Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:08:52 -0400 (Wed, 13 Apr 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the STATegRa package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1887/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
STATegRa 1.30.0 (landing page) David Gomez-Cabrero
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: STATegRa |
Version: 1.30.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.30.0.tar.gz |
StartedAt: 2022-04-12 19:04:56 -0400 (Tue, 12 Apr 2022) |
EndedAt: 2022-04-12 19:10:15 -0400 (Tue, 12 Apr 2022) |
EllapsedTime: 318.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.30.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.14-bioc/meat/STATegRa.Rcheck’ * using R version 4.1.3 (2022-03-10) * using platform: x86_64-apple-darwin17.0 (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘STATegRa/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘STATegRa’ version ‘1.30.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘STATegRa’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable ‘components’ modelSelection,list-numeric-character: no visible binding for global variable ‘mylabel’ plotVAF,caClass: no visible binding for global variable ‘comp’ plotVAF,caClass: no visible binding for global variable ‘VAF’ plotVAF,caClass: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comps’ selectCommonComps,list-numeric: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comp’ selectCommonComps,list-numeric: no visible binding for global variable ‘ratio’ Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed plotRes 7.306 0.163 7.480 plotVAF 6.511 0.183 6.701 omicsCompAnalysis 5.963 0.173 6.142 modelSelection 2.377 2.598 5.067 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘STATEgRa_Example.omicsCLUST.R’ Running ‘STATEgRa_Example.omicsPCA.R’ Running ‘STATegRa_Example.omicsNPC.R’ Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.14-bioc/meat/STATegRa.Rcheck/00check.log’ for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.1/Resources/library’ * installing *source* package ‘STATegRa’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Tue Apr 12 19:10:05 2022 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 5.053 0.334 5.369
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 5: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 6: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 7: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 36.392 0.850 37.262
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 122.869 1.715 124.660
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 0.0781575677 0.0431549675 sample2 -0.1192221435 -0.0294020271 sample3 -0.0531408616 0.0746837593 sample4 0.0292971742 0.0006035788 sample5 0.0202090771 -0.0110454880 sample6 0.1226088424 -0.1053493807 sample7 0.1078931385 0.0322417718 sample8 0.1782891049 -0.1449329692 sample9 0.0468697295 0.0455171678 sample10 -0.0036032691 -0.0420076850 sample11 -0.0035566348 0.0566284942 sample12 0.1006129690 -0.0641394509 sample13 -0.1174412937 -0.0907475256 sample14 0.0981203548 -0.0617764216 sample15 0.0085337321 0.0086954690 sample16 0.0783146778 -0.1581334521 