anno2),
+ 	show_row_dend = FALSE,
+ 	row_split = subgroup))
> 
> set.seed(12345)
> mat = matrix(rnorm(30*10), nr = 30)
> row_split = c(rep("a", 10), rep("b", 5), rep("c", 2), rep("d", 3), 
+ 	          rep("e", 2), letters[10:17])
> row_split = factor(row_split)
> 
> panel_fun = function(index, name) {
+ 	pushViewport(viewport())
+ 	grid.rect()
+ 	grid.text(name)
+ 	popViewport()
+ }
> 
> anno = anno_zoom(align_to = row_split, which = "row", panel_fun = panel_fun, 
+ 	size = unit(0.5, "cm"), width = unit(4, "cm"))
> 
> # > dev.size()
> # [1] 3.938326 4.502203
> dev.new(width = 3.938326, height = 4.502203)
dev.new(): using pdf(file="Rplots1.pdf")
> draw(Heatmap(mat, right_annotation = rowAnnotation(foo = anno), 
+ 	row_split = row_split))
> 
> 
> 
> #### anno_custome ###
> x = sort(sample(letters[1:3], 10, replace = TRUE))
> graphics = list(
+ 	"a" = function(x, y, w, h) grid.points(x, y, pch = 16),
+ 	"b" = function(x, y, w, h) grid.rect(x, y, w*0.8, h*0.8, gp = gpar(fill = "red")),
+ 	"c" = function(x, y, w, h) grid.segments(x - 0.5*w, y - 0.5*h, x + 0.5*w, y + 0.5*h, gp = gpar(lty = 2))
+ )
> 
> anno = anno_customize(x, graphics = graphics)
> draw(anno, index = 1:10, test = "")
> 
> anno = anno_customize(c(x, "d"), graphics = graphics)
Note: following levels in `x` have no graphics defined:
    d.
Set `verbose = FALSE` in `anno_customize()` to turn off this message.
> 
> 
> 
> proc.time()
   user  system elapsed 
  17.71    0.37   18.09 

ComplexHeatmap.Rcheck/tests_x64/test-AnnotationFunction.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("normalize_graphic_param_to_mat")) {
+ 	normalize_graphic_param_to_mat = ComplexHeatmap:::normalize_graphic_param_to_mat
+ }
> 
> if(!exists("height")) {
+ 	height = ComplexHeatmap:::height
+ }
> 
> if(!exists("width")) {
+ 	width = ComplexHeatmap:::width
+ }
> 
> normalize_graphic_param_to_mat(1, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    1
[2,]    1    1
[3,]    1    1
[4,]    1    1
> normalize_graphic_param_to_mat(1:2, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    2
[2,]    1    2
[3,]    1    2
[4,]    1    2
> normalize_graphic_param_to_mat(1:4, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    1
[2,]    2    2
[3,]    3    3
[4,]    4    4
> 
> ### AnnotationFunction constructor #####
> fun = function(index) {
+ 	x = runif(10)
+ 	pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1)))
+ 	grid.points(index, x[index])
+ 	popViewport()
+ }
> anno = AnnotationFunction(fun = fun)
> 
> x = runif(10)
> fun = function(index) {
+ 	pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1)))
+ 	grid.points(index, x[index])
+ 	popViewport()
+ }
> anno = AnnotationFunction(fun = fun, var_import = "x")
> anno = AnnotationFunction(fun = fun, var_import = list(x))
> 
> 
> x = runif(10)
> cell_fun = function(i) {
+ 	pushViewport(viewport(yscale = c(0, 1)))
+ 	grid.points(unit(0.5, "npc"), x[i])
+ 	popViewport()
+ }
> anno = AnnotationFunction(cell_fun = cell_fun, var_import = "x")
> ha = HeatmapAnnotation(foo = anno)
> draw(ha, 1:10, test = T)
> 
> cell_fun = function(i) {
+ 	pushViewport(viewport(xscale = c(0, 1)))
+ 	grid.points(x[i], unit(0.5, "npc"))
+ 	popViewport()
+ }
> anno = AnnotationFunction(cell_fun = cell_fun, var_import = "x", which = "row")
> ha = rowAnnotation(foo = anno)
> draw(ha, 1:10, test = T)
> 
> # devAskNewPage(ask = dev.interactive())
> 
> ########### testing anno_simple ############
> anno = anno_simple(1:10)
> draw(anno, test = "as a simple vector")
> draw(anno[1:5], test = "subset of column annotation")
> anno = anno_simple(1:10, which = "row")
> draw(anno, test = "as row annotation")
> draw(anno[1:5], test = "subste of row annotation")
> 
> anno = anno_simple(1:10, col = structure(rand_color(10), names = 1:10))
> draw(anno, test = "self-define colors")
> 
> anno = anno_simple(1:10, border = TRUE)
> draw(anno, test = "border")
> anno = anno_simple(1:10, gp = gpar(col = "red"))
> draw(anno, test = "gp for the grids")
> 
> anno = anno_simple(c(1:9, NA))
> draw(anno, test = "vector has NA values")
> 
> anno = anno_simple(cbind(1:10, 10:1))
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "subste of a matrix")
> 
> anno = anno_simple(1:10, pch = 1, pt_gp = gpar(col = "red"), pt_size = unit(seq(1, 10), "mm"))
> draw(anno, test = "with symbols + pt_gp + pt_size")
> anno = anno_simple(1:10, pch = 1:10)
> draw(anno, test = "pch is a vector")
> anno = anno_simple(1:10, pch = c(1:4, NA, 6:8, NA, 10, 11))
> draw(anno, test = "pch has NA values")
> 
> anno = anno_simple(cbind(1:10, 10:1), pch = 1, pt_gp = gpar(col = "blue"))
> draw(anno, test = "matrix with symbols")
> anno = anno_simple(cbind(1:10, 10:1), pch = 1:2)
> draw(anno, test = "matrix, length of pch is number of annotations")
> anno = anno_simple(cbind(1:10, 10:1), pch = 1:10)
> draw(anno, test = "matrix, length of pch is length of samples")
> anno = anno_simple(cbind(1:10, 10:1), pch = matrix(1:20, nc = 2))
> draw(anno, test = "matrix, pch is a matrix")
> pch = matrix(1:20, nc = 2)
> pch[sample(length(pch), 10)] = NA
> anno = anno_simple(cbind(1:10, 10:1), pch = pch)
> draw(anno, test = "matrix, pch is a matrix with NA values")
> 
> 
> ####### test anno_empty ######
> anno = anno_empty()
> draw(anno, test = "anno_empty")
> anno = anno_empty(border = FALSE)
> draw(anno, test = "anno_empty without border")
> 
> if(0) {
+ ###### test anno_image #####
+ image1 = sample(dir("~/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
+ anno = anno_image(image1)
+ draw(anno, test = "png")
+ draw(anno[1:5], test = "subset of png")
+ anno = anno_image(image1, which = "row")
+ draw(anno, test = "png on rows")
+ image2 = sample(dir("~/Downloads/IcoMoon-Free-master/SVG/", full.names = TRUE), 10)
+ anno = anno_image(image2)
+ draw(anno, test = "svg")
+ image3 = sample(dir("~/Downloads/IcoMoon-Free-master/EPS/", full.names = TRUE), 10)
+ anno = anno_image(image3)
+ draw(anno, test = "eps")
+ image4 = sample(dir("~/Downloads/IcoMoon-Free-master/PDF/", full.names = TRUE), 10)
+ anno = anno_image(image4)
+ draw(anno, test = "pdf")
+ 
+ anno = anno_image(c(image1[1:3], image2[1:3], image3[1:3], image4[1:3]))
+ draw(anno, test = "png+svg+eps+pdf")
+ 
+ anno = anno_image(image1, gp = gpar(fill = 1:10, col = "black"))
+ draw(anno, test = "png + gp")
+ draw(anno[1:5], test = "png + gp")
+ 
+ anno = anno_image(image1, space = unit(3, "mm"))
+ draw(anno, test = "space")
+ 
+ image1[1] = ""
+ anno = anno_image(image1)
+ draw(anno, test = "png")
+ }
> 
> ######## test anno_points #####
> anno = anno_points(runif(10))
> draw(anno, test = "anno_points")
> anno = anno_points(matrix(runif(20), nc = 2), pch = 1:2)
> draw(anno, test = "matrix")
> anno = anno_points(c(1:5, 1:5))
> draw(anno, test = "anno_points")
> anno = anno_points(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
> draw(anno, test = "matrix")
> 
> anno = anno_points(1:10, gp = gpar(col = rep(2:3, each = 5)), pch = rep(2:3, each = 5))
> draw(anno, test = "anno_points")
> draw(anno, index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10), test = "anno_points")
> 
> anno = anno_points(c(1:5, NA, 7:10))
> draw(anno, test = "anno_points")
> 
> 
> anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1))
> draw(anno, test = "anno_points")
> 
> anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1), which = "row")
> draw(anno, test = "anno_points")
> 
> # pch as image
> if(0) {
+ image1 = sample(dir("/desktop-home/guz/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
+ x = runif(10)
+ anno1 = anno_points(x, pch = image1, pch_as_image = TRUE, size = unit(5, "mm"), height = unit(4, "cm"))
+ anno2 = anno_points(x, height = unit(4, "cm"))
+ draw(anno1, test = "anno_points")
+ draw(anno2, test = "anno_points")
+ }
> 
> ##### test anno_lines ###
> anno = anno_lines(runif(10))
> draw(anno, test = "anno_lines")
> anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
> draw(anno, test = "matrix")
> anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3),
+ 	add_points = TRUE, pt_gp = gpar(col = 5:6), pch = c(1, 16))
> draw(anno, test = "matrix")
> anno = anno_lines(sort(rnorm(10)), height = unit(2, "cm"), smooth = TRUE, add_points = TRUE)
> draw(anno, test = "anno_lines, smooth")
> anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), 
+ 	height = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3))
> draw(anno, test = "anno_lines, smooth, matrix")
> 
> anno = anno_lines(sort(rnorm(10)), width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, which = "row")
> draw(anno, test = "anno_lines, smooth, by row")
> anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), 
+ 	width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3), which = "row")
> draw(anno, test = "anno_lines, smooth, matrix, by row")
> 
> anno = anno_lines(c(1:5, NA, 7:10))
> draw(anno, test = "anno_lines")
> 
> anno = anno_lines(runif(10), axis_param = list(direction = "reverse"))
> draw(anno, test = "anno_lines")
> 
> ###### test anno_text #######
> anno = anno_text(month.name)
> draw(anno, test = "month names")
> anno = anno_text(month.name, gp = gpar(fontsize = 16))
> draw(anno, test = "month names with fontsize")
> anno = anno_text(month.name, gp = gpar(fontsize = 1:12+4))
> draw(anno, test = "month names with changing fontsize")
> anno = anno_text(month.name, which = "row")
> draw(anno, test = "month names on rows")
> anno = anno_text(month.name, location = 0, rot = 45, just = "left", gp = gpar(col = 1:12))
> draw(anno, test = "with rotations")
> anno = anno_text(month.name, location = 1, rot = 45, just = "right", gp = gpar(fontsize = 1:12+4))
> draw(anno, test = "with rotations")
> 
> 
> for(rot in seq(0, 360, by = 45)) {
+ 	anno = anno_text(month.name, which = "row", location = 0, rot = rot, 
+ 		just = "left")
+ 	draw(anno, test = paste0("rot =", rot))
+ }
> 
> 
> ##### test anno_barplot #####
> anno = anno_barplot(1:10)
> draw(anno, test = "a vector")
> draw(anno[1:5], test = "a vector, subset")
> anno = anno_barplot(1:10, which = "row")
> draw(anno, test = "a vector")
> anno = anno_barplot(1:10, bar_width = 1)
> draw(anno, test = "bar_width")
> anno = anno_barplot(1:10, gp = gpar(fill = 1:10))
> draw(anno, test = "fill colors")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)))
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "a matrix, subset")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row")
> draw(anno, test = "a matrix, on rows")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), gp = gpar(fill = 2:3, col = 2:3))
> draw(anno, test = "a matrix with fill")
> 
> m = matrix(runif(4*10), nc = 4)
> m = t(apply(m, 1, function(x) x/sum(x)))
> anno = anno_barplot(m)
> draw(anno, test = "proportion matrix")
> anno = anno_barplot(m, gp = gpar(fill = 2:5), bar_width = 1, height = unit(6, "cm"))
> draw(anno, test = "proportion matrix")
> 
> anno = anno_barplot(c(1:5, NA, 7:10))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(1:10, which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(1:10, baseline = 5, which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE)
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "a matrix, subset")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE, which = "row")
> draw(anno, test = "a matrix, on rows")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE, gp = gpar(fill = 2:3, col = 2:3))
> draw(anno, test = "a matrix with fill")
> 
> 
> 
> ##### test anno_boxplot #####
> set.seed(123)
> m = matrix(rnorm(100), 10)
> anno = anno_boxplot(m, height = unit(4, "cm"))
> draw(anno, test = "anno_boxplot")
> draw(anno[1:5], test = "subset")
> anno = anno_boxplot(m, height = unit(4, "cm"), gp = gpar(fill = 1:10))
> draw(anno, test = "anno_boxplot with gp")
> anno = anno_boxplot(m, height = unit(4, "cm"), box_width = 0.9)
> draw(anno, test = "anno_boxplot with box_width")
> 
> m = matrix(rnorm(100), 10)
> m[1, ] = NA
> anno = anno_boxplot(m, height = unit(4, "cm"))
> draw(anno, test = "anno_boxplot")
> 
> 
> ####### test anno_joyplot ####
> m = matrix(rnorm(1000), nc = 10)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row")
> draw(anno, test = "joyplot")
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = 1:10))
> draw(anno, test = "joyplot + col")
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", scale = 1)
> draw(anno, test = "joyplot + scale")
> 
> m = matrix(rnorm(5000), nc = 50)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = NA), scale = 4)
> draw(anno, test = "joyplot")
> 
> ######## test anno_horizon ######
> lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, which = "row")
> draw(anno, test = "horizon chart")
> anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = "orange", neg_fill = "darkgreen"))
> draw(anno, test = "horizon chart, col")
> anno = anno_horizon(lt, which = "row", negative_from_top = TRUE)
> draw(anno, test = "horizon chart + negative_from_top")
> anno = anno_horizon(lt, which = "row", gap = unit(1, "mm"))
> draw(anno, test = "horizon chart + gap")
> anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = rep(c("orange", "red"), each = 10),
+ 	neg_fill = rep(c("darkgreen", "blue"), each = 10)))
> draw(anno, test = "horizon chart, col")
> 
> ####### test anno_histogram ####
> m = matrix(rnorm(1000), nc = 10)
> anno = anno_histogram(t(m), which = "row")
> draw(anno, test = "row histogram")
> draw(anno[1:5], test = "subset row histogram")
> anno = anno_histogram(t(m), which = "row", gp = gpar(fill = 1:10))
> draw(anno, test = "row histogram with color")
> anno = anno_histogram(t(m), which = "row", n_breaks = 20)
> draw(anno, test = "row histogram with color")
> m[1, ] = NA
> anno = anno_histogram(t(m), which = "row")
> draw(anno, test = "row histogram")
> 
> 
> ####### test anno_density ######
> anno = anno_density(t(m), which = "row")
> draw(anno, test = "normal density")
> draw(anno[1:5], test = "normal density, subset")
> anno = anno_density(t(m), which = "row", type = "violin")
> draw(anno, test = "violin")
> anno = anno_density(t(m), which = "row", type = "heatmap")
> draw(anno, test = "heatmap")
> anno = anno_density(t(m), which = "row", type = "heatmap", heatmap_colors = c("white", "orange"))
> draw(anno, test = "heatmap, colors")
> 
> 
> ###### anno_mark ###
> if(0) {
+ library(gridtext)
+ grid.text = function(text, x = 0.5, y = 0.5, gp = gpar(), rot = 0, default.units = "npc", just = "center") {
+ 	if(length(just) == 1) {
+ 		if(just == "center") {
+ 			just = c("center", "center")
+ 		} else if(just == "bottom") {
+ 			just = c("center", "bottom")
+ 		} else if (just == "top") {
+ 			just = c("center", "top")
+ 		} else if(just == "left") {
+ 			just = c("left", "center")
+ 		} else if(just == "right") {
+ 			just = c("right", "center")
+ 		}
+ 	}
+ 	just2 = c(0.5, 0.5)
+ 	if(is.character(just)) {
+ 		just2[1] = switch(just[1], "center" = 0.5, "left" = 0, "right" = 1)
+ 		just2[2] = switch(just[2], "center" = 0.5, "bottom" = 0, "top" = 1)
+ 	}
+ 	gb = richtext_grob(text, x = x, y = y, gp = gpar(fontsize = 10), box_gp = gpar(col = "black"),
+ 		default.units = default.units, hjust = just2[1], vjust = just2[2], rot = rot)
+ 	grid.draw(gb)
+ }
+ }
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row")
> draw(anno, index = 1:100, test = "anno_mark")
> 
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], labels_rot = 30, which = "column")
> draw(anno, index = 1:100, test = "anno_mark")
> 
> m = matrix(1:1000, byrow = TRUE, nr = 100)
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row", labels_rot = 30)
> Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno)
> Heatmap(m) + rowAnnotation(mark = anno)
> 
> ht_list = Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno)
> draw(ht_list, row_split = c(rep("a", 95), rep("b", 5)))
> 
> 
> grid.newpage()
> pushViewport(viewport(x = 0.45, w = 0.7, h = 0.95))
> h = unit(0, "mm")
> for(rot in seq(0, 360, by = 30)[-13]) {
+ 	anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "column", side = "bottom")
+ 	h = h + height(anno)
+ 	pushViewport(viewport(y = h, height = height(anno), just = "top"))
+ 	grid.rect()
+ 	draw(anno, index = 1:100)
+ 	grid::grid.text(qq("labels_rot = @{rot}"), unit(1, "npc") + unit(2, "mm"), just = "left")
+ 	popViewport()
+ }
> 
> 
> grid.newpage()
> pushViewport(viewport(w = 0.9, h = 0.9))
> w = unit(0, "mm")
> for(rot in seq(0, 360, by = 30)) {
+ 	anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "row", side = "left")
+ 	w = w + width(anno)
+ 	pushViewport(viewport(x = w, width = width(anno), just = "right"))
+ 	grid.rect()
+ 	draw(anno, index = 1:100)
+ 	popViewport()
+ }
> 
> 
> 
> ### graphic parameters after reordering
> index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)
> anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	pt_size = unit(1:10, "mm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	pt_size = unit(1:10, "mm"), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), add_points = TRUE)
> draw(anno, index, test = "a numeric vector")
> anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), add_points = TRUE, which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2))
> draw(anno, index, test = "a numeric vector")
> anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> m = matrix(rnorm(100), 10)
> m = m[, order(apply(m, 2, median))]
> anno = anno_boxplot(m, pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), height = unit(4, "cm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_boxplot(t(m), pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), which = "row", width = unit(4, "cm"))
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_histogram(m, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_histogram(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_density(m, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_density(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_density(m, type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_density(t(m), type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5)), which= "row")
> draw(anno, index, test = "a numeric vector")
> 
> lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, gp = gpar(pos_fill = rep(c(1, 2), each = 5), neg_fill = rep(c(3, 4), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> m = matrix(rnorm(1000), nc = 10)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, gp = gpar(fill = rep(c(1, 2), each = 5)), 
+ 	width = unit(4, "cm"), which = "row")
> draw(anno, index, test = "joyplot")
> 
> 
> anno = anno_block(gp = gpar(fill = 1:4))
> draw(anno, index = 1:10, k = 1, n = 4, test = "anno_block")
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> 
> anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white"))
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> draw(anno, index = 1:10, k = 4, n = 4, test = "anno_block")
> # draw(anno, index = 1:10, k = 2, n = 2, test = "anno_block")
> 
> anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white"), which = "row")
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> 
> 
> ### anno_zoom
> fa = sort(sample(letters[1:3], 100, replace = TRUE, prob = c(1, 2, 3)))
> panel_fun = function(index, nm) {
+ 	grid.rect()
+ 	grid.text(nm)
+ }
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> anno = anno_zoom(align_to = list(a = which(fa == "a")), which = "row", panel_fun = panel_fun)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> 
> panel_fun = function(index, nm) {
+ 	grid.rect(gp = gpar(fill = "grey", col = NA))
+ 	grid.text(nm)
+ }
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, link_gp = gpar(fill = "grey", col = "black"), internal_line = FALSE)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, set gap")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3)
> draw(anno, index = 1:100, test = "anno_zoom, size set as relative values")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3, extend = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, extend")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(c(2, 20, 40), "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, big size")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3, gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as relative values, gap")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values, gap")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), side = "left")
> draw(anno, index = 1:100, test = "anno_zoom, side")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3))
> draw(anno, index = 1:100, test = "anno_zoom, link_gp")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3),
+ 	link_width = unit(2, "cm"), width = unit(4, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, width")
> 
> anno = anno_zoom(align_to = list(a = 1:10, b = 30:45, c = 70:90), 
+ 	which = "row", panel_fun = panel_fun, size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, a list of indices")
> 
> anno = anno_zoom(align_to = fa, which = "column", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, column annotation")
> 
> 
> m = matrix(rnorm(100*10), nrow = 100)
> hc = hclust(dist(m))
> fa2 = cutree(hc, k = 4)
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun)
> draw(anno, index = hc$order, test = "anno_zoom, column annotation")
> 
> anno = anno_zoom(align_to = fa2, which = "column", panel_fun = panel_fun)
> draw(anno, index = hc$order, test = "anno_zoom, column annotation")
> 
> 
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun)
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno)))
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno), row_split = 2))
> 
> 
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun, size = unit(1:4, "cm"))
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno)))
> 
> set.seed(123)
> m = matrix(rnorm(100*10), nrow = 100)
> subgroup = sample(letters[1:3], 100, replace = TRUE, prob = c(1, 5, 10))
> rg = range(m)
> panel_fun = function(index, nm) {
+ 	pushViewport(viewport(xscale = rg, yscale = c(0, 2)))
+ 	grid.rect()
+ 	grid.xaxis(gp = gpar(fontsize = 8))
+ 	grid.boxplot(m[index, ], pos = 1, direction = "horizontal")
+ 	grid.text(paste("distribution of group", nm), mean(rg), y = 1.9, 
+ 		just = "top", default.units = "native", gp = gpar(fontsize = 10))
+ 	popViewport()
+ }
> anno = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun, 
+ 	size = unit(2, "cm"), gap = unit(1, "cm"), width = unit(4, "cm"))
> draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), row_split = subgroup))
> 
> panel_fun2 = function(index, nm) {
+ 	pushViewport(viewport())
+ 	grid.rect()
+ 	n = floor(length(index)/4)
+ 	txt = paste("gene function", 1:n, collapse = "\n")
+ 	grid.text(txt, 0.95, 0.5, default.units = "npc", just = "right", gp = gpar(fontsize = 8))
+ 	popViewport()
+ }
> anno2 = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun2, 
+ 	gap = unit(1, "cm"), width = unit(3, "cm"), side = "left")
> 
> draw(Heatmap(m, right_annotation = rowAnnotation(subgroup = subgroup, foo = anno,
+ 	show_annotation_name = FALSE), 
+ 	left_annotation = rowAnnotation(bar = anno2, subgroup = subgroup, show_annotation_name = FALSE),
+ 	show_row_dend = FALSE,
+ 	row_split = subgroup))
> 
> draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), 
+ 	left_annotation = rowAnnotation(bar = anno2),
+ 	show_row_dend = FALSE,
+ 	row_split = subgroup))
> 
> set.seed(12345)
> mat = matrix(rnorm(30*10), nr = 30)
> row_split = c(rep("a", 10), rep("b", 5), rep("c", 2), rep("d", 3), 
+ 	          rep("e", 2), letters[10:17])
> row_split = factor(row_split)
> 
> panel_fun = function(index, name) {
+ 	pushViewport(viewport())
+ 	grid.rect()
+ 	grid.text(name)
+ 	popViewport()
+ }
> 
> anno = anno_zoom(align_to = row_split, which = "row", panel_fun = panel_fun, 
+ 	size = unit(0.5, "cm"), width = unit(4, "cm"))
> 
> # > dev.size()
> # [1] 3.938326 4.502203
> dev.new(width = 3.938326, height = 4.502203)
dev.new(): using pdf(file="Rplots1.pdf")
> draw(Heatmap(mat, right_annotation = rowAnnotation(foo = anno), 
+ 	row_split = row_split))
> 
> 
> 
> #### anno_custome ###
> x = sort(sample(letters[1:3], 10, replace = TRUE))
> graphics = list(
+ 	"a" = function(x, y, w, h) grid.points(x, y, pch = 16),
+ 	"b" = function(x, y, w, h) grid.rect(x, y, w*0.8, h*0.8, gp = gpar(fill = "red")),
+ 	"c" = function(x, y, w, h) grid.segments(x - 0.5*w, y - 0.5*h, x + 0.5*w, y + 0.5*h, gp = gpar(lty = 2))
+ )
> 
> anno = anno_customize(x, graphics = graphics)
> draw(anno, index = 1:10, test = "")
> 
> anno = anno_customize(c(x, "d"), graphics = graphics)
Note: following levels in `x` have no graphics defined:
    d.
Set `verbose = FALSE` in `anno_customize()` to turn off this message.
> 
> 
> 
> proc.time()
   user  system elapsed 
  19.90    0.40   20.29 

