Back to Multiple platform build/check report for BioC 3.17:   simplified   long
AB[C]DEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2023-10-16 11:36:57 -0400 (Mon, 16 Oct 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.2 LTS)x86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4626
palomino3Windows Server 2022 Datacenterx644.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" 4379
merida1macOS 12.6.4 Montereyx86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4395
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 441/2230HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
COTAN 2.0.5  (landing page)
Galfrè Silvia Giulia
Snapshot Date: 2023-10-15 14:00:13 -0400 (Sun, 15 Oct 2023)
git_url: https://git.bioconductor.org/packages/COTAN
git_branch: RELEASE_3_17
git_last_commit: 0bc776a
git_last_commit_date: 2023-08-12 11:29:20 -0400 (Sat, 12 Aug 2023)
nebbiolo1Linux (Ubuntu 22.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.6.4 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson2macOS 12.6.1 Monterey / arm64see weekly results here

CHECK results for COTAN on merida1


To the developers/maintainers of the COTAN package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/COTAN.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: COTAN
Version: 2.0.5
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:COTAN.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings COTAN_2.0.5.tar.gz
StartedAt: 2023-10-16 00:18:46 -0400 (Mon, 16 Oct 2023)
EndedAt: 2023-10-16 00:49:02 -0400 (Mon, 16 Oct 2023)
EllapsedTime: 1815.7 seconds
RetCode: 0
Status:   OK  
CheckDir: COTAN.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:COTAN.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings COTAN_2.0.5.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.17-bioc/meat/COTAN.Rcheck’
* using R version 4.3.1 (2023-06-16)
* using platform: x86_64-apple-darwin20 (64-bit)
* R was compiled by
    Apple clang version 14.0.3 (clang-1403.0.22.14.1)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.6.4
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘COTAN/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘COTAN’ version ‘2.0.5’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘COTAN’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... NOTE
Unexported object imported by a ':::' call: ‘ggplot2:::ggname’
  See the note in ?`:::` about the use of this operator.
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
GDIPlot: no visible binding for global variable ‘sum.raw.norm’
GDIPlot: no visible binding for global variable ‘GDI’
UMAPPlot: no visible binding for global variable ‘x’
UMAPPlot: no visible binding for global variable ‘y’
calculateG: no visible binding for global variable ‘observedNN’
calculateG: no visible binding for global variable ‘observedNY’
calculateG: no visible binding for global variable ‘observedYN’
calculateG: no visible binding for global variable ‘observedYY’
calculateG: no visible binding for global variable ‘expectedNN’
calculateG: no visible binding for global variable ‘expectedNY’
calculateG: no visible binding for global variable ‘expectedYN’
calculateG: no visible binding for global variable ‘expectedYY’
cellsUniformClustering: no visible binding for global variable
  ‘objSeurat’
cellsUniformClustering: no visible binding for global variable
  ‘usedMaxResolution’
cleanPlots: no visible binding for global variable ‘PC1’
cleanPlots: no visible binding for global variable ‘PC2’
cleanPlots: no visible binding for global variable ‘n’
cleanPlots: no visible binding for global variable ‘means’
cleanPlots: no visible binding for global variable ‘nu’
clustersSummaryPlot: no visible binding for global variable ‘keys’
clustersSummaryPlot: no visible binding for global variable ‘values’
clustersSummaryPlot: no visible binding for global variable
  ‘CellNumber’
clustersSummaryPlot: no visible binding for global variable ‘MeanUDE’
clustersSummaryPlot: no visible binding for global variable
  ‘CellPercentage’
clustersSummaryPlot: no visible binding for global variable ‘Cluster’
clustersTreePlot: no visible binding for global variable ‘clusters’
establishGenesClusters: no visible binding for global variable
  ‘secondaryMarkers’
establishGenesClusters: no visible binding for global variable ‘GCS’
establishGenesClusters: no visible binding for global variable
  ‘rankGenes’
expectedContingencyTables: no visible binding for global variable
  ‘expectedN’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘group’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘y’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘x’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘width’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘violinwidth’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘xmax’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘xminv’
geom_flat_violin : <anonymous>: no visible binding for global variable
  ‘xmaxv’
heatmapPlot: no visible binding for global variable ‘g2’
mitochondrialPercentagePlot: no visible binding for global variable
  ‘mit.percentage’
observedContingencyTables: no visible binding for global variable
  ‘observedY’
scatterPlot: no visible binding for global variable ‘.x’
calculateCoex,COTAN: no visible binding for global variable
  ‘expectedNN’
calculateCoex,COTAN: no visible binding for global variable
  ‘expectedNY’
calculateCoex,COTAN: no visible binding for global variable
  ‘expectedYN’
calculateCoex,COTAN: no visible binding for global variable
  ‘expectedYY’
calculateCoex,COTAN: no visible binding for global variable
  ‘observedYY’
calculateCoex,COTAN: no visible binding for global variable ‘.’
coerce,COTAN-scCOTAN: no visible binding for global variable ‘rawNorm’
coerce,COTAN-scCOTAN: no visible binding for global variable ‘nu’
coerce,COTAN-scCOTAN: no visible binding for global variable ‘lambda’
coerce,COTAN-scCOTAN: no visible binding for global variable ‘a’
coerce,COTAN-scCOTAN: no visible binding for global variable ‘hk’
coerce,COTAN-scCOTAN: no visible binding for global variable ‘clusters’
coerce,COTAN-scCOTAN: no visible binding for global variable
  ‘clusterData’
Undefined global functions or variables:
  . .x CellNumber CellPercentage Cluster GCS GDI MeanUDE PC1 PC2 a
  clusterData clusters expectedN expectedNN expectedNY expectedYN
  expectedYY g2 group hk keys lambda means mit.percentage n nu
  objSeurat observedNN observedNY observedY observedYN observedYY
  rankGenes rawNorm secondaryMarkers sum.raw.norm usedMaxResolution
  values violinwidth width x xmax xmaxv xminv y
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
UniformClusters         521.449  4.651 719.528
CalculatingCOEX          39.185  1.165  54.910
HeatmapPlots             36.871  0.968  50.909
ParametersEstimations    22.883  0.742  31.519
HandlingClusterizations  17.128  0.377  24.011
GenesCoexSpace           10.501  0.291  15.186
COTANObjectCreation       8.685  0.282  12.053
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘outputTestDatasetCreation.R’
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.17-bioc/meat/COTAN.Rcheck/00check.log’
for details.