sample17 -0.1483610694 -0.0638580146 sample18 -0.0963084385 -0.0556689169 sample19 -0.0217243023 0.0720129803 sample20 -0.0635633900 0.0779609068 sample21 -0.0201844038 -0.1566381639 sample22 0.0218273926 0.0764054566 sample23 0.0852039023 0.0032767000 sample24 -0.1287181727 -0.1924423470 sample25 -0.0430575653 0.0456640558 sample26 -0.1453899857 -0.0541457654 sample27 -0.0197483523 0.1185591240 sample28 -0.1025339496 -0.0650654690 sample29 0.0706022523 0.0682931352 sample30 -0.1295622918 0.0066675333 sample31 0.1147449300 -0.1232728335 sample32 -0.0374308156 -0.0380251352 sample33 0.0599520840 -0.0136937905 sample34 -0.0984199277 -0.0375365747 sample35 -0.0543096421 0.0378033254 sample36 0.1403628053 0.0343635914 sample37 0.0228947727 0.0732685525 sample38 -0.0222072960 0.0962566388 sample39 -0.0941739222 -0.0215180056 sample40 0.0643807134 0.0687715914 sample41 -0.0327634912 0.1232187212 sample42 -0.0500431622 0.0292514895 sample43 -0.0184497128 -0.0233045128 sample44 0.1487889165 -0.1171206458 sample45 -0.1050778868 -0.1123138759 sample46 -0.1151191537 0.1093994853 sample47 -0.0962591503 0.0288416745 sample48 0.0004832556 0.0310382093 sample49 0.1135203789 -0.1213935599 sample50 -0.0123549839 0.1740763406 sample51 0.0550527414 -0.1258931866 sample52 0.0499118457 -0.0728581824 sample53 0.1119772643 -0.1588065654 sample54 -0.0360055705 -0.0228585794 sample55 0.0210418857 -0.0006751107 sample56 -0.0434171523 -0.0633131334 sample57 0.0197820633 -0.1150754976 sample58 0.0030440714 -0.0326128330 sample59 0.0500256790 -0.0129524358 sample60 0.0184280077 -0.0136221796 sample61 0.0150298925 -0.0635098786 sample62 -0.0304758680 0.0201233839 sample63 0.1102250074 -0.1285968279 sample64 0.1552586798 -0.0971185817 sample65 -0.0058503805 -0.0207102337 sample66 -0.0025607482 -0.0424283458 sample67 0.1546638694 0.0661574443 sample68 0.0536374335 0.0923601990 sample69 0.0640333045 -0.0082004452 sample70 0.0163521808 0.0663227060 sample71 -0.0102536079 0.1345966131 sample72 -0.0654191676 0.0196034052 sample73 -0.1048553184 -0.0221001702 sample74 0.0123800554 -0.0586157867 sample75 0.0392079794 0.0209725475 sample76 0.0648954571 0.0524759368 sample77 0.1172922634 0.0201200769 sample78 -0.1463072739 -0.0708397722 sample79 0.0265208806 0.1603428615 sample80 0.0279739285 0.0214151984 sample81 0.0079212173 0.0738496740 sample82 -0.1544234605 0.0361450001 sample83 -0.0494205309 0.0049936002 sample84 -0.0259039716 0.0346592868 sample85 0.1116487468 0.0031401660 sample86 -0.1306479010 0.0377154314 sample87 -0.0554777859 0.0459739468 sample88 -0.0301626592 -0.0382206897 sample89 -0.1016866178 -0.0694079389 sample90 0.0086821670 0.0201323950 sample91 0.1578629847 0.2097790907 sample92 0.0170933444 0.1655939819 sample93 -0.0979805069 0.0121500089 sample94 0.0131486264 0.0114929344 sample95 0.0315682466 0.0758918676 sample96 0.0024125862 0.0470186550 sample97 0.0634545834 -0.0270302918 sample98 -0.0359372509 0.0135465897 sample99 -0.1009167704 -0.1124710924 sample100 0.0551754093 -0.0246502542 sample101 -0.0080115936 0.1627408126 sample102 -0.0046451282 -0.0095468699 sample103 -0.0472520820 0.0940383259 sample104 0.0198157436 0.0591148704 sample105 -0.0400238989 0.0160950257 sample106 -0.0923810181 -0.0369003522 sample107 -0.1019372332 -0.0224967648 sample108 -0.0877091510 0.0128850111 sample109 0.0864820212 0.0901084483 sample110 -0.1223116505 0.0096109074 sample111 0.0257352430 0.0936284092 sample112 -0.0765285909 -0.0270380151 sample113 0.0258799815 -0.0377436822 sample114 0.0021141149 0.0882040836 sample115 0.0303455212 0.0723738971 sample116 0.0780504358 0.0685164650 sample117 0.0536894003 0.0912028455 sample118 0.0666649845 0.0236261726 sample119 0.1021872577 0.2325005181 sample120 0.0750216327 -0.0243344835 sample121 -0.0756937917 -0.0942971052 sample122 -0.0259632110 -0.0731919414 sample123 -0.1037844662 0.0369178314 sample124 0.0611205125 -0.0421645172 sample125 -0.0738472603 -0.0066943969 sample126 0.0972919180 -0.0762700456 sample127 0.0824699470 0.0096644800 sample128 -0.1249411601 -0.0929252449 sample129 -0.0734063633 0.0434312396 sample130 -0.0003500217 0.0309857368 sample131 0.0930184059 -0.0155970980 sample132 0.0736220579 -0.0732970683 sample133 -0.0498398348 0.0462456509 sample134 0.1644872591 -0.0720048076 sample135 -0.0752295008 -0.0003870936 sample136 0.0227150054 0.0495468501 sample137 0.0564721778 0.0288859221 sample138 0.0255986467 0.0610932437 sample139 0.0621218765 -0.0235859005 sample140 -0.0604148868 0.0435530815 sample141 0.0246743048 -0.0532629748 sample142 -0.0409563918 -0.0316233033 sample143 -0.0077356406 0.0476909231 sample144 0.0173241031 0.0156786138 sample145 0.0485467585 -0.1202737081 sample146 0.0419650055 0.0811239874 sample147 -0.0977304603 0.0274769613 sample148 0.0368253249 -0.0803969117 sample149 -0.0072864865 0.1533017793 sample150 0.1020825499 -0.0624823776 sample151 0.0305397147 0.0289338564 sample152 -0.0533595226 0.0638335522 sample153 -0.0891639687 -0.1799450353 sample154 -0.0727554351 0.0834128608 sample155 -0.0880665756 0.0220769222 sample156 -0.0276558775 0.0326601282 sample157 -0.1155031560 -0.0183636065 sample158 -0.0281506666 0.0104911354 sample159 0.0663233734 -0.0443809003 sample160 -0.0302643982 -0.0404302078 sample161 0.0114712909 0.0591084595 sample162 -0.1337091100 -0.1398131499 sample163 0.1330120666 -0.1688769143 sample164 -0.0150338154 -0.0028374238 sample165 0.0076518842 0.0164146413 sample166 0.0367791437 -0.0630613047 sample167 0.1111989837 -0.0030066676 sample168 -0.0672983011 -0.0446266379 sample169 -0.0413003617 -0.0224448371 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 -0.0420462421 0.0867866144 sample2 -0.0820849775 -0.0410968827 sample3 0.0155966444 -0.0195186305 sample4 -0.1001342743 -0.0410776370 sample5 -0.0153479665 -0.0253257728 sample6 0.0340238853 -0.0408223420 sample7 0.0722602475 0.0002323928 sample8 -0.0457619867 -0.0370007004 sample9 -0.0086216606 0.0820184503 sample10 -0.0423631238 -0.0083917652 sample11 0.0022593568 0.0787764133 sample12 0.0322075948 0.1479823368 sample13 -0.0293970560 -0.0306742948 sample14 0.0337430746 -0.0367508390 sample15 0.0815560201 0.1275613851 sample16 0.0508331583 0.0540604272 sample17 0.0062555054 0.0041024848 sample18 0.0705600735 -0.0351053375 sample19 -0.0476783428 -0.0509595392 sample20 0.0523027283 0.0715514093 sample21 -0.0119251349 -0.0376087148 sample22 0.0724458214 -0.0095634876 sample23 -0.0992529501 0.0134298974 sample24 -0.1595266157 0.0728684124 sample25 -0.0920660912 -0.0749749229 sample26 -0.0595567235 0.0848973646 sample27 0.0826577358 -0.0086747513 sample28 -0.0384833857 0.0440972702 sample29 0.0777740991 0.1735298520 sample30 0.1229474394 -0.0819018485 sample31 0.0579750246 -0.0238646916 sample32 0.0970365704 -0.0111435159 sample33 0.1017580140 -0.0630452602 sample34 0.0637902576 0.0377936194 sample35 0.0790003404 -0.0229732502 sample36 0.1224933114 -0.1274968389 sample37 0.1798847611 -0.1673448068 sample38 0.0466394070 0.0888153206 sample39 -0.0168694761 0.0421536046 sample40 0.1756418100 -0.1526662394 sample41 0.0042469654 0.0004924616 sample42 -0.0447825389 -0.0651501355 sample43 0.0482292037 -0.0253533543 sample44 -0.1986819758 -0.0545753786 sample45 -0.0741918338 0.0054714194 sample46 0.0478862344 -0.0007080352 sample47 0.0608216623 0.0481615435 sample48 -0.1381464694 0.0578301058 sample49 -0.0530631154 -0.1405523630 sample50 -0.0173646186 0.1602386194 sample51 0.0462456354 0.0303472973 sample52 0.0279995851 0.0280387822 sample53 0.0667498340 0.0237700068 sample54 0.0121811697 -0.0521354910 sample55 0.0182392247 0.0221326630 sample56 -0.0001309029 0.0030909271 sample57 0.0316574478 0.0530190586 sample58 0.0393890962 -0.0297801811 sample59 0.1278271373 -0.0546540642 sample60 0.1486964432 0.1069141777 sample61 0.0793067371 0.0569790357 sample62 0.1172821923 -0.0149211198 sample63 -0.0028812988 0.1300524088 sample64 0.0237295993 0.1073288343 sample65 -0.0126543659 0.0589810363 sample66 -0.0468233869 -0.0771066601 sample67 0.1494286025 -0.0769877447 sample68 0.0978023693 -0.0577363830 sample69 0.0403090489 0.0156038244 sample70 0.0221598122 0.0315436647 sample71 -0.0546329765 -0.0272394901 sample72 0.1107501114 -0.0537331404 sample73 0.0906756640 0.0579957856 sample74 0.0586513367 0.0121417432 sample75 0.0390512721 0.0349278212 sample76 -0.0022939430 -0.1676560089 sample77 -0.0232101360 -0.2067300936 sample78 -0.0929809992 -0.0434927948 sample79 -0.1619380533 -0.0378102394 sample80 0.0680392796 0.1424655908 sample81 -0.0530725377 -0.0358347631 sample82 0.0266850467 -0.0577449099 sample83 0.1517242104 -0.0448570142 sample84 -0.0570943077 -0.0273808425 sample85 0.1086271537 -0.1228130476 sample86 0.0833891697 -0.0442924828 sample87 0.0022040885 -0.0943908497 sample88 -0.0078276887 -0.1140504563 sample89 0.0611005784 -0.0094589427 sample90 0.0022941715 -0.0936254858 sample91 0.0433773373 0.3205972168 sample92 -0.1815217472 -0.0334666598 sample93 0.0267654064 0.0614425803 sample94 0.0181901503 0.0605088171 sample95 -0.0720314162 -0.0013040525 sample96 -0.0559672547 -0.0118787101 sample97 -0.0217420633 0.0195417216 sample98 0.0379199301 0.0588352756 sample99 -0.0792508455 -0.0151262382 sample100 0.0222100270 -0.0023322949 sample101 -0.0387083949 0.1224225260 sample102 -0.2094625988 -0.0516420805 sample103 0.0138558158 0.0301047657 sample104 -0.0807947886 -0.0162712357 sample105 -0.0520491737 -0.1229660329 sample106 -0.0192643068 -0.0185235174 sample107 0.0319014341 0.0405120572 sample108 -0.0140674149 0.0163422350 sample109 -0.1831856782 