ComplexHeatmap.Rcheck/tests_i386/test-ColorMapping-class.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> cm = ColorMapping(name = "test",
+ 	colors = c("blue", "white", "red"),
+ 	levels = c("a", "b", "c"))
> color_mapping_legend(cm)
> 
> cm = ColorMapping(name = "test",
+ 	col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
> color_mapping_legend(cm)
> 
> cm = ColorMapping(name = "test",
+ 	colors = c("blue", "white", "red"),
+ 	levels = c(1, 2, 3))
> color_mapping_legend(cm)
> 
> ha = SingleAnnotation(value = rep(NA, 10), name = "foo")
> cm = ha@color_mapping
> color_mapping_legend(cm)
> 
> 
> proc.time()
   user  system elapsed 
   2.51    0.25    2.75 

ComplexHeatmap.Rcheck/tests_x64/test-ColorMapping-class.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> cm = ColorMapping(name = "test",
+ 	colors = c("blue", "white", "red"),
+ 	levels = c("a", "b", "c"))
> color_mapping_legend(cm)
> 
> cm = ColorMapping(name = "test",
+ 	col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
> color_mapping_legend(cm)
> 
> cm = ColorMapping(name = "test",
+ 	colors = c("blue", "white", "red"),
+ 	levels = c(1, 2, 3))
> color_mapping_legend(cm)
> 
> ha = SingleAnnotation(value = rep(NA, 10), name = "foo")
> cm = ha@color_mapping
> color_mapping_legend(cm)
> 
> 
> proc.time()
   user  system elapsed 
   2.53    0.12    2.64 

ComplexHeatmap.Rcheck/tests_i386/test-dendrogram.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("cut_dendrogram")) {
+ 	cut_dendrogram = ComplexHeatmap:::cut_dendrogram
+ }
> 
> library(dendextend)

---------------------
Welcome to dendextend version 1.15.2
Type citation('dendextend') for how to cite the package.

Type browseVignettes(package = 'dendextend') for the package vignette.
The github page is: https://github.com/talgalili/dendextend/

Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
You may ask questions at stackoverflow, use the r and dendextend tags: 
	 https://stackoverflow.com/questions/tagged/dendextend

	To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
---------------------


Attaching package: 'dendextend'

The following object is masked from 'package:stats':

    cutree

> 
> m = matrix(rnorm(100), 10)
> dend1 = as.dendrogram(hclust(dist(m)))
> dend1 = adjust_dend_by_x(dend1, sort(runif(10)))
> 
> m = matrix(rnorm(50), nr = 5)
> dend2 = as.dendrogram(hclust(dist(m)))
> 
> dend3 = as.dendrogram(hclust(dist(m[1:2, ])))
> 
> 
> dend_merge = merge_dendrogram(dend3, 
+ 	list(set(dend1, "branches_col", "red"), 
+ 		 set(dend2, "branches_col", "blue"))
+ )
> 
> grid.dendrogram(dend_merge, test = TRUE, facing = "bottom")
> grid.dendrogram(dend_merge, test = TRUE, facing = "top")
> grid.dendrogram(dend_merge, test = TRUE, facing = "left")
> grid.dendrogram(dend_merge, test = TRUE, facing = "right")
> 
> grid.dendrogram(dend_merge, test = TRUE, facing = "bottom", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "top", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "left", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "right", order = "reverse")
> 
> 
> m = matrix(rnorm(100), 10)
> dend1 = as.dendrogram(hclust(dist(m)))
> dend1 = adjust_dend_by_x(dend1, unit(1:10, "cm"))
> grid.dendrogram(dend1, test = TRUE)
> 
> dl = cut_dendrogram(dend1, k = 3)
> grid.dendrogram(dl$upper, test = TRUE)
> 
> 
> m1 = matrix(rnorm(100), nr = 10)
> m2 = matrix(rnorm(80), nr = 8)
> m3 = matrix(rnorm(50), nr = 5)
> dend1 = as.dendrogram(hclust(dist(m1)))
> dend2 = as.dendrogram(hclust(dist(m2)))
> dend3 = as.dendrogram(hclust(dist(m3)))
> dend_p = as.dendrogram(hclust(dist(rbind(colMeans(m1), colMeans(m2), colMeans(m3)))))
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
> grid.dendrogram(dend_m, test = T)
> 
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3), only_parent = TRUE)
> grid.dendrogram(dend_m, test = T)
> 
> require(dendextend)
> dend1 = color_branches(dend1, k = 1, col = "red")
> dend2 = color_branches(dend2, k = 1, col = "blue")
> dend3 = color_branches(dend3, k = 1, col = "green")
> dend_p = color_branches(dend_p, k = 1, col = "orange")
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
> grid.dendrogram(dend_m, test = T)
> 
> 
> m = matrix(rnorm(120), nc = 12)
> colnames(m) = letters[1:12]
> fa = rep(c("a", "b", "c"), times = c(2, 4, 6))
> dend = cluster_within_group(m, fa)
> grid.dendrogram(dend, test = TRUE)
> 
> 
> # stack overflow problem
> m = matrix(1, nrow = 1000, ncol = 10)
> m[1, 2] = 2
> dend = as.dendrogram(hclust(dist(m)))
> grid.dendrogram(dend, test = T)
> 
> # node attr
> m = matrix(rnorm(100), 10)
> dend = as.dendrogram(hclust(dist(m)))
> require(dendextend)
> dend1 = color_branches(dend, k = 2, col = 1:2)
> grid.dendrogram(dend1, test = T)
> dend1 = dend
> dend1 = dendrapply(dend, function(d) {
+ 	attr(d, "nodePar") = list(pch = sample(20, 1), cex = runif(1, min = 0.3, max = 1.3), col = rand_color(1))
+ 	d
+ })
> grid.dendrogram(dend1, test = T)
> 
> Heatmap(m, cluster_rows = dend1, cluster_columns = dend1)
> 
> d1 = ComplexHeatmap:::dend_edit_node(dend, method = "top-bottom", function(d, index) {
+ 	attr(d, "depth") = length(index)
+ 	d
+ })
> 
> d2 = ComplexHeatmap:::dend_edit_node(dend, method = "bottom-top", function(d, index) {
+ 	attr(d, "depth") = length(index)
+ 	d
+ })
> 
> identical(d1, d2)
[1] TRUE
> 
> proc.time()
   user  system elapsed 
   6.92    0.35    7.26 

ComplexHeatmap.Rcheck/tests_x64/test-dendrogram.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("cut_dendrogram")) {
+ 	cut_dendrogram = ComplexHeatmap:::cut_dendrogram
+ }
> 
> library(dendextend)

---------------------
Welcome to dendextend version 1.15.2
Type citation('dendextend') for how to cite the package.

Type browseVignettes(package = 'dendextend') for the package vignette.
The github page is: https://github.com/talgalili/dendextend/

Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
You may ask questions at stackoverflow, use the r and dendextend tags: 
	 https://stackoverflow.com/questions/tagged/dendextend

	To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
---------------------


Attaching package: 'dendextend'

The following object is masked from 'package:stats':

    cutree

> 
> m = matrix(rnorm(100), 10)
> dend1 = as.dendrogram(hclust(dist(m)))
> dend1 = adjust_dend_by_x(dend1, sort(runif(10)))
> 
> m = matrix(rnorm(50), nr = 5)
> dend2 = as.dendrogram(hclust(dist(m)))
> 
> dend3 = as.dendrogram(hclust(dist(m[1:2, ])))
> 
> 
> dend_merge = merge_dendrogram(dend3, 
+ 	list(set(dend1, "branches_col", "red"), 
+ 		 set(dend2, "branches_col", "blue"))
+ )
> 
> grid.dendrogram(dend_merge, test = TRUE, facing = "bottom")
> grid.dendrogram(dend_merge, test = TRUE, facing = "top")
> grid.dendrogram(dend_merge, test = TRUE, facing = "left")
> grid.dendrogram(dend_merge, test = TRUE, facing = "right")
> 
> grid.dendrogram(dend_merge, test = TRUE, facing = "bottom", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "top", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "left", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "right", order = "reverse")
> 
> 
> m = matrix(rnorm(100), 10)
> dend1 = as.dendrogram(hclust(dist(m)))
> dend1 = adjust_dend_by_x(dend1, unit(1:10, "cm"))
> grid.dendrogram(dend1, test = TRUE)
> 
> dl = cut_dendrogram(dend1, k = 3)
> grid.dendrogram(dl$upper, test = TRUE)
> 
> 
> m1 = matrix(rnorm(100), nr = 10)
> m2 = matrix(rnorm(80), nr = 8)
> m3 = matrix(rnorm(50), nr = 5)
> dend1 = as.dendrogram(hclust(dist(m1)))
> dend2 = as.dendrogram(hclust(dist(m2)))
> dend3 = as.dendrogram(hclust(dist(m3)))
> dend_p = as.dendrogram(hclust(dist(rbind(colMeans(m1), colMeans(m2), colMeans(m3)))))
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
> grid.dendrogram(dend_m, test = T)
> 
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3), only_parent = TRUE)
> grid.dendrogram(dend_m, test = T)
> 
> require(dendextend)
> dend1 = color_branches(dend1, k = 1, col = "red")
> dend2 = color_branches(dend2, k = 1, col = "blue")
> dend3 = color_branches(dend3, k = 1, col = "green")
> dend_p = color_branches(dend_p, k = 1, col = "orange")
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
> grid.dendrogram(dend_m, test = T)
> 
> 
> m = matrix(rnorm(120), nc = 12)
> colnames(m) = letters[1:12]
> fa = rep(c("a", "b", "c"), times = c(2, 4, 6))
> dend = cluster_within_group(m, fa)
> grid.dendrogram(dend, test = TRUE)
> 
> 
> # stack overflow problem
> m = matrix(1, nrow = 1000, ncol = 10)
> m[1, 2] = 2
> dend = as.dendrogram(hclust(dist(m)))
> grid.dendrogram(dend, test = T)
> 
> # node attr
> m = matrix(rnorm(100), 10)
> dend = as.dendrogram(hclust(dist(m)))
> require(dendextend)
> dend1 = color_branches(dend, k = 2, col = 1:2)
> grid.dendrogram(dend1, test = T)
> dend1 = dend
> dend1 = dendrapply(dend, function(d) {
+ 	attr(d, "nodePar") = list(pch = sample(20, 1), cex = runif(1, min = 0.3, max = 1.3), col = rand_color(1))
+ 	d
+ })
> grid.dendrogram(dend1, test = T)
> 
> Heatmap(m, cluster_rows = dend1, cluster_columns = dend1)
> 
> d1 = ComplexHeatmap:::dend_edit_node(dend, method = "top-bottom", function(d, index) {
+ 	attr(d, "depth") = length(index)
+ 	d
+ })
> 
> d2 = ComplexHeatmap:::dend_edit_node(dend, method = "bottom-top", function(d, index) {
+ 	attr(d, "depth") = length(index)
+ 	d
+ })
> 
> identical(d1, d2)
[1] TRUE
> 
> proc.time()
   user  system elapsed 
   7.68    0.35    8.03 

ComplexHeatmap.Rcheck/tests_i386/test-gridtext.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> if(requireNamespace("gridtext")) {
+ ##### test anno_richtext ####
+ mat = matrix(rnorm(100), 10)
+ rownames(mat) = letters[1:10]
+ ht = Heatmap(mat, 
+ 	column_title = gt_render("Some <span style='color:blue'>blue text **in bold.**</span><br>And *italics text.*<br>And some <span style='font-size:18pt; color:black'>large</span> text.", r = unit(2, "pt"), padding = unit(c(2, 2, 2, 2), "pt")),
+ 	column_title_gp = gpar(box_fill = "orange"),
+ 	row_labels = gt_render(letters[1:10], padding = unit(c(2, 10, 2, 10), "pt")),
+ 	row_names_gp = gpar(box_col = rep(2:3, times = 5), box_fill = ifelse(1:10%%2, "yellow", "white")),
+ 	row_km = 2, 
+ 	row_title = gt_render(c("title1", "title2")), 
+ 	row_title_gp = gpar(box_fill = "yellow"),
+ 	heatmap_legend_param = list(
+ 		title = gt_render("<span style='color:orange'>**Legend title**</span>"), 
+ 		title_gp = gpar(box_fill = "grey"),
+ 		at = c(-3, 0, 3), 
+ 		labels = gt_render(c("*negative* three", "zero", "*positive* three"))
+ 	))
+ ht = rowAnnotation(
+ 	foo = anno_text(gt_render(sapply(LETTERS[1:10], strrep, 10), align_widths = TRUE), 
+ 	                gp = gpar(box_col = "blue", box_lwd = 2), 
+ 	                just = "right", 
+ 	                location = unit(1, "npc")
+ 	)) + ht
+ draw(ht)
+ 
+ }
Loading required namespace: gridtext
> 
> proc.time()
   user  system elapsed 
   4.12    0.23    4.34 

ComplexHeatmap.Rcheck/tests_x64/test-gridtext.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> if(requireNamespace("gridtext")) {
+ ##### test anno_richtext ####
+ mat = matrix(rnorm(100), 10)
+ rownames(mat) = letters[1:10]
+ ht = Heatmap(mat, 
+ 	column_title = gt_render("Some <span style='color:blue'>blue text **in bold.**</span><br>And *italics text.*<br>And some <span style='font-size:18pt; color:black'>large</span> text.", r = unit(2, "pt"), padding = unit(c(2, 2, 2, 2), "pt")),
+ 	column_title_gp = gpar(box_fill = "orange"),
+ 	row_labels = gt_render(letters[1:10], padding = unit(c(2, 10, 2, 10), "pt")),
+ 	row_names_gp = gpar(box_col = rep(2:3, times = 5), box_fill = ifelse(1:10%%2, "yellow", "white")),
+ 	row_km = 2, 
+ 	row_title = gt_render(c("title1", "title2")), 
+ 	row_title_gp = gpar(box_fill = "yellow"),
+ 	heatmap_legend_param = list(
+ 		title = gt_render("<span style='color:orange'>**Legend title**</span>"), 
+ 		title_gp = gpar(box_fill = "grey"),
+ 		at = c(-3, 0, 3), 
+ 		labels = gt_render(c("*negative* three", "zero", "*positive* three"))
+ 	))
+ ht = rowAnnotation(
+ 	foo = anno_text(gt_render(sapply(LETTERS[1:10], strrep, 10), align_widths = TRUE), 
+ 	                gp = gpar(box_col = "blue", box_lwd = 2), 
+ 	                just = "right", 
+ 	                location = unit(1, "npc")
+ 	)) + ht
+ draw(ht)
+ 
+ }
Loading required namespace: gridtext
> 
> proc.time()
   user  system elapsed 
   4.46    0.26    4.71 

ComplexHeatmap.Rcheck/tests_i386/test-Heatmap-class.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> nr1 = 10; nr2 = 8; nr3 = 6
> nc1 = 6; nc2 = 8; nc3 = 10
> mat = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat) = paste0("row", seq_len(nrow(mat)))
> colnames(mat) = paste0("column", seq_len(nrow(mat)))
> 
> ht = Heatmap(mat)
> draw(ht, test = TRUE)
> ht
> 
> 
> ht = Heatmap(mat, col = colorRamp2(c(-3, 0, 3), c("green", "white", "red")))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, name = "test")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, rect_gp = gpar(col = "black"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, border = "red")
> draw(ht, test = TRUE)
> 
> ######## test title ##########
> ht = Heatmap(mat, row_title = "blablabla")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_side = "right")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fontsize = 20, font = 2))
> draw(ht, test = TRUE)
> 
> # ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 45)
> # draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fill = "red", col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_side = "bottom")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_gp = gpar(fontsize = 20, font = 2))
> draw(ht, test = TRUE)
> 
> # ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 45)
> # draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> 
> ### test clustering ####
> 
> ht = Heatmap(mat, cluster_rows = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = "pearson")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = function(x) dist(x))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = function(x, y) 1 - cor(x, y))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_method_rows = "single")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_side = "right")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_width = unit(4, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_gp = gpar(lwd = 2, col = "red"))
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(mat)))
> ht = Heatmap(mat, cluster_rows = dend)
> draw(ht, test = TRUE)
> 
> library(dendextend)

---------------------
Welcome to dendextend version 1.15.2
Type citation('dendextend') for how to cite the package.