Installation output

COTAN.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL COTAN
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’
* installing *source* package ‘COTAN’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (COTAN)

Tests output

COTAN.Rcheck/tests/outputTestDatasetCreation.Rout


R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> # Creates the files to be reloaded by the tests for comparisons
> 
> outputTestDatasetCreation <- function(testsDir = "tests/testthat"){
+   utils::data("test.dataset", package = "COTAN")
+   options(parallelly.fork.enable = TRUE)
+ 
+   obj <- COTAN(raw = test.dataset)
+   obj <- initializeMetaDataset(obj, GEO = " ",
+                                sequencingMethod = "artificial",
+                                sampleCondition = "test")
+ 
+   obj <- proceedToCoex(obj, cores = 12, saveObj = FALSE)
+   #saveRDS(obj, file = file.path(testsDir,"temp.RDS"))
+ 
+   cell.names.test  <- getCells(obj)[c(1:10,591:610,991:1000)]
+   genes.names.test <- getGenes(obj)[c(1:10,291:310,591:600)]
+   saveRDS(cell.names.test, file.path(testsDir, "cell.names.test.RDS"))
+   saveRDS(genes.names.test, file.path(testsDir, "genes.names.test.RDS"))
+ 
+   dispersion.test <- getDispersion(obj)[genes.names.test]
+   saveRDS(dispersion.test, file.path(testsDir, "dispersion.test.RDS"))
+ 
+   raw.norm.test <- getNormalizedData(obj)[genes.names.test, cell.names.test]
+   saveRDS(raw.norm.test, file.path(testsDir, "raw.norm.test.RDS"))
+ 
+   coex.test <- getGenesCoex(obj, genes = genes.names.test, zeroDiagonal = FALSE)
+   saveRDS(coex.test, file.path(testsDir, "coex.test.RDS"))
+ 
+   lambda.test <- getLambda(obj)[genes.names.test]
+   saveRDS(lambda.test, file.path(testsDir, "lambda.test.RDS"))
+ 
+   GDI.test <- calculateGDI(obj)
+   GDI.test <- GDI.test[genes.names.test, ]
+   saveRDS(GDI.test, file.path(testsDir, "GDI.test.RDS"))
+ 
+   nu.test <- getNu(obj)[cell.names.test]
+   saveRDS(nu.test, file.path(testsDir, "nu.test.RDS"))
+ 
+   pval.test <- calculatePValue(obj, geneSubsetCol = genes.names.test)
+   saveRDS(pval.test, file.path(testsDir, "pval.test.RDS"))
+ 
+   GDIThreshold <- 1.5
+ 
+   clusters <- cellsUniformClustering(obj, GDIThreshold = GDIThreshold,
+                                      cores = 12, saveObj = FALSE)
+   saveRDS(clusters, file.path(testsDir, "clusters1.RDS"))
+ 
+   c(coexDF, pvalDF) %<-% DEAOnClusters(obj, clusters = clusters)
+   obj <- addClusterization(obj, clName = "clusters",
+                            clusters = clusters, coexDF = coexDF)
+ 
+   saveRDS(coexDF[genes.names.test, ],
+           file.path(testsDir, "coex.test.cluster1.RDS"))
+   saveRDS(pvalDF[genes.names.test, ],
+           file.path(testsDir, "pval.test.cluster1.RDS"))
+ 
+   c(mergedClusters, mCoexDF, mPValueDf) %<-%
+     mergeUniformCellsClusters(objCOTAN = obj,
+                               clusters = NULL,
+                               GDIThreshold = GDIThreshold,
+                               cores = 12,
+                               distance = "cosine",
+                               hclustMethod = "ward.D2",
+                               saveObj = FALSE)
+ 
+   saveRDS(mergedClusters[genes.names.test],
+           file.path(testsDir, "cluster_data_merged.RDS"))
+ }
> 
> proc.time()
   user  system elapsed 
  0.371   0.118   0.506 