0.0613023748 sample110 -0.0292782617 -0.0199846472 sample111 -0.1423173526 0.0327352155 sample112 0.0426313208 -0.0029087072 sample113 -0.0771932202 0.0268742753 sample114 -0.0241567657 -0.0184080611 sample115 -0.1958955933 0.0460148658 sample116 -0.1394437278 -0.0530793462 sample117 -0.1672311453 -0.1386521895 sample118 -0.0448331579 -0.0117617980 sample119 -0.0910192171 0.2217435831 sample120 -0.0331405007 -0.0057270324 sample121 0.0307516023 0.1392506163 sample122 -0.0839838159 -0.0291983603 sample123 0.0239675557 -0.0642167396 sample124 -0.0909176603 0.0130430145 sample125 -0.0065362386 -0.1092631009 sample126 0.0935272840 0.1368276785 sample127 0.0035405851 0.0292755016 sample128 -0.0660350885 0.1018575787 sample129 0.0693671509 -0.0695430262 sample130 0.0008517423 -0.0669705374 sample131 0.0431011797 0.0174060983 sample132 -0.0637089548 0.0029383517 sample133 -0.0289464220 -0.0390817277 sample134 0.0446141281 0.0456332253 sample135 0.0712343815 0.0521627577 sample136 0.0596319046 0.0197291690 sample137 0.0793175828 -0.0380637308 sample138 -0.0973505029 -0.0454210076 sample139 0.0539865689 -0.1534332143 sample140 0.0850872628 0.0955804421 sample141 -0.0192724321 -0.0554446468 sample142 -0.0672294767 -0.0461313062 sample143 -0.0303706788 -0.0519258526 sample144 -0.0089350360 0.0145815381 sample145 -0.0638878287 0.0122268705 sample146 0.0585923456 0.0063074897 sample147 0.0894147032 -0.1124625819 sample148 -0.0216440505 -0.0615962420 sample149 -0.0515315052 -0.0839902809 sample150 0.0568228052 -0.0124472784 sample151 -0.0789513372 -0.0261823907 sample152 -0.0330692665 0.1306445019 sample153 -0.1752067286 0.1497755498 sample154 0.0421490621 -0.0037017112 sample155 0.0680199116 0.0095703496 sample156 0.0388950725 0.1057557954 sample157 0.0314764971 0.0561364631 sample158 0.0329630394 0.0353943611 sample159 -0.0398462166 -0.1007368285 sample160 0.0424905378 0.0108493029 sample161 -0.0888339785 -0.0679692783 sample162 -0.0027572289 0.1237848247 sample163 -0.0126231190 0.0725440842 sample164 -0.0566787227 -0.0458318265 sample165 -0.0315331424 -0.0236359562 sample166 -0.0612109950 -0.0425224821 sample167 0.0142729550 0.0179306986 sample168 -0.0169543516 -0.0769614873 sample169 0.0675063145 0.0131499038 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 0.0012331665 -1.635716e-01 sample2 0.0724353196 -6.022154e-03 sample3 0.0188459939 -1.080029e-01 sample4 -0.0390143112 3.106386e-04 sample5 -0.1774810635 -2.996429e-02 sample6 0.0451446425 -3.455899e-02 sample7 0.0226463498 -7.019190e-03 sample8 0.1033684530 -9.857980e-03 sample9 -0.1350014175 8.979115e-02 sample10 -0.1259884439 -5.097938e-02 sample11 -0.0979790888 7.086568e-02 sample12 0.0863020957 -8.620322e-02 sample13 0.1381401824 1.827998e-01 sample14 0.0615074716 -2.642808e-02 sample15 -0.0381600597 -3.101600e-02 sample16 0.0048779341 1.271004e-03 sample17 0.0788483181 -1.547608e-02 sample18 0.0884189446 -3.795478e-02 sample19 -0.0703043512 -1.084003e-01 sample20 0.0025581383 7.975972e-02 sample21 -0.0941596702 -4.126896e-02 sample22 0.0550270865 -7.806614e-02 sample23 -0.0679492800 -4.102078e-02 sample24 0.1310969417 1.649282e-01 sample25 -0.0113583552 -4.426901e-02 