Type browseVignettes(package = 'dendextend') for the package vignette.
The github page is: https://github.com/talgalili/dendextend/

Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
You may ask questions at stackoverflow, use the r and dendextend tags: 
	 https://stackoverflow.com/questions/tagged/dendextend

	To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
---------------------


Attaching package: 'dendextend'

The following object is masked from 'package:stats':

    cutree

> dend = color_branches(dend, k = 3)
> ht = Heatmap(mat, cluster_rows = dend)
> draw(ht, test = TRUE)
> 
> 
> ht = Heatmap(mat, cluster_columns = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = "pearson")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = function(x) dist(x))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = function(x, y) 1 - cor(x, y))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_method_columns = "single")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_side = "bottom")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_height = unit(4, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_gp = gpar(lwd = 2, col = "red"))
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(t(mat))))
> ht = Heatmap(mat, cluster_columns = dend)
> draw(ht, test = TRUE)
> 
> dend = color_branches(dend, k = 3)
> ht = Heatmap(mat, cluster_columns = dend)
> draw(ht, test = TRUE)
> 
> 
> ### test row/column order
> od = c(seq(1, 24, by = 2), seq(2, 24, by = 2))
> ht = Heatmap(mat, row_order = od)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_order = od, cluster_rows = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_order = od)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_order = od, cluster_columns = TRUE)
> draw(ht, test = TRUE)
> 
> 
> #### test row/column names #####
> ht = Heatmap(unname(mat))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, show_row_names = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_side = "left")
> draw(ht, test = TRUE)
> 
> random_str2 = function(k) {
+ 	sapply(1:k, function(i) paste(sample(letters, sample(5:10, 1)), collapse = ""))
+ }
> ht = Heatmap(mat, row_labels = random_str2(24))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_gp = gpar(fontsize = 20))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_gp = gpar(fontsize = 1:24/2 + 5))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_rot = 45)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_rot = 45, row_names_side = "left")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, show_column_names = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_side = "top")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_labels = random_str2(24))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_gp = gpar(fontsize = 20))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_gp = gpar(fontsize = 1:24/2 + 5))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_rot = 45)
> draw(ht, test = TRUE)
> 
> ### test annotations ####
> anno = HeatmapAnnotation(
+ 	foo = 1:24,
+ 	df = data.frame(type = c(rep("A", 12), rep("B", 12))),
+ 	bar = anno_barplot(24:1))
> ht = Heatmap(mat, top_annotation = anno)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, bottom_annotation = anno)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno)
> draw(ht, test = TRUE)
> 
> 
> ### test split ####
> ht = Heatmap(mat, km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A")))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), row_gap = unit(5, "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)),
+ 	row_gap = unit(c(1, 2, 3), "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "foo")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_gp = gpar(fill = 2:4, col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = NULL)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_names_gp = gpar(col = 2:4))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3, row_title = "cluster%s,group%s", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2, row_title = "foo")
> ht = Heatmap(mat, row_split = 2, row_title = "cluster%s")
> 
> 
> dend = as.dendrogram(hclust(dist(mat)))
> ht = Heatmap(mat, cluster_rows = dend, row_split = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2, row_names_gp = gpar(col = 2:3))
> draw(ht, test = TRUE)
> 
> 
> ### column split
> ht = Heatmap(mat, column_km = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_gap = unit(1, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)),
+ 	column_gap = unit(c(1, 2, 3), "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "foo")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_gp = gpar(fill = 2:3, col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = NULL)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_names_gp = gpar(col = 2:3))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("A", "B")), column_km = 2)
> draw(ht, test = TRUE)
> ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A")), column_km = 2)
> 
> 
> ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18)), column_km = 2, 
+ 	column_title = "cluster%s,group%s", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = 3)
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(t(mat))))
> ht = Heatmap(mat, cluster_columns = dend, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_km = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_split = 3)
> draw(ht, test = TRUE)
> 
> ### combine row and column split
> ht = Heatmap(mat, row_km = 3, column_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 3, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), 
+ 	column_split = rep(c("C", "D"), 12))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno,
+ 	row_split = rep(c("A", "B"), 12), 
+ 	row_names_gp = gpar(col = 2:3), row_gap = unit(2, "mm"),
+ 	column_split = 3,
+ 	column_names_gp = gpar(col = 2:4), column_gap = unit(4, "mm")
+ )
> draw(ht, test = TRUE)
> 
> 
> #### character matrix
> mat3 = matrix(sample(letters[1:6], 100, replace = TRUE), 10, 10)
> rownames(mat3) = {x = letters[1:10]; x[1] = "aaaaaaaaaaaaaaaaaaaaaaa";x}
> ht = Heatmap(mat3, rect_gp = gpar(col = "white"))
> draw(ht, test = TRUE)
> 
> 
> ### cell_fun
> mat = matrix(1:9, 3, 3)
> rownames(mat) = letters[1:3]
> colnames(mat) = letters[1:3]
> 
> ht = Heatmap(mat, rect_gp = gpar(col = "white"), cell_fun = function(j, i, x, y, width, height, fill) grid.text(mat[i, j], x = x, y = y),
+ 	cluster_rows = FALSE, cluster_columns = FALSE, row_names_side = "left", column_names_side = "top",
+ 	column_names_rot = 0)
> draw(ht, test = TRUE)
> 
> 
> ### test the size
> ht = Heatmap(mat)
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 1npc

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 3null

$height
[1] 3null

> 
> ht = Heatmap(mat, width = unit(10, "cm"), height = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 114.853733333333mm

$height
[1] 114.853733333333mm

> ht@matrix_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 10cm

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, width = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 114.853733333333mm

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 3null

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, heatmap_width = unit(10, "cm"), heatmap_height = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 10cm

> ht@matrix_param[c("width", "height")]
$width
[1] 85.1462666666667mm

$height
[1] 85.1462666666667mm

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, heatmap_width = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 85.1462666666667mm

$height
[1] 3null

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 2, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 2, column_km = 2, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> #### test global padding
> ra = rowAnnotation(foo = 1:3)
> ht = Heatmap(mat, show_column_names = FALSE) + ra
> draw(ht)
> 
> ht = Heatmap(matrix(rnorm(100), 10), row_km = 2, row_title = "")
> draw(ht)
> 
> if(0) {
+ ht = Heatmap(matrix(rnorm(100), 10), heatmap_width = unit(5, "mm"))
+ draw(ht)
+ }
> 
> proc.time()
   user  system elapsed 
  21.57    0.43   22.00 

ComplexHeatmap.Rcheck/tests_x64/test-Heatmap-class.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> nr1 = 10; nr2 = 8; nr3 = 6
> nc1 = 6; nc2 = 8; nc3 = 10
> mat = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat) = paste0("row", seq_len(nrow(mat)))
> colnames(mat) = paste0("column", seq_len(nrow(mat)))
> 
> ht = Heatmap(mat)
> draw(ht, test = TRUE)
> ht
> 
> 
> ht = Heatmap(mat, col = colorRamp2(c(-3, 0, 3), c("green", "white", "red")))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, name = "test")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, rect_gp = gpar(col = "black"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, border = "red")
> draw(ht, test = TRUE)
> 
> ######## test title ##########
> ht = Heatmap(mat, row_title = "blablabla")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_side = "right")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fontsize = 20, font = 2))
> draw(ht, test = TRUE)
> 
> # ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 45)
> # draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fill = "red", col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_side = "bottom")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_gp = gpar(fontsize = 20, font = 2))
> draw(ht, test = TRUE)
> 
> # ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 45)
> # draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> 
> ### test clustering ####
> 
> ht = Heatmap(mat, cluster_rows = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = "pearson")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = function(x) dist(x))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = function(x, y) 1 - cor(x, y))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_method_rows = "single")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_side = "right")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_width = unit(4, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_gp = gpar(lwd = 2, col = "red"))
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(mat)))
> ht = Heatmap(mat, cluster_rows = dend)
> draw(ht, test = TRUE)
> 
> library(dendextend)

---------------------
Welcome to dendextend version 1.15.2
Type citation('dendextend') for how to cite the package.

Type browseVignettes(package = 'dendextend') for the package vignette.
The github page is: https://github.com/talgalili/dendextend/

Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
You may ask questions at stackoverflow, use the r and dendextend tags: 
	 https://stackoverflow.com/questions/tagged/dendextend

	To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
---------------------


Attaching package: 'dendextend'

The following object is masked from 'package:stats':

    cutree

> dend = color_branches(dend, k = 3)
> ht = Heatmap(mat, cluster_rows = dend)
> draw(ht, test = TRUE)
> 
> 
> ht = Heatmap(mat, cluster_columns = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = "pearson")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = function(x) dist(x))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = function(x, y) 1 - cor(x, y))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_method_columns = "single")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_side = "bottom")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_height = unit(4, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_gp = gpar(lwd = 2, col = "red"))
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(t(mat))))
> ht = Heatmap(mat, cluster_columns = dend)
> draw(ht, test = TRUE)
> 
> dend = color_branches(dend, k = 3)
> ht = Heatmap(mat, cluster_columns = dend)
> draw(ht, test = TRUE)
> 
> 
> ### test row/column order
> od = c(seq(1, 24, by = 2), seq(2, 24, by = 2))
> ht = Heatmap(mat, row_order = od)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_order = od, cluster_rows = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_order = od)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_order = od, cluster_columns = TRUE)
> draw(ht, test = TRUE)
> 
> 
> #### test row/column names #####
> ht = Heatmap(unname(mat))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, show_row_names = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_side = "left")
> draw(ht, test = TRUE)
> 
> random_str2 = function(k) {
+ 	sapply(1:k, function(i) paste(sample(letters, sample(5:10, 1)), collapse = ""))
+ }
> ht = Heatmap(mat, row_labels = random_str2(24))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_gp = gpar(fontsize = 20))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_gp = gpar(fontsize = 1:24/2 + 5))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_rot = 45)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_rot = 45, row_names_side = "left")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, show_column_names = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_side = "top")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_labels = random_str2(24))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_gp = gpar(fontsize = 20))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_gp = gpar(fontsize = 1:24/2 + 5))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_rot = 45)
> draw(ht, test = TRUE)
> 
> ### test annotations ####
> anno = HeatmapAnnotation(
+ 	foo = 1:24,
+ 	df = data.frame(type = c(rep("A", 12), rep("B", 12))),
+ 	bar = anno_barplot(24:1))
> ht = Heatmap(mat, top_annotation = anno)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, bottom_annotation = anno)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno)
> draw(ht, test = TRUE)
> 
> 
> ### test split ####
> ht = Heatmap(mat, km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A")))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), row_gap = unit(5, "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)),
+ 	row_gap = unit(c(1, 2, 3), "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "foo")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_gp = gpar(fill = 2:4, col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = NULL)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_names_gp = gpar(col = 2:4))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3, row_title = "cluster%s,group%s", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2, row_title = "foo")
> ht = Heatmap(mat, row_split = 2, row_title = "cluster%s")
> 
> 
> dend = as.dendrogram(hclust(dist(mat)))
> ht = Heatmap(mat, cluster_rows = dend, row_split = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2, row_names_gp = gpar(col = 2:3))
> draw(ht, test = TRUE)
> 
> 
> ### column split
> ht = Heatmap(mat, column_km = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_gap = unit(1, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)),
+ 	column_gap = unit(c(1, 2, 3), "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "foo")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_gp = gpar(fill = 2:3, col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = NULL)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_names_gp = gpar(col = 2:3))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("A", "B")), column_km = 2)
> draw(ht, test = TRUE)
> ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A")), column_km = 2)
> 
> 
> ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18)), column_km = 2, 
+ 	column_title = "cluster%s,group%s", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = 3)
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(t(mat))))
> ht = Heatmap(mat, cluster_columns = dend, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_km = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_split = 3)
> draw(ht, test = TRUE)
> 
> ### combine row and column split
> ht = Heatmap(mat, row_km = 3, column_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 3, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), 
+ 	column_split = rep(c("C", "D"), 12))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno,
+ 	row_split = rep(c("A", "B"), 12), 
+ 	row_names_gp = gpar(col = 2:3), row_gap = unit(2, "mm"),
+ 	column_split = 3,
+ 	column_names_gp = gpar(col = 2:4), column_gap = unit(4, "mm")
+ )
> draw(ht, test = TRUE)
> 
> 
> #### character matrix
> mat3 = matrix(sample(letters[1:6], 100, replace = TRUE), 10, 10)
> rownames(mat3) = {x = letters[1:10]; x[1] = "aaaaaaaaaaaaaaaaaaaaaaa";x}
> ht = Heatmap(mat3, rect_gp = gpar(col = "white"))
> draw(ht, test = TRUE)
> 
> 
> ### cell_fun
> mat = matrix(1:9, 3, 3)
> rownames(mat) = letters[1:3]
> colnames(mat) = letters[1:3]
> 
> ht = Heatmap(mat, rect_gp = gpar(col = "white"), cell_fun = function(j, i, x, y, width, height, fill) grid.text(mat[i, j], x = x, y = y),
+ 	cluster_rows = FALSE, cluster_columns = FALSE, row_names_side = "left", column_names_side = "top",
+ 	column_names_rot = 0)
> draw(ht, test = TRUE)
> 
> 
> ### test the size
> ht = Heatmap(mat)
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 1npc

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 3null

$height
[1] 3null

> 
> ht = Heatmap(mat, width = unit(10, "cm"), height = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 114.853733333333mm

$height
[1] 114.853733333333mm

> ht@matrix_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 10cm

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, width = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 114.853733333333mm

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 3null

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, heatmap_width = unit(10, "cm"), heatmap_height = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 10cm

> ht@matrix_param[c("width", "height")]
$width
[1] 85.1462666666667mm

$height
[1] 85.1462666666667mm

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, heatmap_width = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 85.1462666666667mm

$height
[1] 3null

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 2, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 2, column_km = 2, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> #### test global padding
> ra = rowAnnotation(foo = 1:3)
> ht = Heatmap(mat, show_column_names = FALSE) + ra
> draw(ht)
> 
> ht = Heatmap(matrix(rnorm(100), 10), row_km = 2, row_title = "")
> draw(ht)
> 
> if(0) {
+ ht = Heatmap(matrix(rnorm(100), 10), heatmap_width = unit(5, "mm"))
+ draw(ht)
+ }
> 
> proc.time()
   user  system elapsed 
  19.68    0.34   20.00 

ComplexHeatmap.Rcheck/tests_i386/test-Heatmap-cluster.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> # ht_opt("verbose" = TRUE)
> m = matrix(rnorm(50), nr = 10)
> 
> ht = Heatmap(m)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = FALSE)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, row_km = 2)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, row_split = sample(letters[1:2], 10, replace = TRUE))
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = hclust(dist(m)))
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = hclust(dist(m)), row_split = 2)
> ht = make_row_cluster(ht)
> 
> # ht_opt("verbose" = FALSE)
> 
> proc.time()
   user  system elapsed 
   2.54    0.29    2.81 

ComplexHeatmap.Rcheck/tests_x64/test-Heatmap-cluster.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> # ht_opt("verbose" = TRUE)
> m = matrix(rnorm(50), nr = 10)
> 
> ht = Heatmap(m)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = FALSE)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, row_km = 2)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, row_split = sample(letters[1:2], 10, replace = TRUE))
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = hclust(dist(m)))
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = hclust(dist(m)), row_split = 2)
> ht = make_row_cluster(ht)
> 
> # ht_opt("verbose" = FALSE)
> 
> proc.time()
   user  system elapsed 
   2.79    0.14    2.92 