COTAN.Rcheck/tests/spelling.Rout


R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if(requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE,
+                              skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.368   0.121   0.493 

COTAN.Rcheck/tests/testthat.Rout


R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> Sys.setenv(R_TESTS = "")
> library(testthat)
> library(COTAN)
The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
which was just loaded, were retired in October 2023.
Please refer to R-spatial evolution reports for details, especially
https://r-spatial.org/r/2023/05/15/evolution4.html.
It may be desirable to make the sf package available;
package maintainers should consider adding sf to Suggests:.
> test_check("COTAN")
Setting new log level to 3
Initializing `COTAN` meta-data
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.181818181818182
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 5 genes batches from [1:2] to [9:10]
Estimate dispersion: DONE
dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 7 cells batches from [1:3] to [18:20]
Estimate nu: DONE
nu change (abs) | max: 1.75595238095238 | median:  1.07174634176587 | mean:  1.07174634176587
Estimate 'dispersion'/'nu': START
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 1.0362548828125 | max: 4.60986328125 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.0265938895089288 | median:  0.0144680038331048 | mean:  0.0144680038331048
Nu mean: 1.69633192486233
Marginal errors | max: 1.95570586131367 | median 1.32068160171502 | mean: 1.33375826507259
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.058837890625 | max: 3.528076171875 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.416683423613994 | median:  0.239880630367975 | mean:  0.239880630367975
Nu mean: 0.823197206753982
Marginal errors | max: 0.836359531101206 | median 0.703684202571891 | mean: 0.645537958989614
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.32879638671875 | max: 4.0302734375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.164237872898673 | median:  0.0955985184389135 | mean:  0.0955985184389135
Nu mean: 1.06863935445976
Marginal errors | max: 0.259872988828244 | median 0.213703042752633 | mean: 0.197386407582083
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.2294921875 | max: 3.8720703125 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.055185575120883 | median:  0.0319991762044448 | mean:  0.0319991762044448
Nu mean: 0.976813601083562
Marginal errors | max: 0.0951586919577032 | median 0.0794297037094669 | mean: 0.0724140148396652
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.2637939453125 | max: 3.929443359375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.0196211148938294 | median:  0.01138609597457 | mean:  0.01138609597457
Nu mean: 1.00823501891926
Marginal errors | max: 0.0327747321002274 | median 0.0272104747849529 | mean: 0.0248963830312036
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.25177001953125 | max: 3.90966796875 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.00670099066960717 | median:  0.00388888266671264 | mean:  0.00388888266671264
Nu mean: 0.997187891997105
Marginal errors | max: 0.0114324509186883 | median 0.00942326497706159 | mean: 0.00863113610779536
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.25592041015625 | max: 3.91650390625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.00230093811689414 | median:  0.00132529122122246 | mean:  0.00132529122122246
Nu mean: 1.00097564689567
Marginal errors | max: 0.00387133150664809 | median 0.0031091017608853 | mean: 0.00286071175800213
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.2545166015625 | max: 3.914306640625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.000837011646904529 | median:  0.000470837393363011 | mean:  0.000470837393363011
Nu mean: 0.999633825746458
Marginal errors | max: 0.00122501723202184 | median 0.00102126435760308 | mean: 0.000943992659051851
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.000209227351122054 | median:  0.000122070312500028 | mean:  0.000122070312500028
Nu mean: 1.00008715703862
Marginal errors | max: 0.000364602956583582 | median 0.000313956936819793 | mean: 0.000282899574318485
Estimate dispersion/nu: DONE
Estimate 'dispersion'/'nu': START
Initializing `COTAN` meta-data
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.181818181818182
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Calculate cells' coex: START
Retrieving expected cells' contingency table
calculating NN.. done
calculating YN..NY..YY.. done
Calculating cells' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed cells' yes/yes contingency table
calculating YY.. done
Estimating cells' coex
Calculate cells' coex: DONE
Initializing `COTAN` meta-data
Initializing `COTAN` meta-data
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