sample26 0.1402948888 2.016456e-02 sample27 -0.0261566019 1.589995e-03 sample28 0.0724200768 5.850508e-02 sample29 0.0330054796 2.062107e-03 sample30 0.0228750294 -2.015343e-02 sample31 0.0635070357 -6.670370e-02 sample32 -0.0685100046 -4.955245e-02 sample33 0.0777764888 -1.272070e-01 sample34 -0.0157842125 -3.024311e-02 sample35 0.0529627955 1.500981e-01 sample36 -0.0070907933 2.025321e-01 sample37 0.0442411835 1.802109e-01 sample38 0.0781508396 -3.676296e-02 sample39 -0.0120330090 -3.388884e-02 sample40 0.0473283868 1.471582e-01 sample41 -0.0228192158 -2.673456e-02 sample42 0.0245361853 -7.960878e-02 sample43 -0.1036362048 -8.229577e-02 sample44 0.1012234800 7.049236e-02 sample45 -0.0013726740 -2.451073e-02 sample46 0.0558506469 2.948605e-03 sample47 0.0380478715 4.554238e-02 sample48 -0.0784340421 4.888890e-02 sample49 0.0605168045 -1.162474e-02 sample50 -0.0530082856 -2.737810e-02 sample51 -0.1514645384 5.678259e-02 sample52 -0.1860936009 1.246711e-01 sample53 0.0064179650 -2.701061e-02 sample54 -0.0697037583 -2.308413e-02 sample55 -0.1633577703 1.366433e-02 sample56 -0.1011484015 4.682133e-02 sample57 -0.1730374414 1.609594e-01 sample58 0.0071384868 -1.666951e-02 sample59 0.0030458462 3.005377e-02 sample60 -0.0215842160 2.665887e-01 sample61 -0.1510585344 1.002384e-01 sample62 0.0925531561 -4.845726e-02 sample63 0.0596315404 -4.137110e-02 sample64 0.0449227267 -2.600969e-03 sample65 -0.0939382261 -4.406950e-02 sample66 -0.1063397758 -5.710079e-02 sample67 0.0201580878 2.361746e-01 sample68 -0.0037208362 2.418546e-02 sample69 0.0645161973 -1.155618e-01 sample70 0.1013439743 -1.351780e-01 sample71 0.0016466151 -2.976772e-02 sample72 -0.0328895432 -2.835770e-02 sample73 -0.0275080431 -5.148152e-02 sample74 -0.1341718411 -7.895303e-02 sample75 -0.0951576645 -3.943147e-02 sample76 0.0864719974 3.035054e-02 sample77 0.1035749518 -2.545325e-02 sample78 0.1575647849 4.939471e-02 sample79 -0.0189138285 4.874690e-02 sample80 -0.1384142766 4.317037e-05 sample81 0.0118846685 -6.357907e-02 sample82 0.1675306633 3.533969e-02 sample83 0.0065671111 -7.812495e-02 sample84 -0.1486890650 -3.109096e-02 sample85 0.0532720355 7.417990e-02 sample86 0.1138474899 -1.819218e-05 sample87 -0.0432865931 6.080500e-02 sample88 -0.0433451188 1.402486e-01 sample89 -0.0331204851 -1.395429e-02 sample90 0.0607413464 -8.610385e-02 sample91 0.0566263875 1.303770e-01 sample92 0.0359580804 1.061605e-01 sample93 0.0433646437 -4.443609e-02 sample94 0.0477292112 -1.059571e-01 sample95 0.0249595957 -3.980509e-02 sample96 -0.0035217575 -9.293931e-02 sample97 0.0066051973 -1.527234e-01 sample98 -0.0020367079 -5.579515e-02 sample99 0.0886621677 -3.728378e-02 sample100 0.1091259590 -3.560401e-02 sample101 0.0739723891 -4.317883e-02 sample102 -0.0574455694 -2.784089e-02 sample103 -0.0142733721 9.706369e-03 sample104 -0.0710395540 4.068331e-02 sample105 -0.0980829946 -3.452997e-02 sample106 0.0254260478 3.628932e-02 sample107 0.0160654996 -9.173398e-02 sample108 0.0200988302 -2.379699e-02 sample109 0.0389782014 1.692311e-02 sample110 0.0326305247 2.988086e-02 sample111 -0.0676935894 -6.038249e-02 sample112 -0.0167883535 5.336923e-03 sample113 -0.0969213961 -2.757704e-02 sample114 0.0026397991 -9.209101e-02 sample115 0.0308049625 1.603743e-02 sample116 0.1240306472 1.272998e-01 sample117 -0.0334728583 5.392662e-02 sample118 0.1037152193 6.252439e-02 sample119 0.1064170729 1.196218e-01 sample120 0.0771357691 -1.004935e-01 sample121 0.0129352277 3.181913e-02 sample122 -0.0847487593 -5.568466e-02 sample123 0.0041335515 7.693557e-03 sample124 0.0583462189 -8.396478e-02 sample125 -0.0634843279 -5.232568e-02 sample126 0.0662582051 -1.091730e-01 sample127 0.0865025606 -1.094172e-01 sample128 0.0627821986 -1.471096e-02 sample129 0.0336274577 -4.007774e-02 sample130 0.0293518105 -8.046086e-02 sample131 0.0469196794 -2.209380e-03 sample132 0.0241745595 -1.248608e-01 sample133 -0.0907303783 1.466698e-02 sample134 0.0350841239 7.539660e-02 sample135 -0.0001334896 9.185826e-03 sample136 0.0335874800 -9.860180e-02 sample137 0.0640147262 -7.554370e-02 sample138 -0.0060964016 -1.742783e-02 sample139 0.0592082763 5.615006e-02 sample140 -0.0427988605 -1.099464e-02 sample141 -0.0618793310 -9.301103e-02 sample142 -0.0898552513 3.573323e-02 sample143 -0.0817391026 8.880528e-02 sample144 -0.0787754474 -3.821395e-02 sample145 -0.1085819508 1.569460e-01 sample146 0.0589555023 -4.373235e-02 sample147 0.0495327898 7.278068e-03 sample148 -0.1161590511 9.078125e-03 sample149 0.0121575583 7.788464e-02 sample150 0.0314511968 3.520220e-02 sample151 -0.0575380928 -1.945393e-02 sample152 0.0494540400 7.025566e-02 sample153 0.0941338527 2.153269e-01 sample154 0.0335928853 2.078826e-02 sample155 -0.0690459061 -2.780360e-02 sample156 -0.1039902309 -6.292487e-02 sample157 0.0408645819 8.065527e-03 sample158 -0.1018106342 7.817030e-03 sample159 0.0281732518 -1.207261e-02 sample160 -0.1643052887 2.977814e-03 sample161 -0.0374330032 8.524589e-02 sample162 0.0804538217 8.349633e-02 sample163 0.0743232346 -1.406349e-02 sample164 -0.1208804285 -2.139524e-02 sample165 -0.1608115940 2.025159e-02 sample166 0.0425947911 -2.660802e-02 sample167 0.0226849509 -4.464257e-02 sample168 0.0180737339 -7.471671e-04 sample169 -0.0190780222 2.645427e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 17.682 0.683 18.391
STATegRa.Rcheck/STATegRa-Ex.timings
name | user | system | elapsed | |
STATegRaUsersGuide | 0.001 | 0.000 | 0.002 | |
STATegRa_data | 0.311 | 0.017 | 0.328 | |
STATegRa_data_TCGA_BRCA | 0.004 | 0.002 | 0.005 | |
bioDist | 0.708 | 0.056 | 0.763 | |
bioDistFeature | 0.535 | 0.029 | 0.586 | |
bioDistFeaturePlot | 0.458 | 0.025 | 0.483 | |
bioDistW | 0.483 | 0.025 | 0.509 | |
bioDistWPlot | 0.459 | 0.026 | 0.486 | |
bioMap | 0.005 | 0.002 | 0.006 | |
combiningMappings | 0.019 | 0.003 | 0.022 | |
createOmicsExpressionSet | 0.199 | 0.004 | 0.204 | |
getInitialData | 0.848 | 0.227 | 1.077 | |
getLoadings | 0.914 | 0.199 | 1.113 | |
getMethodInfo | 0.935 | 0.187 | 1.122 | |
getPreprocessing | 1.392 | 1.138 | 2.556 | |
getScores | 0.983 | 0.154 | 1.138 | |
getVAF | 0.892 | 0.149 | 1.041 | |
holistOmics | 0.003 | 0.002 | 0.005 | |
modelSelection | 2.377 | 2.598 | 5.067 | |
omicsCompAnalysis | 5.963 | 0.173 | 6.142 | |
omicsNPC | 0.003 | 0.002 | 0.005 | |
plotRes | 7.306 | 0.163 | 7.480 | |
plotVAF | 6.511 | 0.183 | 6.701 | |