ComplexHeatmap.Rcheck/tests_i386/test-HeatmapAnnotation.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> 
> ha = HeatmapAnnotation(foo = 1:10)
> ha
A HeatmapAnnotation object with 1 annotation
  name: heatmap_annotation_0 
  position: column 
  items: 10 
  width: 1npc 
  height: 5mm 
  this object is subsetable
  6.75733333333333mm extension on the right 

 name   annotation_type color_mapping height
  foo continuous vector        random    5mm
> 
> 
> ha = HeatmapAnnotation(foo = cbind(1:10, 10:1))
> ha
A HeatmapAnnotation object with 1 annotation
  name: heatmap_annotation_1 
  position: column 
  items: 10 
  width: 1npc 
  height: 10mm 
  this object is subsetable
  6.75733333333333mm extension on the right 

 name   annotation_type color_mapping height
  foo continuous matrix        random   10mm
> draw(ha, test = "matrix as column annotation")
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	pt = anno_points(1:10), annotation_name_side = "left")
> draw(ha, test = "complex annotations")
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	pt = anno_points(1:10), annotation_name_side = "left", height = unit(8, "cm"))
> draw(ha, test = "complex annotations")
> 
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE))
> 
> ha = HeatmapAnnotation(foo = 1:10, 
+ 	bar = cbind(1:10, 10:1),
+ 	pt = anno_points(1:10),
+ 	gap = unit(2, "mm"))
> draw(ha, test = "complex annotations")
> 
> ha2 = re_size(ha, annotation_height = unit(1:3, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = 1, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = 1:3, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(1, 2, 3), c("null", "null", "cm")), height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "null", "cm")), height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "cm", "cm")))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], annotation_height = 1, height = unit(4, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], annotation_height = c(1, 4), height = unit(4, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> 
> ha2 = re_size(ha, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> 
> #### test anno_empty and self-defined anotation function
> ha = HeatmapAnnotation(foo = anno_empty(), height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> 
> ha = HeatmapAnnotation(foo = function(index) {grid.rect()}, bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "self-defined function")
> 
> 
> lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	anno = anno_horizon(lt), which = "row")
> draw(ha, test = "complex annotations on row")
> 
> ## test row annotation with no heatmap
> rowAnnotation(foo = 1:10, bar = anno_points(10:1))
A HeatmapAnnotation object with 2 annotations
  name: heatmap_annotation_11 
  position: row 
  items: 10 
  width: 15.3514598035146mm 
  height: 1npc 
  this object is subsetable
  9.17784444444445mm extension on the bottom 

 name   annotation_type color_mapping width
  foo continuous vector        random   5mm
  bar     anno_points()                10mm
> 
> if(0) {
+ HeatmapAnnotation(1:10)
+ 
+ HeatmapAnnotation(data.frame(1:10))
+ }
> 
> 
> ha = HeatmapAnnotation(summary = anno_summary(height = unit(4, "cm")))
> v = sample(letters[1:2], 50, replace = TRUE)
> split = sample(letters[1:2], 50, replace = TRUE)
> 
> ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
> draw(ht)
> 
> ha = HeatmapAnnotation(summary = anno_summary(gp = gpar(fill = 2:3), height = unit(4, "cm")))
> v = rnorm(50)
> ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
> draw(ht)
> 
> 
> ### auto adjust
> m = matrix(rnorm(100), 10)
> ht_list = Heatmap(m, top_annotation = HeatmapAnnotation(foo = 1:10), column_dend_height = unit(4, "cm")) +
+ 	Heatmap(m, top_annotation = HeatmapAnnotation(bar = anno_points(1:10)),
+ 		cluster_columns = FALSE)
> draw(ht_list)
> 
> fun = function(index) {
+ 	grid.rect()
+ }
> ha = HeatmapAnnotation(fun = fun, height = unit(4, "cm"))
> draw(ha, 1:10, test = TRUE)
> 
> ha = rowAnnotation(fun = fun, width = unit(4, "cm"))
> draw(ha, 1:10, test = TRUE)
> 
> 
> ## test anno_mark
> m = matrix(rnorm(1000), nrow = 100)
> ha1 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]))
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1)
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha1
> draw(ht)
> 
> split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b"
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1, row_split = split, gap = unit(1, "cm"))
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha1
> draw(ht)
> 
> # ha has two annotations
> ha2 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2)
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha2
> draw(ht)
> 
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2, row_split = split, gap = unit(1, "cm"))
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha2
> draw(ht)
> 
> ## test anno_mark as column annotation
> m = matrix(rnorm(1000), ncol = 100)
> ha1 = columnAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]))
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1)
> draw(ht)
> ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE)
> draw(ht_list)
> 
> split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b"
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1, column_split = split, column_gap = unit(1, "cm"))
> draw(ht)
> ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, gap = unit(1, "cm"))
> draw(ht_list)
> 
> # ha has two annotations
> ha2 = HeatmapAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100)
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2)
> draw(ht)
> ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE)
> draw(ht_list)
> 
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2, column_split = split, column_gap = unit(1, "cm"))
> draw(ht)
> ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, column_gap = unit(1, "cm"))
> draw(ht_list)
> 
> 
> ### when there are only simple annotations
> col_fun = colorRamp2(c(0, 10), c("white", "blue"))
> ha = HeatmapAnnotation(
+     foo = cbind(a = 1:10, b = 10:1), 
+     bar = sample(letters[1:3], 10, replace = TRUE),
+     col = list(foo = col_fun,
+                bar = c("a" = "red", "b" = "green", "c" = "blue")
+     ),
+     simple_anno_size = unit(1, "cm")
+ )
> draw(ha, test = TRUE)
> 
> set.seed(123)
> mat1 = matrix(rnorm(80, 2), 8, 10)
> mat1 = rbind(mat1, matrix(rnorm(40, -2), 4, 10))
> rownames(mat1) = paste0("R", 1:12)
> colnames(mat1) = paste0("C", 1:10)
> 
> mat2 = matrix(runif(60, max = 3, min = 1), 6, 10)
> mat2 = rbind(mat2, matrix(runif(60, max = 2, min = 0), 6, 10))
> rownames(mat2) = paste0("R", 1:12)
> colnames(mat2) = paste0("C", 1:10)
> 
> ind = sample(12, 12)
> mat1 = mat1[ind, ]
> mat2 = mat2[ind, ]
> 
> ha1 = HeatmapAnnotation(foo1 = 1:10, 
+ 	                    annotation_height = unit(1, "cm"),
+ 	                    simple_anno_size_adjust = TRUE,
+                         annotation_name_side = "left")
> ha2 = HeatmapAnnotation(df = data.frame(foo1 = 1:10,
+                                         foo2 = 1:10,
+                                         foo4 = 1:10,
+                                         foo5 = 1:10))
> ht1 = Heatmap(mat1, name = "rnorm", top_annotation = ha1)
> ht2 = Heatmap(mat2, name = "runif", top_annotation = ha2)
> 
> draw(ht1 + ht2)
> 
> ##### test size of a single simple annotation
> 
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	simple_anno_size = unit(1, "cm")
+ )
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	annotation_height = unit(1, "cm"),
+ 	simple_anno_size_adjust = TRUE
+ )
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	height = unit(1, "cm"),
+ 	simple_anno_size_adjust = TRUE
+ )
> 
> 
> ## annotation with the same names
> 
> set.seed(123)
> m = matrix(rnorm(100), 10)
> ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE))
> ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE))
> 
> ht_list = Heatmap(m, top_annotation = ha1) + 
+ 	Heatmap(m, top_annotation = ha2)
> draw(ht_list)
> 
> ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE),
+ 	annotation_legend_param = list(
+ 		foo = list(title = "letters", 
+ 			       at = c("a", "b", "c"),
+ 			       labels = c("A", "B", "C")
+ 			  )
+ 	))
> ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE))
> 
> ht_list = Heatmap(m, top_annotation = ha1) + 
+ 	Heatmap(m, top_annotation = ha2)
> draw(ht_list)
> 
> x = matrix(rnorm(6), ncol=3)
> subtype_col = c("Basal" = "purple","Her2" = "black","Normal" = "blue")
> h1 <- HeatmapAnnotation("Subtype" = c("Basal","Her2", "Normal"),
+                         col = list("Subtype" = subtype_col))
> h2 <- HeatmapAnnotation("Subtype" = c("Normal","Normal", "Basal"),
+                         col = list("Subtype" = subtype_col))
> 
> ht_list = Heatmap(x,top_annotation = h1) + Heatmap(x,top_annotation = h2)
> draw(ht_list)
> 
> 
> ### test annotation_label
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = c("anno1", "anno2"))
> draw(ha, test = TRUE)
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(foo = "anno1"))
> draw(ha, test = TRUE)
> 
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(
+ 		foo = gt_render("foo", gp = gpar(box_fill = "red"))))
Loading required namespace: gridtext
> draw(ha, test = TRUE)
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(
+ 		foo = gt_render("foo", gp = gpar(box_fill = "red")),
+ 		bar = gt_render("bar", gp = gpar(box_fill = "blue"))))
> draw(ha, test = TRUE)
> 
> proc.time()
   user  system elapsed 
  12.53    0.31   12.82 

ComplexHeatmap.Rcheck/tests_x64/test-HeatmapAnnotation.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> 
> ha = HeatmapAnnotation(foo = 1:10)
> ha
A HeatmapAnnotation object with 1 annotation
  name: heatmap_annotation_0 
  position: column 
  items: 10 
  width: 1npc 
  height: 5mm 
  this object is subsetable
  6.75733333333333mm extension on the right 

 name   annotation_type color_mapping height
  foo continuous vector        random    5mm
> 
> 
> ha = HeatmapAnnotation(foo = cbind(1:10, 10:1))
> ha
A HeatmapAnnotation object with 1 annotation
  name: heatmap_annotation_1 
  position: column 
  items: 10 
  width: 1npc 
  height: 10mm 
  this object is subsetable
  6.75733333333333mm extension on the right 

 name   annotation_type color_mapping height
  foo continuous matrix        random   10mm
> draw(ha, test = "matrix as column annotation")
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	pt = anno_points(1:10), annotation_name_side = "left")
> draw(ha, test = "complex annotations")
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	pt = anno_points(1:10), annotation_name_side = "left", height = unit(8, "cm"))
> draw(ha, test = "complex annotations")
> 
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE))
> 
> ha = HeatmapAnnotation(foo = 1:10, 
+ 	bar = cbind(1:10, 10:1),
+ 	pt = anno_points(1:10),
+ 	gap = unit(2, "mm"))
> draw(ha, test = "complex annotations")
> 
> ha2 = re_size(ha, annotation_height = unit(1:3, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = 1, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = 1:3, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(1, 2, 3), c("null", "null", "cm")), height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "null", "cm")), height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "cm", "cm")))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], annotation_height = 1, height = unit(4, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], annotation_height = c(1, 4), height = unit(4, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> 
> ha2 = re_size(ha, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> 
> #### test anno_empty and self-defined anotation function
> ha = HeatmapAnnotation(foo = anno_empty(), height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> 
> ha = HeatmapAnnotation(foo = function(index) {grid.rect()}, bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "self-defined function")
> 
> 
> lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	anno = anno_horizon(lt), which = "row")
> draw(ha, test = "complex annotations on row")
> 
> ## test row annotation with no heatmap
> rowAnnotation(foo = 1:10, bar = anno_points(10:1))
A HeatmapAnnotation object with 2 annotations
  name: heatmap_annotation_11 
  position: row 
  items: 10 
  width: 15.3514598035146mm 
  height: 1npc 
  this object is subsetable
  9.17784444444445mm extension on the bottom 

 name   annotation_type color_mapping width
  foo continuous vector        random   5mm
  bar     anno_points()                10mm
> 
> if(0) {
+ HeatmapAnnotation(1:10)
+ 
+ HeatmapAnnotation(data.frame(1:10))
+ }
> 
> 
> ha = HeatmapAnnotation(summary = anno_summary(height = unit(4, "cm")))
> v = sample(letters[1:2], 50, replace = TRUE)
> split = sample(letters[1:2], 50, replace = TRUE)
> 
> ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
> draw(ht)
> 
> ha = HeatmapAnnotation(summary = anno_summary(gp = gpar(fill = 2:3), height = unit(4, "cm")))
> v = rnorm(50)
> ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
> draw(ht)
> 
> 
> ### auto adjust
> m = matrix(rnorm(100), 10)
> ht_list = Heatmap(m, top_annotation = HeatmapAnnotation(foo = 1:10), column_dend_height = unit(4, "cm")) +
+ 	Heatmap(m, top_annotation = HeatmapAnnotation(bar = anno_points(1:10)),
+ 		cluster_columns = FALSE)
> draw(ht_list)
> 
> fun = function(index) {
+ 	grid.rect()
+ }
> ha = HeatmapAnnotation(fun = fun, height = unit(4, "cm"))
> draw(ha, 1:10, test = TRUE)
> 
> ha = rowAnnotation(fun = fun, width = unit(4, "cm"))
> draw(ha, 1:10, test = TRUE)
> 
> 
> ## test anno_mark
> m = matrix(rnorm(1000), nrow = 100)
> ha1 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]))
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1)
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha1
> draw(ht)
> 
> split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b"
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1, row_split = split, gap = unit(1, "cm"))
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha1
> draw(ht)
> 
> # ha has two annotations
> ha2 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2)
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha2
> draw(ht)
> 
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2, row_split = split, gap = unit(1, "cm"))
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha2
> draw(ht)
> 
> ## test anno_mark as column annotation
> m = matrix(rnorm(1000), ncol = 100)
> ha1 = columnAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]))
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1)
> draw(ht)
> ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE)
> draw(ht_list)
> 
> split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b"
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1, column_split = split, column_gap = unit(1, "cm"))
> draw(ht)
> ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, gap = unit(1, "cm"))
> draw(ht_list)
> 
> # ha has two annotations
> ha2 = HeatmapAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100)
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2)
> draw(ht)
> ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE)
> draw(ht_list)
> 
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2, column_split = split, column_gap = unit(1, "cm"))
> draw(ht)
> ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, column_gap = unit(1, "cm"))
> draw(ht_list)
> 
> 
> ### when there are only simple annotations
> col_fun = colorRamp2(c(0, 10), c("white", "blue"))
> ha = HeatmapAnnotation(
+     foo = cbind(a = 1:10, b = 10:1), 
+     bar = sample(letters[1:3], 10, replace = TRUE),
+     col = list(foo = col_fun,
+                bar = c("a" = "red", "b" = "green", "c" = "blue")
+     ),
+     simple_anno_size = unit(1, "cm")
+ )
> draw(ha, test = TRUE)
> 
> set.seed(123)
> mat1 = matrix(rnorm(80, 2), 8, 10)
> mat1 = rbind(mat1, matrix(rnorm(40, -2), 4, 10))
> rownames(mat1) = paste0("R", 1:12)
> colnames(mat1) = paste0("C", 1:10)
> 
> mat2 = matrix(runif(60, max = 3, min = 1), 6, 10)
> mat2 = rbind(mat2, matrix(runif(60, max = 2, min = 0), 6, 10))
> rownames(mat2) = paste0("R", 1:12)
> colnames(mat2) = paste0("C", 1:10)
> 
> ind = sample(12, 12)
> mat1 = mat1[ind, ]
> mat2 = mat2[ind, ]
> 
> ha1 = HeatmapAnnotation(foo1 = 1:10, 
+ 	                    annotation_height = unit(1, "cm"),
+ 	                    simple_anno_size_adjust = TRUE,
+                         annotation_name_side = "left")
> ha2 = HeatmapAnnotation(df = data.frame(foo1 = 1:10,
+                                         foo2 = 1:10,
+                                         foo4 = 1:10,
+                                         foo5 = 1:10))
> ht1 = Heatmap(mat1, name = "rnorm", top_annotation = ha1)
> ht2 = Heatmap(mat2, name = "runif", top_annotation = ha2)
> 
> draw(ht1 + ht2)
> 
> ##### test size of a single simple annotation
> 
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	simple_anno_size = unit(1, "cm")
+ )
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	annotation_height = unit(1, "cm"),
+ 	simple_anno_size_adjust = TRUE
+ )
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	height = unit(1, "cm"),
+ 	simple_anno_size_adjust = TRUE
+ )
> 
> 
> ## annotation with the same names
> 
> set.seed(123)
> m = matrix(rnorm(100), 10)
> ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE))
> ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE))
> 
> ht_list = Heatmap(m, top_annotation = ha1) + 
+ 	Heatmap(m, top_annotation = ha2)
> draw(ht_list)
> 
> ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE),
+ 	annotation_legend_param = list(
+ 		foo = list(title = "letters", 
+ 			       at = c("a", "b", "c"),
+ 			       labels = c("A", "B", "C")
+ 			  )
+ 	))
> ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE))
> 
> ht_list = Heatmap(m, top_annotation = ha1) + 
+ 	Heatmap(m, top_annotation = ha2)
> draw(ht_list)
> 
> x = matrix(rnorm(6), ncol=3)
> subtype_col = c("Basal" = "purple","Her2" = "black","Normal" = "blue")
> h1 <- HeatmapAnnotation("Subtype" = c("Basal","Her2", "Normal"),
+                         col = list("Subtype" = subtype_col))
> h2 <- HeatmapAnnotation("Subtype" = c("Normal","Normal", "Basal"),
+                         col = list("Subtype" = subtype_col))
> 
> ht_list = Heatmap(x,top_annotation = h1) + Heatmap(x,top_annotation = h2)
> draw(ht_list)
> 
> 
> ### test annotation_label
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = c("anno1", "anno2"))
> draw(ha, test = TRUE)
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(foo = "anno1"))
> draw(ha, test = TRUE)
> 
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(
+ 		foo = gt_render("foo", gp = gpar(box_fill = "red"))))
Loading required namespace: gridtext
> draw(ha, test = TRUE)
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(
+ 		foo = gt_render("foo", gp = gpar(box_fill = "red")),
+ 		bar = gt_render("bar", gp = gpar(box_fill = "blue"))))
> draw(ha, test = TRUE)
> 
> proc.time()
   user  system elapsed 
  14.56    0.18   14.76 

ComplexHeatmap.Rcheck/tests_i386/test-HeatmapList-class.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> nr1 = 10; nr2 = 8; nr3 = 6
> nc1 = 6; nc2 = 8; nc3 = 10
> mat1 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat1) = paste0("row_1_", seq_len(nrow(mat1)))
> colnames(mat1) = paste0("column_1_", seq_len(nrow(mat1)))
> 
> nr3 = 10; nr1 = 8; nr2 = 6
> nc3 = 6; nc1 = 8; nc2 = 10
> mat2 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat2) = paste0("row_2_", seq_len(nrow(mat2)))
> colnames(mat2) = paste0("column_2_", seq_len(nrow(mat2)))
> 
> 
> ht_list = Heatmap(mat1) + Heatmap(mat2)
> draw(ht_list)
> 
> ######### legend ############
> draw(ht_list, heatmap_legend_side = "bottom")
> draw(ht_list, heatmap_legend_side = "left")
> draw(ht_list, heatmap_legend_side = "top")
> 
> 
> ########## width #############
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(8, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(12, "cm")) + Heatmap(mat2, width = unit(8, "cm"))
> draw(ht_list)
> 
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(6, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2, width = unit(6, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = 4) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, width = 2) + Heatmap(mat2, width = 1)
> draw(ht_list)
> 
> 
> ########### height ###########
> ht_list = Heatmap(mat1, height = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, heatmap_height = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm"), height = unit(6, "cm")) + 
+ 	Heatmap(mat2, width = unit(6, "cm"), height = unit(6, "cm"))
> draw(ht_list, column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> 
> ##### split #####
> ht_list = Heatmap(mat1, name = "m1", row_km = 2) + Heatmap(mat2, name = "m2", row_km = 3)
> draw(ht_list, main_heatmap = "m1")
> draw(ht_list, main_heatmap = "m2")
> 
> ht_list = Heatmap(mat1, name = "m1", row_km = 2, column_km = 3, width = unit(8, "cm"), height = unit(6, "cm")) + 
+ 	Heatmap(mat2, name = "m2", row_km = 3, column_km = 2, width = unit(8, "cm"), height = unit(10, "cm"))
> draw(ht_list, main_heatmap = "m1", column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> draw(ht_list, main_heatmap = "m2", column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> 
> ##### adjust column annotations #####
> ha1 = HeatmapAnnotation(foo = 1:24, bar = anno_points(24:1, height = unit(4, "cm")))
> ha2 = HeatmapAnnotation(bar = anno_points(24:1), foo = 1:24)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2)
> draw(ht_list)
> ha2 = HeatmapAnnotation(foo = 1:24)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2)
> draw(ht_list)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, bottom_annotation = ha1) + Heatmap(mat2)
> draw(ht_list)
> 
> 
> #### row annotations #####
> ha = rowAnnotation(foo = 1:24, bar = anno_points(24:1), width = unit(6, "cm"))
> ht_list = Heatmap(mat1) + ha
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + ha
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm"), row_km = 2) + ha
> draw(ht_list)
> 
> ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") +
+   rowAnnotation(foo = 1:10, bar = anno_points(10:1)) + 
+   Heatmap(matrix(runif(100), 10), name = "runif")
> summary(ht_list[1:5, ])
A horizontal heamtap list with 3 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
  heatmap_annotation_4: a list of 2 annotations
    foo:   a simple annotation.
    bar:   a complex annotation.
  runif: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, 1])
A horizontal heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, "rnorm"])
A horizontal heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, c("rnorm", "foo")])
A horizontal heamtap list with 2 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
  heatmap_annotation_4: a list of 1 annotations
    foo:   a simple annotation.
> 
> ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") %v%
+   columnAnnotation(foo = 1:10, bar = anno_points(10:1)) %v%
+   Heatmap(matrix(runif(100), 10), name = "runif")
> summary(ht_list[, 1:5])
A vertical heamtap list with 3 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
  heatmap_annotation_5: a list of 2 annotations
    foo:   a simple annotation.
    bar:   a complex annotation.
  runif: a matrix with 10 rows and 5 columns
> summary(ht_list[1, 1:5])
A vertical heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
> summary(ht_list["rnorm", 1:5])
A vertical heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
> summary(ht_list[c("rnorm", "foo"), 1:5])
A vertical heamtap list with 2 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
  heatmap_annotation_5: a list of 1 annotations
    foo:   a simple annotation.
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  15.51    0.25   15.73 

ComplexHeatmap.Rcheck/tests_x64/test-HeatmapList-class.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> nr1 = 10; nr2 = 8; nr3 = 6
> nc1 = 6; nc2 = 8; nc3 = 10
> mat1 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat1) = paste0("row_1_", seq_len(nrow(mat1)))
> colnames(mat1) = paste0("column_1_", seq_len(nrow(mat1)))
> 
> nr3 = 10; nr1 = 8; nr2 = 6
> nc3 = 6; nc1 = 8; nc2 = 10
> mat2 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat2) = paste0("row_2_", seq_len(nrow(mat2)))
> colnames(mat2) = paste0("column_2_", seq_len(nrow(mat2)))
> 
> 
> ht_list = Heatmap(mat1) + Heatmap(mat2)
> draw(ht_list)
> 
> ######### legend ############
> draw(ht_list, heatmap_legend_side = "bottom")
> draw(ht_list, heatmap_legend_side = "left")
> draw(ht_list, heatmap_legend_side = "top")
> 
> 
> ########## width #############
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(8, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(12, "cm")) + Heatmap(mat2, width = unit(8, "cm"))
> draw(ht_list)
> 
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(6, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2, width = unit(6, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = 4) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, width = 2) + Heatmap(mat2, width = 1)
> draw(ht_list)
> 
> 
> ########### height ###########
> ht_list = Heatmap(mat1, height = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, heatmap_height = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm"), height = unit(6, "cm")) + 
+ 	Heatmap(mat2, width = unit(6, "cm"), height = unit(6, "cm"))
> draw(ht_list, column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> 
> ##### split #####
> ht_list = Heatmap(mat1, name = "m1", row_km = 2) + Heatmap(mat2, name = "m2", row_km = 3)
> draw(ht_list, main_heatmap = "m1")
> draw(ht_list, main_heatmap = "m2")
> 
> ht_list = Heatmap(mat1, name = "m1", row_km = 2, column_km = 3, width = unit(8, "cm"), height = unit(6, "cm")) + 
+ 	Heatmap(mat2, name = "m2", row_km = 3, column_km = 2, width = unit(8, "cm"), height = unit(10, "cm"))
> draw(ht_list, main_heatmap = "m1", column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> draw(ht_list, main_heatmap = "m2", column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> 
> ##### adjust column annotations #####
> ha1 = HeatmapAnnotation(foo = 1:24, bar = anno_points(24:1, height = unit(4, "cm")))
> ha2 = HeatmapAnnotation(bar = anno_points(24:1), foo = 1:24)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2)
> draw(ht_list)
> ha2 = HeatmapAnnotation(foo = 1:24)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2)
> draw(ht_list)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, bottom_annotation = ha1) + Heatmap(mat2)
> draw(ht_list)
> 
> 
> #### row annotations #####
> ha = rowAnnotation(foo = 1:24, bar = anno_points(24:1), width = unit(6, "cm"))
> ht_list = Heatmap(mat1) + ha
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + ha
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm"), row_km = 2) + ha
> draw(ht_list)
> 
> ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") +
+   rowAnnotation(foo = 1:10, bar = anno_points(10:1)) + 
+   Heatmap(matrix(runif(100), 10), name = "runif")
> summary(ht_list[1:5, ])
A horizontal heamtap list with 3 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
  heatmap_annotation_4: a list of 2 annotations
    foo:   a simple annotation.
    bar:   a complex annotation.
  runif: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, 1])
A horizontal heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, "rnorm"])
A horizontal heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, c("rnorm", "foo")])
A horizontal heamtap list with 2 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
  heatmap_annotation_4: a list of 1 annotations
    foo:   a simple annotation.
> 
> ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") %v%
+   columnAnnotation(foo = 1:10, bar = anno_points(10:1)) %v%
+   Heatmap(matrix(runif(100), 10), name = "runif")
> summary(ht_list[, 1:5])
A vertical heamtap list with 3 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
  heatmap_annotation_5: a list of 2 annotations
    foo:   a simple annotation.
    bar:   a complex annotation.
  runif: a matrix with 10 rows and 5 columns
> summary(ht_list[1, 1:5])
A vertical heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
> summary(ht_list["rnorm", 1:5])
A vertical heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
> summary(ht_list[c("rnorm", "foo"), 1:5])
A vertical heamtap list with 2 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
  heatmap_annotation_5: a list of 1 annotations
    foo:   a simple annotation.
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  17.50    0.28   17.78 

ComplexHeatmap.Rcheck/tests_i386/test-interactive.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> if(0) {
+ 
+ m = matrix(rnorm(100), 10)
+ rownames(m) = 1:10
+ colnames(m) = 1:10
+ 
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ 
+ 
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ 
+ ht = Heatmap(m, row_km = 2, column_km = 2) + Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ pdf("~/test.pdf")
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE)
+ 
+ set.seed(123)
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ png("~/test-1.png")
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ png("~/test-2.png")
+ set.seed(123)
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ }
> 
> proc.time()
   user  system elapsed 
   0.26    0.03    0.28 

ComplexHeatmap.Rcheck/tests_x64/test-interactive.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> if(0) {
+ 
+ m = matrix(rnorm(100), 10)
+ rownames(m) = 1:10
+ colnames(m) = 1:10
+ 
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ 
+ 
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ 
+ ht = Heatmap(m, row_km = 2, column_km = 2) + Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ pdf("~/test.pdf")
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE)
+ 
+ set.seed(123)
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ png("~/test-1.png")
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ png("~/test-2.png")
+ set.seed(123)
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ }
> 
> proc.time()
   user  system elapsed 
   0.26    0.04    0.29 

ComplexHeatmap.Rcheck/tests_i386/test-Legend.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("random_str")) {
+ 	random_str = ComplexHeatmap:::random_str
+ }
> 
> lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "default discrete legends style")
> 
> lgd = Legend(labels = 1:6, legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "only specify labels with no at")
> 
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "add labels and title")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "lefttop")
> draw(lgd, test = "title put in the lefttop")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "lefttop-rot")
> draw(lgd, test = "title put in the lefttop-rot")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "leftcenter-rot")
> draw(lgd, test = "title put in the leftcenter-rot")
> 
> lgd = Legend(labels = 1:6, title = "fooooooo", legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "title is longer than the legend body")
> 
> lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), grid_height = unit(1, "cm"), 
+ 	title = "foo", grid_width = unit(5, "mm"))
> draw(lgd, test = "grid size")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	labels_gp = gpar(col = "red", fontsize = 14))
> draw(lgd, test = "labels_gp")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	title_gp = gpar(col = "red", fontsize = 14))
> draw(lgd, test = "title_gp")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	border = "red")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3)
> draw(lgd, test = "in 3 columns")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, title_position = "topcenter")
> draw(lgd, test = "in 3 columns, title in the center")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, by_row = TRUE)
> draw(lgd, test = "in 3 columns and by rows")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, gap = unit(1, "cm"))
> draw(lgd, test = "in 3 columns with gap between columns")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	nrow = 3)
> draw(lgd, test = "in 3 rows")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "lefttop")
> draw(lgd, test = "1 row and title is on the left")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "lefttop-rot")
> draw(lgd, test = "1 row and title is on the left, 90 rotation")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "leftcenter")
> draw(lgd, test = "1 row and title is on the left, 90 rotation")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = 1:6, 
+ 	legend_gp = gpar(col = 1:6), background = "red")
> draw(lgd, test = "points as legends")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = letters[1:6], 
+ 	legend_gp = gpar(col = 1:6), background = "white")
> draw(lgd, test = "letters as legends")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "lines", 
+ 	legend_gp = gpar(col = 1:6, lty = 1:6))
> draw(lgd, test = "lines as legends")
> 
> ###### vertical continous legend #######
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo")
> draw(lgd, test = "only col_fun")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1))
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1)))
> draw(lgd, test = "with at")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high"))
> draw(lgd, test = "with labels")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", legend_height = unit(6, "cm"))
> draw(lgd, test = "set legend_height")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red"))
> draw(lgd, test = "set label color")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", border = "red")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "lefttop-rot")
> draw(lgd, test = "lefttop rot title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "leftcenter-rot")
> draw(lgd, test = "leftcenter top title")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", title_position = "lefttop", direction = "horizontal")
> draw(lgd, test = "lefttop title")
> 
> ###### horizontal continous legend #######
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo", direction = "horizontal")
> draw(lgd, test = "only col_fun")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal")
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1)), direction = "horizontal")
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high"),
+ 	direction = "horizontal")
> draw(lgd, test = "with labels")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", legend_width = unit(6, "cm"), direction = "horizontal")
> draw(lgd, test = "set legend_width")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red"), direction = "horizontal")
> draw(lgd, test = "set label color")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", border = "red", direction = "horizontal")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "topcenter")
> draw(lgd, test = "topcenter title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "lefttop")
> draw(lgd, test = "lefttop title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "leftcenter")
> draw(lgd, test = "leftcenter title")
> 
> 
> ###### pack legend
> lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1))
> 
> pd = packLegend(lgd1, lgd2)
> draw(pd, test = "two legends")
> 
> pd = packLegend(list = list(lgd1, lgd2))
> draw(pd, test = "two legends specified as a list")
> 
> pd = packLegend(lgd1, lgd2, direction = "horizontal")
> draw(pd, test = "two legends packed horizontally")
> 
> lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal")
> pd = packLegend(lgd3, lgd4)
> draw(pd, test = "two legends with different directions")
> pd = packLegend(lgd3, lgd4, direction = "horizontal")
> draw(pd, test = "two legends with different directions")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2)
> draw(pd, test = "many legends with same legends")
> 
> lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1))
> pd = packLegend(lgd1, lgd2, lgd3, lgd4)
> draw(pd, test = "many legends with all different legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2)
> draw(pd, test = "many legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(1, "npc"))
> draw(pd, test = "many legends, max_height = unit(1, 'npc')")
> ## reduce the height of the interactive window and rerun draw()
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm"))
> draw(pd, test = "many legends, max_height = unit(10, 'cm')")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm"), gap = unit(1, "cm"))
> draw(pd, test = "many legends, max_height = unit(10, 'cm'), with gap")
> 
> lgd_long = Legend(at = 1:50, legend_gp = gpar(fill = 1:50))
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, lgd_long, max_height = unit(10, "cm"))
> draw(pd, test = "many legends with a long one, max_height = unit(10, 'cm')")
> 
> lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1",
+ 	nr = 1)
> lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1),
+ 	direction = "horizontal")
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, direction = "horizontal")
> draw(pd, test = "many legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(1, "npc"), direction = "horizontal")
> draw(pd, test = "many legends, max_width = unit(1, 'npc')")
> ## reduce the height of the interactive window and rerun draw()
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(10, "cm"), direction = "horizontal")
> draw(pd, test = "many legends, max_width = unit(10, 'cm')")
> 
> 
> ####### unequal interval breaks
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1))
> draw(lgd, test = "unequal interval breaks")
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.3, 1), legend_height = unit(4, "cm"))
> draw(lgd, test = "unequal interval breaks but not label position adjustment")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal")
> draw(lgd, test = "unequal interval breaks")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal", title_position = "lefttop")
> draw(lgd, test = "unequal interval breaks")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal", title_position = "lefttop", labels_rot = 90)
> draw(lgd, test = "unequal interval breaks, label rot 90")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1),
+ 	labels = c("mininal", "q10", "median", "q75", "maximal"),
+ 	direction = "horizontal", title_position = "lefttop")
> draw(lgd, test = "unequal interval breaks with labels")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1),
+ 	labels = c("mininal", "q10", "median", "q75", "maximal"),
+ 	direction = "horizontal")
> draw(lgd, test = "unequal interval breaks with labels")
> 
> 
> col_fun = colorRamp2(c(0, 0.05, 0.1, 0.5, 1), c("green", "white", "red", "black", "blue"))
> lgd = Legend(col_fun = col_fun, title = "foo", break_dist = 1:4)
> draw(lgd, test = "unequal interval breaks")
> 
> 
> #### position of legends to heatmaps ##
> if(0) {
+ m = matrix(rnorm(100), 10)
+ rownames(m) = random_str(10, len = 20)
+ colnames(m) = random_str(10, len = 20)
+ Heatmap(m)
+ }
> 
> 
> 
> proc.time()
   user  system elapsed 
   3.68    0.32    4.00 

ComplexHeatmap.Rcheck/tests_x64/test-Legend.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("random_str")) {
+ 	random_str = ComplexHeatmap:::random_str
+ }
> 
> lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "default discrete legends style")
> 
> lgd = Legend(labels = 1:6, legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "only specify labels with no at")
> 
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "add labels and title")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "lefttop")
> draw(lgd, test = "title put in the lefttop")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "lefttop-rot")
> draw(lgd, test = "title put in the lefttop-rot")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "leftcenter-rot")
> draw(lgd, test = "title put in the leftcenter-rot")
> 
> lgd = Legend(labels = 1:6, title = "fooooooo", legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "title is longer than the legend body")
> 
> lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), grid_height = unit(1, "cm"), 
+ 	title = "foo", grid_width = unit(5, "mm"))
> draw(lgd, test = "grid size")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	labels_gp = gpar(col = "red", fontsize = 14))
> draw(lgd, test = "labels_gp")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	title_gp = gpar(col = "red", fontsize = 14))
> draw(lgd, test = "title_gp")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	border = "red")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3)
> draw(lgd, test = "in 3 columns")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, title_position = "topcenter")
> draw(lgd, test = "in 3 columns, title in the center")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, by_row = TRUE)
> draw(lgd, test = "in 3 columns and by rows")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, gap = unit(1, "cm"))
> draw(lgd, test = "in 3 columns with gap between columns")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	nrow = 3)
> draw(lgd, test = "in 3 rows")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "lefttop")
> draw(lgd, test = "1 row and title is on the left")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "lefttop-rot")
> draw(lgd, test = "1 row and title is on the left, 90 rotation")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "leftcenter")
> draw(lgd, test = "1 row and title is on the left, 90 rotation")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = 1:6, 
+ 	legend_gp = gpar(col = 1:6), background = "red")
> draw(lgd, test = "points as legends")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = letters[1:6], 
+ 	legend_gp = gpar(col = 1:6), background = "white")
> draw(lgd, test = "letters as legends")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "lines", 
+ 	legend_gp = gpar(col = 1:6, lty = 1:6))
> draw(lgd, test = "lines as legends")
> 
> ###### vertical continous legend #######
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo")
> draw(lgd, test = "only col_fun")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1))
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1)))
> draw(lgd, test = "with at")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high"))
> draw(lgd, test = "with labels")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", legend_height = unit(6, "cm"))
> draw(lgd, test = "set legend_height")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red"))
> draw(lgd, test = "set label color")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", border = "red")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "lefttop-rot")
> draw(lgd, test = "lefttop rot title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "leftcenter-rot")
> draw(lgd, test = "leftcenter top title")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", title_position = "lefttop", direction = "horizontal")
> draw(lgd, test = "lefttop title")
> 
> ###### horizontal continous legend #######
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo", direction = "horizontal")
> draw(lgd, test = "only col_fun")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal")
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1)), direction = "horizontal")
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high"),
+ 	direction = "horizontal")
> draw(lgd, test = "with labels")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", legend_width = unit(6, "cm"), direction = "horizontal")
> draw(lgd, test = "set legend_width")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red"), direction = "horizontal")
> draw(lgd, test = "set label color")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", border = "red", direction = "horizontal")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "topcenter")
> draw(lgd, test = "topcenter title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "lefttop")
> draw(lgd, test = "lefttop title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "leftcenter")
> draw(lgd, test = "leftcenter title")
> 
> 
> ###### pack legend
> lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1))
> 
> pd = packLegend(lgd1, lgd2)
> draw(pd, test = "two legends")
> 
> pd = packLegend(list = list(lgd1, lgd2))
> draw(pd, test = "two legends specified as a list")
> 
> pd = packLegend(lgd1, lgd2, direction = "horizontal")
> draw(pd, test = "two legends packed horizontally")
> 
> lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal")
> pd = packLegend(lgd3, lgd4)
> draw(pd, test = "two legends with different directions")
> pd = packLegend(lgd3, lgd4, direction = "horizontal")
> draw(pd, test = "two legends with different directions")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2)
> draw(pd, test = "many legends with same legends")
> 
> lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1))
> pd = packLegend(lgd1, lgd2, lgd3, lgd4)
> draw(pd, test = "many legends with all different legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2)
> draw(pd, test = "many legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(1, "npc"))
> draw(pd, test = "many legends, max_height = unit(1, 'npc')")
> ## reduce the height of the interactive window and rerun draw()
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm"))
> draw(pd, test = "many legends, max_height = unit(10, 'cm')")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm"), gap = unit(1, "cm"))
> draw(pd, test = "many legends, max_height = unit(10, 'cm'), with gap")
> 
> lgd_long = Legend(at = 1:50, legend_gp = gpar(fill = 1:50))
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, lgd_long, max_height = unit(10, "cm"))
> draw(pd, test = "many legends with a long one, max_height = unit(10, 'cm')")
> 
> lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1",
+ 	nr = 1)
> lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1),
+ 	direction = "horizontal")
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, direction = "horizontal")
> draw(pd, test = "many legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(1, "npc"), direction = "horizontal")
> draw(pd, test = "many legends, max_width = unit(1, 'npc')")
> ## reduce the height of the interactive window and rerun draw()
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(10, "cm"), direction = "horizontal")
> draw(pd, test = "many legends, max_width = unit(10, 'cm')")
> 
> 
> ####### unequal interval breaks
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1))
> draw(lgd, test = "unequal interval breaks")
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.3, 1), legend_height = unit(4, "cm"))
> draw(lgd, test = "unequal interval breaks but not label position adjustment")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal")
> draw(lgd, test = "unequal interval breaks")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal", title_position = "lefttop")
> draw(lgd, test = "unequal interval breaks")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal", title_position = "lefttop", labels_rot = 90)
> draw(lgd, test = "unequal interval breaks, label rot 90")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1),
+ 	labels = c("mininal", "q10", "median", "q75", "maximal"),
+ 	direction = "horizontal", title_position = "lefttop")
> draw(lgd, test = "unequal interval breaks with labels")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1),
+ 	labels = c("mininal", "q10", "median", "q75", "maximal"),
+ 	direction = "horizontal")
> draw(lgd, test = "unequal interval breaks with labels")
> 
> 
> col_fun = colorRamp2(c(0, 0.05, 0.1, 0.5, 1), c("green", "white", "red", "black", "blue"))
> lgd = Legend(col_fun = col_fun, title = "foo", break_dist = 1:4)
> draw(lgd, test = "unequal interval breaks")
> 
> 
> #### position of legends to heatmaps ##
> if(0) {
+ m = matrix(rnorm(100), 10)
+ rownames(m) = random_str(10, len = 20)
+ colnames(m) = random_str(10, len = 20)
+ Heatmap(m)
+ }
> 
> 
> 
> proc.time()
   user  system elapsed 
   3.93    0.23    4.15 

ComplexHeatmap.Rcheck/tests_i386/test-multiple-page.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> m = matrix(rnorm(100), 10)
> 
> postscript("test.ps")
> lgd = Legend(labels = c("a", "b", "c"))
> draw(Heatmap(m), heatmap_legend_list = list(lgd))
> dev.off()
null device 
          1 
> 
> check_pages = function() {
+ 	lines = readLines("test.ps")
+ 	print(lines[length(lines)-1])
+ 	invisible(file.remove("test.ps"))
+ }
> 
> check_pages()
[1] "%%Pages: 1"
> 
> postscript("test.ps")
> ha = HeatmapAnnotation(foo = 1:10, bar = anno_points(1:10))
> Heatmap(m, top_annotation = ha)
> dev.off()
null device 
          1 
> 
> check_pages()
[1] "%%Pages: 1"
> 
> proc.time()
   user  system elapsed 
   6.39    0.23    6.60 

ComplexHeatmap.Rcheck/tests_x64/test-multiple-page.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> m = matrix(rnorm(100), 10)
> 
> postscript("test.ps")
> lgd = Legend(labels = c("a", "b", "c"))
> draw(Heatmap(m), heatmap_legend_list = list(lgd))
> dev.off()
null device 
          1 
> 
> check_pages = function() {
+ 	lines = readLines("test.ps")
+ 	print(lines[length(lines)-1])
+ 	invisible(file.remove("test.ps"))
+ }
> 
> check_pages()
[1] "%%Pages: 1"
> 
> postscript("test.ps")
> ha = HeatmapAnnotation(foo = 1:10, bar = anno_points(1:10))
> Heatmap(m, top_annotation = ha)
> dev.off()
null device 
          1 
> 
> check_pages()
[1] "%%Pages: 1"
> 
> proc.time()
   user  system elapsed 
   6.65    0.20    6.84 

ComplexHeatmap.Rcheck/tests_i386/test-oncoPrint.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> mat = read.table(textConnection(
+ "s1,s2,s3
+ g1,snv;indel,snv,indel
+ g2,,snv;indel,snv
+ g3,snv,,indel;snv"), row.names = 1, header = TRUE, sep = ",", stringsAsFactors = FALSE)
> mat = as.matrix(mat)
> 
> get_type_fun = function(x) strsplit(x, ";")[[1]]
> 
> alter_fun = list(
+     snv = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.9, 
+         gp = gpar(fill = col["snv"], col = NA)),
+     indel = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.4, 
+         gp = gpar(fill = col["indel"], col = NA))
+ )
> 
> col = c(snv = "red", indel = "blue")
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col)
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ## turn off row names while turn on column names
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col, 
+     show_column_names = TRUE, show_row_names = FALSE, show_pct = FALSE)
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col, pct_side = "right", 
+     row_names_side = "left")
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(column_barplot = anno_oncoprint_barplot())
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+     	column_barplot = anno_oncoprint_barplot(),
+     	foo = 1:3,
+     	annotation_name_side = "left")
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+     	cbar = anno_oncoprint_barplot(),
+     	foo1 = 1:3,
+     	annotation_name_side = "left"),
+     left_annotation = rowAnnotation(foo2 = 1:3),
+     right_annotation = rowAnnotation(cbar = anno_oncoprint_barplot(), foo3 = 1:3),
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+         cbar = anno_oncoprint_barplot(border = TRUE),
+         foo1 = 1:3,
+         annotation_name_side = "left"),
+     left_annotation = rowAnnotation(foo2 = 1:3),
+     right_annotation = rowAnnotation(
+         cbar = anno_oncoprint_barplot(border = TRUE), 
+         foo3 = 1:3),
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     right_annotation = rowAnnotation(rbar = anno_oncoprint_barplot(axis_param = list(side = "bottom", labels_rot = 90)))
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> 
> proc.time()
   user  system elapsed 
   7.85    0.29    8.12 

ComplexHeatmap.Rcheck/tests_x64/test-oncoPrint.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> mat = read.table(textConnection(
+ "s1,s2,s3
+ g1,snv;indel,snv,indel
+ g2,,snv;indel,snv
+ g3,snv,,indel;snv"), row.names = 1, header = TRUE, sep = ",", stringsAsFactors = FALSE)
> mat = as.matrix(mat)
> 
> get_type_fun = function(x) strsplit(x, ";")[[1]]
> 
> alter_fun = list(
+     snv = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.9, 
+         gp = gpar(fill = col["snv"], col = NA)),
+     indel = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.4, 
+         gp = gpar(fill = col["indel"], col = NA))
+ )
> 
> col = c(snv = "red", indel = "blue")
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col)
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ## turn off row names while turn on column names
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col, 
+     show_column_names = TRUE, show_row_names = FALSE, show_pct = FALSE)
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col, pct_side = "right", 
+     row_names_side = "left")
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(column_barplot = anno_oncoprint_barplot())
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+     	column_barplot = anno_oncoprint_barplot(),
+     	foo = 1:3,
+     	annotation_name_side = "left")
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+     	cbar = anno_oncoprint_barplot(),
+     	foo1 = 1:3,
+     	annotation_name_side = "left"),
+     left_annotation = rowAnnotation(foo2 = 1:3),
+     right_annotation = rowAnnotation(cbar = anno_oncoprint_barplot(), foo3 = 1:3),
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+         cbar = anno_oncoprint_barplot(border = TRUE),
+         foo1 = 1:3,
+         annotation_name_side = "left"),
+     left_annotation = rowAnnotation(foo2 = 1:3),
+     right_annotation = rowAnnotation(
+         cbar = anno_oncoprint_barplot(border = TRUE), 
+         foo3 = 1:3),
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     right_annotation = rowAnnotation(rbar = anno_oncoprint_barplot(axis_param = list(side = "bottom", labels_rot = 90)))
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> 
> proc.time()
   user  system elapsed 
   8.21    0.25    8.46 

ComplexHeatmap.Rcheck/tests_i386/test-pheatmap.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> if(requireNamespace("pheatmap")) {
+ 	mat = matrix(rnorm(100), 10)
+ 
+ 	compare_pheatmap(mat)
+ 
+ 	pheatmap(mat)
+ 	pheatmap(mat, col = rev(RColorBrewer::brewer.pal(n = 7, name = "RdYlBu")))
+ 
+ 	test = matrix(rnorm(200), 20, 10)
+ 	test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
+ 	test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
+ 	test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
+ 	colnames(test) = paste("Test", 1:10, sep = "")
+ 	rownames(test) = paste("Gene", 1:20, sep = "")
+ 
+ 	# Draw heatmaps
+ 	compare_pheatmap(test)
+ 	compare_pheatmap(test, kmeans_k = 2)
+ 	compare_pheatmap(test, scale = "row", clustering_distance_rows = "correlation")
+ 	compare_pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
+ 	compare_pheatmap(test, cluster_row = FALSE)
+ 	compare_pheatmap(test, legend = FALSE)
+ 
+ 	# Show text within cells
+ 	compare_pheatmap(test, display_numbers = TRUE)
+ 	compare_pheatmap(test, display_numbers = TRUE, number_format = "%.1e")
+ 	compare_pheatmap(test, display_numbers = matrix(ifelse(test > 5, "*", ""), nrow(test)))
+ 	compare_pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0",
+ 		"1e-4", "1e-3", "1e-2", "1e-1", "1"))
+ 
+ 	# Fix cell sizes and save to file with correct size
+ 	compare_pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
+ 
+ 	# Generate annotations for rows and columns
+ 	annotation_col = data.frame(
+ 	    CellType = factor(rep(c("CT1", "CT2"), 5)), 
+ 	    Time = 1:5
+ 	)
+ 	rownames(annotation_col) = paste("Test", 1:10, sep = "")
+ 
+ 	annotation_row = data.frame(
+ 	    GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6)))
+ 	)
+ 	rownames(annotation_row) = paste("Gene", 1:20, sep = "")
+ 
+ 	# Display row and color annotations
+ 	compare_pheatmap(test, annotation_col = annotation_col)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_legend = FALSE)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row)
+ 
+ 	# Change angle of text in the columns
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, angle_col = "45")
+ 	compare_pheatmap(test, annotation_col = annotation_col, angle_col = "0")
+ 
+ 	# Specify colors
+ 	ann_colors = list(
+ 	    Time = c("white", "firebrick"),
+ 	    CellType = c(CT1 = "#1B9E77", CT2 = "#D95F02"),
+ 	    GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E")
+ 	)
+ 
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors, main = "Title")
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, 
+ 	         annotation_colors = ann_colors)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors[2]) 
+ 
+ 	# Gaps in heatmaps
+ 	compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14))
+ 	compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14), 
+ 	         cutree_col = 2)
+ 
+ 	# Show custom strings as row/col names
+ 	labels_row = c("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
+ 		"", "", "Il10", "Il15", "Il1b")
+ 
+ 	compare_pheatmap(test, annotation_col = annotation_col, labels_row = labels_row)
+ 
+ 	# Specifying clustering from distance matrix
+ 	drows = dist(test, method = "minkowski")
+ 	dcols = dist(t(test), method = "minkowski")
+ 	compare_pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)
+ 
+ 	library(dendsort)
+ 
+ 	callback = function(hc, ...){dendsort(hc)}
+ 	compare_pheatmap(test, clustering_callback = callback)
+ }
Loading required namespace: pheatmap
Warning message:
argument `kmeans_k` is not suggested to use in pheatmap -> Heatmap
translation because it changes the input matrix. You might check
`row_km` and `column_km` arguments in Heatmap(). 
> 
> 
> set.seed(42)
> nsamples <- 10
> 
> mat <- matrix(rpois(20*nsamples, 20), ncol=nsamples)
> colnames(mat) <- paste0("sample", seq_len(ncol(mat)))
> rownames(mat) <- paste0("gene", seq_len(nrow(mat)))
> 
> annot <- data.frame(
+   labs = sample(c("A","B","C","D"), size = ncol(mat), replace = TRUE),
+   row.names = colnames(mat)
+ )
> ins <- list(mat = mat, annotation_col = annot)
> do.call(ComplexHeatmap::pheatmap, ins[1])
> do.call(ComplexHeatmap::pheatmap, ins)
> 
> proc.time()
   user  system elapsed 
  21.39    0.35   21.73 

ComplexHeatmap.Rcheck/tests_x64/test-pheatmap.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> if(requireNamespace("pheatmap")) {
+ 	mat = matrix(rnorm(100), 10)
+ 
+ 	compare_pheatmap(mat)
+ 
+ 	pheatmap(mat)
+ 	pheatmap(mat, col = rev(RColorBrewer::brewer.pal(n = 7, name = "RdYlBu")))
+ 
+ 	test = matrix(rnorm(200), 20, 10)
+ 	test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
+ 	test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
+ 	test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
+ 	colnames(test) = paste("Test", 1:10, sep = "")
+ 	rownames(test) = paste("Gene", 1:20, sep = "")
+ 
+ 	# Draw heatmaps
+ 	compare_pheatmap(test)
+ 	compare_pheatmap(test, kmeans_k = 2)
+ 	compare_pheatmap(test, scale = "row", clustering_distance_rows = "correlation")
+ 	compare_pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
+ 	compare_pheatmap(test, cluster_row = FALSE)
+ 	compare_pheatmap(test, legend = FALSE)
+ 
+ 	# Show text within cells
+ 	compare_pheatmap(test, display_numbers = TRUE)
+ 	compare_pheatmap(test, display_numbers = TRUE, number_format = "%.1e")
+ 	compare_pheatmap(test, display_numbers = matrix(ifelse(test > 5, "*", ""), nrow(test)))
+ 	compare_pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0",
+ 		"1e-4", "1e-3", "1e-2", "1e-1", "1"))
+ 
+ 	# Fix cell sizes and save to file with correct size
+ 	compare_pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
+ 
+ 	# Generate annotations for rows and columns
+ 	annotation_col = data.frame(
+ 	    CellType = factor(rep(c("CT1", "CT2"), 5)), 
+ 	    Time = 1:5
+ 	)
+ 	rownames(annotation_col) = paste("Test", 1:10, sep = "")
+ 
+ 	annotation_row = data.frame(
+ 	    GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6)))
+ 	)
+ 	rownames(annotation_row) = paste("Gene", 1:20, sep = "")
+ 
+ 	# Display row and color annotations
+ 	compare_pheatmap(test, annotation_col = annotation_col)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_legend = FALSE)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row)
+ 
+ 	# Change angle of text in the columns
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, angle_col = "45")
+ 	compare_pheatmap(test, annotation_col = annotation_col, angle_col = "0")
+ 
+ 	# Specify colors
+ 	ann_colors = list(
+ 	    Time = c("white", "firebrick"),
+ 	    CellType = c(CT1 = "#1B9E77", CT2 = "#D95F02"),
+ 	    GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E")
+ 	)
+ 
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors, main = "Title")
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, 
+ 	         annotation_colors = ann_colors)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors[2]) 
+ 
+ 	# Gaps in heatmaps
+ 	compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14))
+ 	compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14), 
+ 	         cutree_col = 2)
+ 
+ 	# Show custom strings as row/col names
+ 	labels_row = c("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
+ 		"", "", "Il10", "Il15", "Il1b")
+ 
+ 	compare_pheatmap(test, annotation_col = annotation_col, labels_row = labels_row)
+ 
+ 	# Specifying clustering from distance matrix
+ 	drows = dist(test, method = "minkowski")
+ 	dcols = dist(t(test), method = "minkowski")
+ 	compare_pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)
+ 
+ 	library(dendsort)
+ 
+ 	callback = function(hc, ...){dendsort(hc)}
+ 	compare_pheatmap(test, clustering_callback = callback)
+ }
Loading required namespace: pheatmap
Warning message:
argument `kmeans_k` is not suggested to use in pheatmap -> Heatmap
translation because it changes the input matrix. You might check
`row_km` and `column_km` arguments in Heatmap(). 
> 
> 
> set.seed(42)
> nsamples <- 10
> 
> mat <- matrix(rpois(20*nsamples, 20), ncol=nsamples)
> colnames(mat) <- paste0("sample", seq_len(ncol(mat)))
> rownames(mat) <- paste0("gene", seq_len(nrow(mat)))
> 
> annot <- data.frame(
+   labs = sample(c("A","B","C","D"), size = ncol(mat), replace = TRUE),
+   row.names = colnames(mat)
+ )
> ins <- list(mat = mat, annotation_col = annot)
> do.call(ComplexHeatmap::pheatmap, ins[1])
> do.call(ComplexHeatmap::pheatmap, ins)
> 
> proc.time()
   user  system elapsed 
  22.56    0.37   22.92 

ComplexHeatmap.Rcheck/tests_i386/test-SingleAnnotation.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> ha = SingleAnnotation(value = 1:10)
> draw(ha, test = "single column annotation")
> ha = SingleAnnotation(value = 1:10, which = "row")
> draw(ha, test = "single row annotation")
> ha = SingleAnnotation(value = 1:10)
> draw(ha, index = 6:10, test = "single column annotation, subset")
> draw(ha, index = 6:10, k = 1, n = 2, test = "single column annotation, subset, k=1 n=2")
> draw(ha, index = 6:10, k = 2, n = 2, test = "single column annotation, subset, k=1 n=2")
> 
> x = 1:10
> ha = SingleAnnotation(value = x)
> draw(ha, test = "single column annotation")
> 
> m = cbind(1:10, 10:1)
> colnames(m) = c("a", "b")
> ha = SingleAnnotation(value = m)
> draw(ha, test = "matrix as column annotation")
> 
> ha = SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))
> draw(ha, test = "color mapping function")
> 
> ha = SingleAnnotation(value = c(rep(c("a", "b"), 5)))
> draw(ha, test = "discrete annotation")
> ha = SingleAnnotation(value = c(rep(c("a", "b"), 5)), col = c("a" = "red", "b" = "blue"))
> draw(ha, test = "discrete annotation with defined colors")
> 
> anno = anno_simple(1:10)
> ha = SingleAnnotation(fun = anno)
> draw(ha, test = "AnnotationFunction as input")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)))
> ha = SingleAnnotation(fun = anno)
> draw(ha, test = "anno_barplot as input")
> draw(ha, index = 1:5, test = "anno_barplot as input, 1:5")
> draw(ha, index = 1:5, k = 1, n = 2, test = "anno_barplot as input, 1:5, k = 1, n = 2")
> draw(ha, index = 1:5, k = 2, n = 2, test = "anno_barplot as input, 1:5, k = 2, n = 2")
> 
> lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, which = "row")
> ha = SingleAnnotation(fun = anno, which = "row")
> draw(ha, test = "anno_horizon as input")
> 
> fun = local({
+ 	value = 1:10
+ 	function(index, k = 1, n = 1) {
+ 		pushViewport(viewport(xscale = c(0.5, length(index) + 0.5), yscale = range(value)))
+ 		grid.points(seq_along(index), value[index])
+ 		grid.rect()
+ 		if(k == 1) grid.yaxis()
+ 		popViewport()
+ 	}
+ })
> ha = SingleAnnotation(fun = fun, height = unit(4, "cm"))
> # ha[1:5]
> draw(ha, index = c(1, 4, 2, 6), test = "self-defined function")
> draw(ha, index = c(1, 4, 2, 6), k = 1, n = 2, test = "self-defined function, k = 1, n = 2")
> draw(ha, index = c(1, 4, 2, 6), k = 2, n = 2, test = "self-defined function, k = 2, n = 2")
> 
> 
> # test gridtext
> ha = SingleAnnotation(value = 1:10, label = gt_render("foo", r = unit(2, "pt")), name_gp = gpar(box_fill = "red"))
Loading required namespace: gridtext
> draw(ha, test = "single column annotation")
> 
> 
> 
> proc.time()
   user  system elapsed 
   4.20    0.28    4.48 

ComplexHeatmap.Rcheck/tests_x64/test-SingleAnnotation.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> ha = SingleAnnotation(value = 1:10)
> draw(ha, test = "single column annotation")
> ha = SingleAnnotation(value = 1:10, which = "row")
> draw(ha, test = "single row annotation")
> ha = SingleAnnotation(value = 1:10)
> draw(ha, index = 6:10, test = "single column annotation, subset")
> draw(ha, index = 6:10, k = 1, n = 2, test = "single column annotation, subset, k=1 n=2")
> draw(ha, index = 6:10, k = 2, n = 2, test = "single column annotation, subset, k=1 n=2")
> 
> x = 1:10
> ha = SingleAnnotation(value = x)
> draw(ha, test = "single column annotation")
> 
> m = cbind(1:10, 10:1)
> colnames(m) = c("a", "b")
> ha = SingleAnnotation(value = m)
> draw(ha, test = "matrix as column annotation")
> 
> ha = SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))
> draw(ha, test = "color mapping function")
> 
> ha = SingleAnnotation(value = c(rep(c("a", "b"), 5)))
> draw(ha, test = "discrete annotation")
> ha = SingleAnnotation(value = c(rep(c("a", "b"), 5)), col = c("a" = "red", "b" = "blue"))
> draw(ha, test = "discrete annotation with defined colors")
> 
> anno = anno_simple(1:10)
> ha = SingleAnnotation(fun = anno)
> draw(ha, test = "AnnotationFunction as input")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)))
> ha = SingleAnnotation(fun = anno)
> draw(ha, test = "anno_barplot as input")
> draw(ha, index = 1:5, test = "anno_barplot as input, 1:5")
> draw(ha, index = 1:5, k = 1, n = 2, test = "anno_barplot as input, 1:5, k = 1, n = 2")
> draw(ha, index = 1:5, k = 2, n = 2, test = "anno_barplot as input, 1:5, k = 2, n = 2")
> 
> lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, which = "row")
> ha = SingleAnnotation(fun = anno, which = "row")
> draw(ha, test = "anno_horizon as input")
> 
> fun = local({
+ 	value = 1:10
+ 	function(index, k = 1, n = 1) {
+ 		pushViewport(viewport(xscale = c(0.5, length(index) + 0.5), yscale = range(value)))
+ 		grid.points(seq_along(index), value[index])
+ 		grid.rect()
+ 		if(k == 1) grid.yaxis()
+ 		popViewport()
+ 	}
+ })
> ha = SingleAnnotation(fun = fun, height = unit(4, "cm"))
> # ha[1:5]
> draw(ha, index = c(1, 4, 2, 6), test = "self-defined function")
> draw(ha, index = c(1, 4, 2, 6), k = 1, n = 2, test = "self-defined function, k = 1, n = 2")
> draw(ha, index = c(1, 4, 2, 6), k = 2, n = 2, test = "self-defined function, k = 2, n = 2")
> 
> 
> # test gridtext
> ha = SingleAnnotation(value = 1:10, label = gt_render("foo", r = unit(2, "pt")), name_gp = gpar(box_fill = "red"))
Loading required namespace: gridtext
> draw(ha, test = "single column annotation")
> 
> 
> 
> proc.time()
   user  system elapsed 
   3.93    0.21    4.14 

ComplexHeatmap.Rcheck/tests_i386/test-upset.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> lt = list(a = sample(letters, 10),
+ 	      b = sample(letters, 15),
+ 	      c = sample(letters, 20))
> 
> m = make_comb_mat(lt)
> t(m)
A combination matrix with 3 sets and 6 combinations.
  ranges of combination set size: c(1, 8).
  mode for the combination size: distinct.
  sets are on columns

Combination sets are:
  a b c code size
  x x x  111    4
  x x    110    4
  x   x  101    2
    x x  011    6
    x    010    1
      x  001    8

Sets are:
  set size
    a   10
    b   15
    c   20
> set_name(m)
[1] "a" "b" "c"
> comb_name(m)
[1] "111" "110" "101" "011" "010" "001"
> set_size(m)
 a  b  c 
10 15 20 
> comb_size(m)
111 110 101 011 010 001 
  4   4   2   6   1   8 
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "k" "n" "s"

[[3]]
[1] "o" "r"

[[4]]
[1] "a" "g" "h" "i" "l" "u"

[[5]]
[1] "d"

[[6]]
[1] "b" "f" "m" "q" "t" "v" "w" "z"

> draw(UpSet(m))
> draw(UpSet(m, comb_col = c(rep(2, 3), rep(3, 3), 1)))
> draw(UpSet(t(m)))
> 
> set_name(t(m))
[1] "a" "b" "c"
> comb_name(t(m))
[1] "111" "110" "101" "011" "010" "001"
> set_size(t(m))
 a  b  c 
10 15 20 
> comb_size(t(m))
111 110 101 011 010 001 
  4   4   2   6   1   8 
> lapply(comb_name(t(m)), function(x) extract_comb(t(m), x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "k" "n" "s"

[[3]]
[1] "o" "r"

[[4]]
[1] "a" "g" "h" "i" "l" "u"

[[5]]
[1] "d"

[[6]]
[1] "b" "f" "m" "q" "t" "v" "w" "z"

> 
> m = make_comb_mat(lt, mode = "intersect")
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "e" "j" "k" "n" "s" "x" "y"

[[3]]
[1] "e" "j" "o" "r" "x" "y"

[[4]]
 [1] "a" "e" "g" "h" "i" "j" "l" "u" "x" "y"

[[5]]
 [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y"

[[6]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y"

[[7]]
 [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y"
[20] "z"

> draw(UpSet(m))
> 
> m = make_comb_mat(lt, mode = "union")
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t"
[20] "u" "v" "w" "x" "y" "z"

[[2]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "o" "r" "s" "u" "x" "y"

[[3]]
 [1] "a" "b" "c" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t" "u"
[20] "v" "w" "x" "y" "z"

[[4]]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t"
[20] "u" "v" "w" "x" "y" "z"

[[5]]
 [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y"

[[6]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y"

[[7]]
 [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y"
[20] "z"

> draw(UpSet(m))
> 
> f = system.file("extdata", "movies.csv", package = "UpSetR")
> if(file.exists(f)) {
+ 	movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), header = T, sep = ";")
+ 	m = make_comb_mat(movies, top_n_sets = 6)
+ 	t(m)
+ 	set_name(m)
+ 	comb_name(m)
+ 	set_size(m)
+ 	comb_size(m)
+ 	lapply(comb_name(m), function(x) extract_comb(m, x))
+ 
+ 	set_name(t(m))
+ 	comb_name(t(m))
+ 	set_size(t(m))
+ 	comb_size(t(m))
+ 	lapply(comb_name(t(m)), function(x) extract_comb(t(m), x))
+ 
+ 	draw(UpSet(m))
+ 	draw(UpSet(t(m)))
+ 
+ 	m = make_comb_mat(movies, top_n_sets = 6, mode = "intersect")
+ 	m = make_comb_mat(movies, top_n_sets = 6, mode = "union")
+ }
> 
> library(circlize)
> library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

    windows

Loading required package: GenomeInfoDb
> lt = lapply(1:4, function(i) generateRandomBed())
> lt = lapply(lt, function(df) GRanges(seqnames = df[, 1], ranges = IRanges(df[, 2], df[, 3])))
> names(lt) = letters[1:4]
> m = make_comb_mat(lt)
> 
> # if(0) {
> # set.seed(123)
> # lt = list(a = sample(letters, 10),
> # 	      b = sample(letters, 15),
> # 	      c = sample(letters, 20))
> # v = gplots::venn(lt, show.plot = FALSE)
> # rownames(v) = apply(v[, -1], 1, paste, collapse = "")
> # m = make_comb_mat(lt)
> # cs = structure(comb_size(m), names = comb_name(m))
> # }
> 
> if(file.exists(f)) {
+ 	movies <- read.csv(f, header = T, sep = ";")
+ 	genre = c("Action", "Romance", "Horror", "Children", "SciFi", "Documentary")
+ 	rate = cut(movies$AvgRating, c(0, 1, 2, 3, 4, 5))
+ 	m_list = tapply(seq_len(nrow(movies)), rate, function(ind) {
+ 		make_comb_mat(movies[ind, genre, drop = FALSE])
+ 	})
+ 	m_list2 = normalize_comb_mat(m_list)
+ 
+ 	lapply(m_list2, set_name)
+ 	lapply(m_list2, set_size)
+ 	lapply(m_list2, comb_name)
+ 	lapply(m_list2, comb_size)
+ 
+ 	lapply(1:length(m_list), function(i) {
+ 		n1 = comb_name(m_list[[i]])
+ 		x1 = comb_size(m_list[[i]])
+ 		n2 = comb_name(m_list2[[i]])
+ 		x2 = comb_size(m_list2[[i]])
+ 		l = n2 %in% n1
+ 		x2[!l]
+ 	})
+ }
[[1]]
110001 100101 100011 110000 100100 100010 100001 010100 010010 010001 000110 
     0      0      0      0      0      0      0      0      0      0      0 
000101 000011 100000 000010 
     0      0      0      1 

[[2]]
110001 100101 100011 100001 010100 010010 010001 000110 000101 000011 
     1      1      0      5      0      0      0      0      8      0 

[[3]]
110001 100101 100011 100001 010001 000101 000011 
     0      4      0     35      7     27      1 

[[4]]
110001 100101 100011 100100 100001 010001 000101 000011 
     1      6      1      6     45      5     11      4 

[[5]]
110001 100101 100011 100100 100001 010100 010010 010001 000110 000101 000011 
     0      1      1      1      6      0      0      0      0      0      0 

> 
> 
> proc.time()
   user  system elapsed 
  19.39    0.53   19.95 

ComplexHeatmap.Rcheck/tests_x64/test-upset.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> lt = list(a = sample(letters, 10),
+ 	      b = sample(letters, 15),
+ 	      c = sample(letters, 20))
> 
> m = make_comb_mat(lt)
> t(m)
A combination matrix with 3 sets and 6 combinations.
  ranges of combination set size: c(1, 8).
  mode for the combination size: distinct.
  sets are on columns

Combination sets are:
  a b c code size
  x x x  111    4
  x x    110    4
  x   x  101    2
    x x  011    6
    x    010    1
      x  001    8

Sets are:
  set size
    a   10
    b   15
    c   20
> set_name(m)
[1] "a" "b" "c"
> comb_name(m)
[1] "111" "110" "101" "011" "010" "001"
> set_size(m)
 a  b  c 
10 15 20 
> comb_size(m)
111 110 101 011 010 001 
  4   4   2   6   1   8 
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "k" "n" "s"

[[3]]
[1] "o" "r"

[[4]]
[1] "a" "g" "h" "i" "l" "u"

[[5]]
[1] "d"

[[6]]
[1] "b" "f" "m" "q" "t" "v" "w" "z"

> draw(UpSet(m))
> draw(UpSet(m, comb_col = c(rep(2, 3), rep(3, 3), 1)))
> draw(UpSet(t(m)))
> 
> set_name(t(m))
[1] "a" "b" "c"
> comb_name(t(m))
[1] "111" "110" "101" "011" "010" "001"
> set_size(t(m))
 a  b  c 
10 15 20 
> comb_size(t(m))
111 110 101 011 010 001 
  4   4   2   6   1   8 
> lapply(comb_name(t(m)), function(x) extract_comb(t(m), x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "k" "n" "s"

[[3]]
[1] "o" "r"

[[4]]
[1] "a" "g" "h" "i" "l" "u"

[[5]]
[1] "d"

[[6]]
[1] "b" "f" "m" "q" "t" "v" "w" "z"

> 
> m = make_comb_mat(lt, mode = "intersect")
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "e" "j" "k" "n" "s" "x" "y"

[[3]]
[1] "e" "j" "o" "r" "x" "y"

[[4]]
 [1] "a" "e" "g" "h" "i" "j" "l" "u" "x" "y"

[[5]]
 [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y"

[[6]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y"

[[7]]
 [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y"
[20] "z"

> draw(UpSet(m))
> 
> m = make_comb_mat(lt, mode = "union")
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t"
[20] "u" "v" "w" "x" "y" "z"

[[2]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "o" "r" "s" "u" "x" "y"

[[3]]
 [1] "a" "b" "c" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t" "u"
[20] "v" "w" "x" "y" "z"

[[4]]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t"
[20] "u" "v" "w" "x" "y" "z"

[[5]]
 [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y"

[[6]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y"

[[7]]
 [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y"
[20] "z"

> draw(UpSet(m))
> 
> f = system.file("extdata", "movies.csv", package = "UpSetR")
> if(file.exists(f)) {
+ 	movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), header = T, sep = ";")
+ 	m = make_comb_mat(movies, top_n_sets = 6)
+ 	t(m)
+ 	set_name(m)
+ 	comb_name(m)
+ 	set_size(m)
+ 	comb_size(m)
+ 	lapply(comb_name(m), function(x) extract_comb(m, x))
+ 
+ 	set_name(t(m))
+ 	comb_name(t(m))
+ 	set_size(t(m))
+ 	comb_size(t(m))
+ 	lapply(comb_name(t(m)), function(x) extract_comb(t(m), x))
+ 
+ 	draw(UpSet(m))
+ 	draw(UpSet(t(m)))
+ 
+ 	m = make_comb_mat(movies, top_n_sets = 6, mode = "intersect")
+ 	m = make_comb_mat(movies, top_n_sets = 6, mode = "union")
+ }
> 
> library(circlize)
> library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

    windows

Loading required package: GenomeInfoDb
> lt = lapply(1:4, function(i) generateRandomBed())
> lt = lapply(lt, function(df) GRanges(seqnames = df[, 1], ranges = IRanges(df[, 2], df[, 3])))
> names(lt) = letters[1:4]
> m = make_comb_mat(lt)
> 
> # if(0) {
> # set.seed(123)
> # lt = list(a = sample(letters, 10),
> # 	      b = sample(letters, 15),
> # 	      c = sample(letters, 20))
> # v = gplots::venn(lt, show.plot = FALSE)
> # rownames(v) = apply(v[, -1], 1, paste, collapse = "")
> # m = make_comb_mat(lt)
> # cs = structure(comb_size(m), names = comb_name(m))
> # }
> 
> if(file.exists(f)) {
+ 	movies <- read.csv(f, header = T, sep = ";")
+ 	genre = c("Action", "Romance", "Horror", "Children", "SciFi", "Documentary")
+ 	rate = cut(movies$AvgRating, c(0, 1, 2, 3, 4, 5))
+ 	m_list = tapply(seq_len(nrow(movies)), rate, function(ind) {
+ 		make_comb_mat(movies[ind, genre, drop = FALSE])
+ 	})
+ 	m_list2 = normalize_comb_mat(m_list)
+ 
+ 	lapply(m_list2, set_name)
+ 	lapply(m_list2, set_size)
+ 	lapply(m_list2, comb_name)
+ 	lapply(m_list2, comb_size)
+ 
+ 	lapply(1:length(m_list), function(i) {
+ 		n1 = comb_name(m_list[[i]])
+ 		x1 = comb_size(m_list[[i]])
+ 		n2 = comb_name(m_list2[[i]])
+ 		x2 = comb_size(m_list2[[i]])
+ 		l = n2 %in% n1
+ 		x2[!l]
+ 	})
+ }
[[1]]
110001 100101 100011 110000 100100 100010 100001 010100 010010 010001 000110 
     0      0      0      0      0      0      0      0      0      0      0 
000101 000011 100000 000010 
     0      0      0      1 

[[2]]
110001 100101 100011 100001 010100 010010 010001 000110 000101 000011 
     1      1      0      5      0      0      0      0      8      0 

[[3]]
110001 100101 100011 100001 010001 000101 000011 
     0      4      0     35      7     27      1 

[[4]]
110001 100101 100011 100100 100001 010001 000101 000011 
     1      6      1      6     45      5     11      4 

[[5]]
110001 100101 100011 100100 100001 010100 010010 010001 000110 000101 000011 
     0      1      1      1      6      0      0      0      0      0      0 

> 
> 
> proc.time()
   user  system elapsed 
  19.81    0.29   20.11 

ComplexHeatmap.Rcheck/tests_i386/test-utils.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> # things needed to be tested
> # 1. the order
> # 2. if the sum of sizes are larger than xlim
> 
> make_plot = function(pos1, pos2, range) {
+ 	oxpd = par("xpd")
+ 	par(xpd = NA)
+ 	plot(NULL, xlim = c(0, 4), ylim = range, ann = FALSE)
+ 	col = rand_color(nrow(pos1), transparency = 0.5)
+ 	rect(0.5, pos1[, 1], 1.5, pos1[, 2], col = col)
+ 	rect(2.5, pos2[, 1], 3.5, pos2[, 2], col = col)
+ 	segments(1.5, rowMeans(pos1), 2.5, rowMeans(pos2))
+ 	par(xpd = oxpd)
+ }
> 
> range = c(0, 10)
> pos1 = rbind(c(1, 2), c(5, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> range = c(0, 10)
> pos1 = rbind(c(-0.5, 2), c(5, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> pos1 = rbind(c(-1, 2), c(3, 4), c(5, 6), c(7, 11))
> pos1 = pos1 + runif(length(pos1), max = 0.3, min = -0.3)
> par(mfrow = c(3, 3))
> for(i in 1:9) {
+ 	ind = sample(4, 4)
+ 	make_plot(pos1[ind, ], smartAlign2(pos1[ind, ], range = range), range)
+ }
> par(mfrow = c(1, 1))
> 
> pos1 = rbind(c(3, 6), c(4, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> pos1 = rbind(c(1, 8), c(3, 10))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> ########## new version of smartAlign2() ############
> 
> start = c(0.0400972528391016, 0.0491583597430212, 0.0424302664385027, 0.0547524243812509, 0.0820937279769642, 0.126861283282835, 0.178503822565168, 0.327742831447437, 0.570671411156898, 0.81775868755151)
> end = c(0.0921142856224367, 0.107091640256979, 0.137858195099959, 0.159189883311057, 0.177521656638421, 0.20727333210178, 0.304669254357909, 0.463122553167947, 0.676924742689255, 0.929837466294643)
> range = c(0, 1)
> smartAlign2(start, end, range, plot = TRUE)
enter to continue
             [,1]       [,2]
 [1,] 0.002200888 0.05421792
 [2,] 0.054217921 0.11215120
 [3,] 0.112151202 0.20757913
 [4,] 0.207579130 0.31201659
 [5,] 0.312016589 0.40744452
 [6,] 0.407444518 0.48785657
 [7,] 0.487856567 0.61402200
 [8,] 0.614021999 0.74940172
 [9,] 0.749401720 0.85565505
[10,] 0.855655052 0.96773383
> 
> 
> start <- c(0.722121284290678, 0.701851666769472, 0.284795592003117, 0.335674695572052, 0.246977082249377, 0.767289857630785, 0.728198060058033, 0.299241440370817, -0.0149946764559372, 0.85294351791166, 0.126216621670218, 0.478169948493225)
> end <- c(0.766196472718668, 0.763101604258565, 0.34604552949221, 0.421334650222341, 0.344144413077725, 0.847196123677626, 0.813858014708322, 0.392347344675911, 0.108452620381171, 0.969486388630396, 0.249951602628847, 0.584914163656308)
> od = order(start)
> start = start[od]; end = end[od]
> range = c(0, 1)
> pos = smartAlign2(start, end, range)
> n = nrow(pos)
> pos[1:(n-1), 2] > pos[2:n, 1]
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> 
> 
> if(0) {
+ 	go_id = random_GO(500)
+ 	mat = GO_similarity(go_id)
+ 	invisible(simplify(mat, order_by_size = FALSE))
+ }
> 
> proc.time()
   user  system elapsed 
   2.95    0.20    3.14 

ComplexHeatmap.Rcheck/tests_x64/test-utils.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.14
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.10.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> # things needed to be tested
> # 1. the order
> # 2. if the sum of sizes are larger than xlim
> 
> make_plot = function(pos1, pos2, range) {
+ 	oxpd = par("xpd")
+ 	par(xpd = NA)
+ 	plot(NULL, xlim = c(0, 4), ylim = range, ann = FALSE)
+ 	col = rand_color(nrow(pos1), transparency = 0.5)
+ 	rect(0.5, pos1[, 1], 1.5, pos1[, 2], col = col)
+ 	rect(2.5, pos2[, 1], 3.5, pos2[, 2], col = col)
+ 	segments(1.5, rowMeans(pos1), 2.5, rowMeans(pos2))
+ 	par(xpd = oxpd)
+ }
> 
> range = c(0, 10)
> pos1 = rbind(c(1, 2), c(5, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> range = c(0, 10)
> pos1 = rbind(c(-0.5, 2), c(5, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> pos1 = rbind(c(-1, 2), c(3, 4), c(5, 6), c(7, 11))
> pos1 = pos1 + runif(length(pos1), max = 0.3, min = -0.3)
> par(mfrow = c(3, 3))
> for(i in 1:9) {
+ 	ind = sample(4, 4)
+ 	make_plot(pos1[ind, ], smartAlign2(pos1[ind, ], range = range), range)
+ }
> par(mfrow = c(1, 1))
> 
> pos1 = rbind(c(3, 6), c(4, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> pos1 = rbind(c(1, 8), c(3, 10))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> ########## new version of smartAlign2() ############
> 
> start = c(0.0400972528391016, 0.0491583597430212, 0.0424302664385027, 0.0547524243812509, 0.0820937279769642, 0.126861283282835, 0.178503822565168, 0.327742831447437, 0.570671411156898, 0.81775868755151)
> end = c(0.0921142856224367, 0.107091640256979, 0.137858195099959, 0.159189883311057, 0.177521656638421, 0.20727333210178, 0.304669254357909, 0.463122553167947, 0.676924742689255, 0.929837466294643)
> range = c(0, 1)
> smartAlign2(start, end, range, plot = TRUE)
enter to continue
             [,1]       [,2]
 [1,] 0.002200888 0.05421792
 [2,] 0.054217921 0.11215120
 [3,] 0.112151202 0.20757913
 [4,] 0.207579130 0.31201659
 [5,] 0.312016589 0.40744452
 [6,] 0.407444518 0.48785657
 [7,] 0.487856567 0.61402200
 [8,] 0.614021999 0.74940172
 [9,] 0.749401720 0.85565505
[10,] 0.855655052 0.96773383
> 
> 
> start <- c(0.722121284290678, 0.701851666769472, 0.284795592003117, 0.335674695572052, 0.246977082249377, 0.767289857630785, 0.728198060058033, 0.299241440370817, -0.0149946764559372, 0.85294351791166, 0.126216621670218, 0.478169948493225)
> end <- c(0.766196472718668, 0.763101604258565, 0.34604552949221, 0.421334650222341, 0.344144413077725, 0.847196123677626, 0.813858014708322, 0.392347344675911, 0.108452620381171, 0.969486388630396, 0.249951602628847, 0.584914163656308)
> od = order(start)
> start = start[od]; end = end[od]
> range = c(0, 1)
> pos = smartAlign2(start, end, range)
> n = nrow(pos)
> pos[1:(n-1), 2] > pos[2:n, 1]
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> 
> 
> if(0) {
+ 	go_id = random_GO(500)
+ 	mat = GO_similarity(go_id)
+ 	invisible(simplify(mat, order_by_size = FALSE))
+ }
> 
> proc.time()
   user  system elapsed 
   3.01    0.14    3.14 

ComplexHeatmap.Rcheck/tests_i386/testthat-all.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> 
> suppressWarnings(suppressPackageStartupMessages(library(ComplexHeatmap)))
> library(testthat)
> 
> test_check("ComplexHeatmap")
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 181 ]
> 
> proc.time()
   user  system elapsed 
  19.68    0.50   31.25 

ComplexHeatmap.Rcheck/tests_x64/testthat-all.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> 
> suppressWarnings(suppressPackageStartupMessages(library(ComplexHeatmap)))
> library(testthat)
> 
> test_check("ComplexHeatmap")
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 181 ]
> 
> proc.time()
   user  system elapsed 
  20.81    0.51   31.81 

Example timings

ComplexHeatmap.Rcheck/examples_i386/ComplexHeatmap-Ex.timings

nameusersystemelapsed
AdditiveUnit-class000
AdditiveUnit000
AnnotationFunction-class000
AnnotationFunction4.120.084.20
ColorMapping-class000
ColorMapping0.020.000.01
ComplexHeatmap-package000
Extract.AnnotationFunction0.020.000.02
Extract.Heatmap0.460.000.46
Extract.HeatmapAnnotation0.040.000.04
Extract.HeatmapList0.110.020.12
Extract.SingleAnnotation0.010.000.02
Extract.comb_mat000
Extract.gridtext000
Heatmap-class000
Heatmap000
Heatmap3D0.140.000.14
HeatmapAnnotation-class0.010.000.02
HeatmapAnnotation000
HeatmapList-class000
HeatmapList000
Legend0.070.000.06
Legends-class0.010.000.02
Legends000
SingleAnnotation-class000
SingleAnnotation0.050.000.04
UpSet0.370.010.39
add.AdditiveUnit000
add_heatmap-Heatmap-method000
add_heatmap-HeatmapAnnotation-method000
add_heatmap-HeatmapList-method000
add_heatmap-dispatch000
adjust_dend_by_x0.020.000.02
adjust_heatmap_list-HeatmapList-method000
alter_graphic0.140.000.14
anno_barplot0.030.000.03
anno_block0.70.00.7
anno_boxplot0.010.000.02
anno_customize0.520.020.53
anno_density0.410.030.43
anno_empty0.010.000.02
anno_histogram0.060.000.06
anno_horizon4.020.064.08
anno_image000
anno_joyplot0.440.000.44
anno_lines0.080.000.08
anno_link000
anno_mark0.390.000.39
anno_oncoprint_barplot000
anno_points0.030.000.03
anno_simple0.040.000.05
anno_summary0.250.000.25
anno_text0.070.000.06
anno_zoom0.400.000.41
annotation_axis_grob0.050.000.05
annotation_legend_size-HeatmapList-method000
attach_annotation-Heatmap-method0.520.000.51
bar3D000
bin_genome000
c.ColorMapping000
c.HeatmapAnnotation0.030.000.03
cluster_between_groups0.020.000.01
cluster_within_group0.010.000.02
color_mapping_legend-ColorMapping-method000
columnAnnotation000
column_dend-Heatmap-method0.250.000.25
column_dend-HeatmapList-method1.080.001.07
column_dend-dispatch000
column_order-Heatmap-method0.280.000.29
column_order-HeatmapList-method0.940.000.93
column_order-dispatch000
comb_degree000
comb_name0.020.000.02
comb_size000
compare_heatmap.20.920.000.92
compare_heatmap0.650.000.66
compare_pheatmap0.700.000.71
complement_size000
component_height-Heatmap-method000
component_height-HeatmapList-method000
component_height-dispatch000
component_width-Heatmap-method000
component_width-HeatmapList-method000
component_width-dispatch000
copy_all-AnnotationFunction-method000
copy_all-SingleAnnotation-method000
copy_all-dispatch000
decorate_annotation0.250.000.25
decorate_column_dend000
decorate_column_names000
decorate_column_title000
decorate_dend0.140.000.14
decorate_dimnames0.160.000.16
decorate_heatmap_body0.110.000.11
decorate_row_dend000
decorate_row_names0.000.020.01
decorate_row_title000
decorate_title0.140.000.14
default_axis_param000
default_get_type000
dend_heights000
dend_xy0.010.000.02
dendrogramGrob000
densityHeatmap1.330.001.33
dim.Heatmap000
dist20.020.000.01
draw-AnnotationFunction-method000
draw-Heatmap-method000
draw-HeatmapAnnotation-method000
draw-HeatmapList-method000
draw-Legends-method0.010.000.02
draw-SingleAnnotation-method000
draw-dispatch000
draw_annotation-Heatmap-method000
draw_annotation_legend-HeatmapList-method000
draw_dend-Heatmap-method000
draw_dimnames-Heatmap-method000
draw_heatmap_body-Heatmap-method000
draw_heatmap_legend-HeatmapList-method000
draw_heatmap_list-HeatmapList-method000
draw_title-Heatmap-method000
draw_title-HeatmapList-method000
draw_title-dispatch000
extract_comb0.020.000.01
frequencyHeatmap0.430.010.46
full_comb_code000
getXY_in_parent_vp000
get_color_mapping_list-HeatmapAnnotation-method000
get_legend_param_list-HeatmapAnnotation-method000
grid.annotation_axis000
grid.boxplot000
grid.dendrogram0.500.040.53
grid.draw.Legends0.020.000.02
gt_render0.650.040.72
heatmap_legend_size-HeatmapList-method000
height.AnnotationFunction000
height.Heatmap000
height.HeatmapAnnotation000
height.HeatmapList000
height.Legends000
height.SingleAnnotation000
heightAssign.AnnotationFunction000
heightAssign.HeatmapAnnotation000
heightAssign.SingleAnnotation000
heightDetails.annotation_axis000
heightDetails.legend000
heightDetails.legend_body000
heightDetails.packed_legends000
ht_global_opt000
ht_opt000
ht_size000
is_abs_unit000
length.HeatmapAnnotation000
length.HeatmapList000
list_components000
list_to_matrix000
make_column_cluster-Heatmap-method000
make_comb_mat000
make_layout-Heatmap-method000
make_layout-HeatmapList-method000
make_layout-dispatch000
make_row_cluster-Heatmap-method000
map_to_colors-ColorMapping-method0.010.000.01
max_text_height000
max_text_width000
merge_dendrogram0.090.000.09
names.HeatmapAnnotation0.020.000.02
names.HeatmapList000
namesAssign.HeatmapAnnotation000
ncol.Heatmap000
nobs.AnnotationFunction000
nobs.HeatmapAnnotation000
nobs.SingleAnnotation000
normalize_comb_mat000
normalize_genomic_signals_to_bins000
nrow.Heatmap000
oncoPrint000
order.comb_mat000
packLegend0.050.010.06
pct_v_pct000
pheatmap000
pindex000
plot.Heatmap000
plot.HeatmapAnnotation000
plot.HeatmapList000
prepare-Heatmap-method000
print.comb_mat000
re_size-HeatmapAnnotation-method000
restore_matrix0.330.000.33
rowAnnotation000
row_anno_barplot000
row_anno_boxplot000
row_anno_density000
row_anno_histogram000
row_anno_points000
row_anno_text000
row_dend-Heatmap-method0.280.000.28
row_dend-HeatmapList-method0.640.020.66
row_dend-dispatch000
row_order-Heatmap-method0.270.000.26
row_order-HeatmapList-method0.670.000.67
row_order-dispatch000
set_component_height-Heatmap-method000
set_component_width-Heatmap-method000
set_name000
set_nameAssign000
set_size000
show-AnnotationFunction-method000
show-ColorMapping-method000
show-Heatmap-method000
show-HeatmapAnnotation-method000
show-HeatmapList-method000
show-SingleAnnotation-method000
show-dispatch000
size.AnnotationFunction000
size.HeatmapAnnotation000
size.SingleAnnotation000
sizeAssign.AnnotationFunction000
sizeAssign.HeatmapAnnotation000
sizeAssign.SingleAnnotation000
smartAlign20.230.000.23
str.comb_mat000
subset_gp000
subset_matrix_by_row000
subset_no000
subset_vector000
summary.Heatmap000
summary.HeatmapList000
t.comb_mat000
test_alter_fun0.050.000.05
unify_mat_list000
upset_left_annotation000
upset_right_annotation000
upset_top_annotation000
width.AnnotationFunction000
width.Heatmap000
width.HeatmapAnnotation000
width.HeatmapList000
width.Legends0.020.000.01
width.SingleAnnotation000
widthAssign.AnnotationFunction000
widthAssign.HeatmapAnnotation000
widthAssign.SingleAnnotation000
widthDetails.annotation_axis000
widthDetails.legend000
widthDetails.legend_body000
widthDetails.packed_legends000

ComplexHeatmap.Rcheck/examples_x64/ComplexHeatmap-Ex.timings

nameusersystemelapsed
AdditiveUnit-class000
AdditiveUnit000
AnnotationFunction-class000
AnnotationFunction4.200.074.28
ColorMapping-class000
ColorMapping0.020.000.01
ComplexHeatmap-package000
Extract.AnnotationFunction0.010.000.02
Extract.Heatmap0.530.000.53
Extract.HeatmapAnnotation0.050.000.04
Extract.HeatmapList0.130.000.13
Extract.SingleAnnotation0.010.000.01
Extract.comb_mat0.030.000.04
Extract.gridtext000
Heatmap-class000
Heatmap000
Heatmap3D0.160.000.15
HeatmapAnnotation-class000
HeatmapAnnotation000
HeatmapList-class000
HeatmapList000
Legend0.080.000.08
Legends-class000
Legends000
SingleAnnotation-class000
SingleAnnotation0.060.000.06
UpSet0.560.000.57
add.AdditiveUnit000
add_heatmap-Heatmap-method000
add_heatmap-HeatmapAnnotation-method000
add_heatmap-HeatmapList-method000
add_heatmap-dispatch000
adjust_dend_by_x0.020.000.01
adjust_heatmap_list-HeatmapList-method000
alter_graphic0.190.000.18
anno_barplot0.030.000.04
anno_block0.880.000.87
anno_boxplot0.040.000.05
anno_customize0.820.000.81
anno_density0.50.00.5
anno_empty0.010.000.02
anno_histogram0.080.000.07
anno_horizon4.390.004.39
anno_image000
anno_joyplot0.440.010.46
anno_lines0.090.000.09
anno_link000
anno_mark0.460.000.45
anno_oncoprint_barplot000
anno_points0.020.000.02
anno_simple0.040.000.04
anno_summary0.300.000.29
anno_text0.060.000.07
anno_zoom0.480.000.48
annotation_axis_grob0.050.020.06
annotation_legend_size-HeatmapList-method000
attach_annotation-Heatmap-method0.580.000.58
bar3D0.010.000.02
bin_genome000
c.ColorMapping000
c.HeatmapAnnotation0.040.000.03
cluster_between_groups0.030.000.03
cluster_within_group0.010.000.02
color_mapping_legend-ColorMapping-method000
columnAnnotation000
column_dend-Heatmap-method0.280.000.28
column_dend-HeatmapList-method1.010.001.02
column_dend-dispatch000
column_order-Heatmap-method0.290.000.28
column_order-HeatmapList-method0.980.000.98
column_order-dispatch000
comb_degree000
comb_name000
comb_size000
compare_heatmap.20.970.020.99
compare_heatmap0.670.000.67
compare_pheatmap0.70.00.7
complement_size000
component_height-Heatmap-method000
component_height-HeatmapList-method000
component_height-dispatch000
component_width-Heatmap-method000
component_width-HeatmapList-method000
component_width-dispatch000
copy_all-AnnotationFunction-method000
copy_all-SingleAnnotation-method000
copy_all-dispatch000
decorate_annotation0.270.000.27
decorate_column_dend000
decorate_column_names000
decorate_column_title000
decorate_dend0.140.000.15
decorate_dimnames0.150.000.15
decorate_heatmap_body0.130.000.13
decorate_row_dend000
decorate_row_names000
decorate_row_title000
decorate_title0.150.000.15
default_axis_param000
default_get_type000
dend_heights000
dend_xy000
dendrogramGrob000
densityHeatmap1.380.001.38
dim.Heatmap000
dist20.010.000.01
draw-AnnotationFunction-method000
draw-Heatmap-method000
draw-HeatmapAnnotation-method000
draw-HeatmapList-method000
draw-Legends-method0.020.000.02
draw-SingleAnnotation-method000
draw-dispatch000
draw_annotation-Heatmap-method000
draw_annotation_legend-HeatmapList-method000
draw_dend-Heatmap-method000
draw_dimnames-Heatmap-method000
draw_heatmap_body-Heatmap-method000
draw_heatmap_legend-HeatmapList-method000
draw_heatmap_list-HeatmapList-method000
draw_title-Heatmap-method000
draw_title-HeatmapList-method000
draw_title-dispatch000
extract_comb000
frequencyHeatmap0.450.000.45
full_comb_code0.020.000.02
getXY_in_parent_vp000
get_color_mapping_list-HeatmapAnnotation-method000
get_legend_param_list-HeatmapAnnotation-method000
grid.annotation_axis000
grid.boxplot0.010.000.01
grid.dendrogram0.490.040.53
grid.draw.Legends000
gt_render0.580.020.61
heatmap_legend_size-HeatmapList-method000
height.AnnotationFunction000
height.Heatmap000
height.HeatmapAnnotation000
height.HeatmapList000
height.Legends0.020.000.02
height.SingleAnnotation000
heightAssign.AnnotationFunction000
heightAssign.HeatmapAnnotation000
heightAssign.SingleAnnotation000
heightDetails.annotation_axis000
heightDetails.legend000
heightDetails.legend_body000
heightDetails.packed_legends000
ht_global_opt000
ht_opt0.010.000.01
ht_size000
is_abs_unit000
length.HeatmapAnnotation000
length.HeatmapList000
list_components000
list_to_matrix000
make_column_cluster-Heatmap-method000
make_comb_mat000
make_layout-Heatmap-method000
make_layout-HeatmapList-method000
make_layout-dispatch000
make_row_cluster-Heatmap-method000
map_to_colors-ColorMapping-method0.020.000.02
max_text_height000
max_text_width000
merge_dendrogram0.050.030.07
names.HeatmapAnnotation0.010.000.02
names.HeatmapList000
namesAssign.HeatmapAnnotation0.020.000.02
ncol.Heatmap000
nobs.AnnotationFunction000
nobs.HeatmapAnnotation000
nobs.SingleAnnotation000
normalize_comb_mat000
normalize_genomic_signals_to_bins000
nrow.Heatmap000
oncoPrint000
order.comb_mat000
packLegend0.040.000.04
pct_v_pct000
pheatmap000
pindex000
plot.Heatmap000
plot.HeatmapAnnotation000
plot.HeatmapList000
prepare-Heatmap-method000
print.comb_mat000
re_size-HeatmapAnnotation-method000
restore_matrix0.320.000.31
rowAnnotation000
row_anno_barplot000
row_anno_boxplot000
row_anno_density000
row_anno_histogram000
row_anno_points000
row_anno_text000
row_dend-Heatmap-method0.260.000.27
row_dend-HeatmapList-method0.670.000.67
row_dend-dispatch000
row_order-Heatmap-method0.270.000.26
row_order-HeatmapList-method0.620.000.63
row_order-dispatch000
set_component_height-Heatmap-method000
set_component_width-Heatmap-method000
set_name000
set_nameAssign000
set_size0.020.000.01
show-AnnotationFunction-method000
show-ColorMapping-method000
show-Heatmap-method000
show-HeatmapAnnotation-method000
show-HeatmapList-method000
show-SingleAnnotation-method000
show-dispatch000
size.AnnotationFunction000
size.HeatmapAnnotation000
size.SingleAnnotation000
sizeAssign.AnnotationFunction000
sizeAssign.HeatmapAnnotation000
sizeAssign.SingleAnnotation000
smartAlign20.210.000.22
str.comb_mat000
subset_gp000
subset_matrix_by_row000
subset_no000
subset_vector000
summary.Heatmap000
summary.HeatmapList000
t.comb_mat0.020.000.01
test_alter_fun0.050.000.05
unify_mat_list000
upset_left_annotation000
upset_right_annotation000
upset_top_annotation000
width.AnnotationFunction0.010.000.02
width.Heatmap000
width.HeatmapAnnotation000
width.HeatmapList000
width.Legends0.020.000.01
width.SingleAnnotation000
widthAssign.AnnotationFunction000
widthAssign.HeatmapAnnotation000
widthAssign.SingleAnnotation000
widthDetails.annotation_axis000
widthDetails.legend000
widthDetails.legend_body000
widthDetails.packed_legends000