Estimate 'dispersion'/'nu': START
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 1.75719246031746 | median:  1.07229953342014 | mean:  1.07229953342014
Nu mean: 1.68489292689732
Marginal errors | max: 1.73564890252257 | median 1.37996360874076 | mean: 1.32180348113228
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.0655517578125 | max: 3.5439453125 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.402649984216273 | median:  0.231868788425666 | mean:  0.231868788425666
Nu mean: 0.829218804209393
Marginal errors | max: 0.803213159865939 | median 0.677497553540579 | mean: 0.61937543089282
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.3260498046875 | max: 4.026123046875 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.158004893526231 | median:  0.0919692884670312 | mean:  0.0919692884670312
Nu mean: 1.0660356050592
Marginal errors | max: 0.250724014302325 | median 0.206232152124435 | mean: 0.190425623677197
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.23040771484375 | max: 3.8736572265625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.0532774732102337 | median:  0.0308837890624999 | mean:  0.0308837890624999
Nu mean: 0.977606315852266
Marginal errors | max: 0.0916983669060105 | median 0.0765266929824948 | mean: 0.0697593208689693
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.26348876953125 | max: 3.928955078125 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.0189966206463044 | median:  0.0110199320575908 | mean:  0.0110199320575908
Nu mean: 1.00797668858871
Marginal errors | max: 0.0317151207459254 | median 0.0262702142278233 | mean: 0.0240886952086955
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.2518310546875 | max: 3.9097900390625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.00670088501353994 | median:  0.00388888101583662 | mean:  0.00388888101583662
Nu mean: 0.997187996002297
Marginal errors | max: 0.011369331635624 | median 0.00939669372836338 | mean: 0.00860715734056949
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.2559814453125 | max: 3.9166259765625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.00251007446998996 | median:  0.00144735987374958 | mean:  0.00144735987374958
Nu mean: 1.00106271459624
Marginal errors | max: 0.00406746973787264 | median 0.00343393462175801 | mean: 0.00313496757119527
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.25445556640625 | max: 3.9140625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.000837027590858019 | median:  0.000488281249999889 | mean:  0.000488281249999889
Nu mean: 0.999651253659142
Marginal errors | max: 0.00143433714371355 | median 0.00116636244706836 | mean: 0.00109289166947804
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:10] to [1:10]
Estimate dispersion: DONE
dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 1 cells batches from [1:20] to [1:20]
Estimate nu: DONE
nu change (abs) | max: 0.000209227688885871 | median:  0.0001220703125 | mean:  0.0001220703125
Nu mean: 1.00008715737639
Marginal errors | max: 0.000379524846206181 | median 0.000325685250687435 | mean: 0.000295532844331703
Estimate dispersion/nu: DONE
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.181818181818182
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Calculate cells' coex: START
Retrieving expected cells' contingency table
calculating NN.. done
calculating YN..NY..YY.. done
Calculating cells' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed cells' yes/yes contingency table
calculating YY.. done
Estimating cells' coex
Calculate cells' coex: DONE
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
calculating YY.. done
calculating YY.. done
calculating YN..NY..NN.. done
Estimate dispersion: START
Effective number of cores used: 1
Executing 3 genes batches from [1:3] to [8:10]
Estimate dispersion: DONE
dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10
calculating NN.. done
calculating NN.. done
calculating NY..YN..YY.. done
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.181818181818182
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
calculating YY.. done
calculating YY.. done
calculating NY..YN..NN.. done
Estimate 'dispersion'/'nu': START
Estimate dispersion: START
Effective number of cores used: 1
Executing 3 genes batches from [1:3] to [8:10]
Estimate dispersion: DONE
dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 5 cells batches from [1:4] to [17:20]
Estimate nu: DONE
nu change (abs) | max: 1.75719246031746 | median:  1.07229953342014 | mean:  1.07229953342014
Nu mean: 1.68489292689732
Marginal errors | max: 0.255353289373158 | median 0.0807577993228143 | mean: 0.101980750205761
Estimate dispersion: START
Effective number of cores used: 1
Executing 3 genes batches from [1:3] to [8:10]
Estimate dispersion: DONE
dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 5 cells batches from [1:4] to [17:20]
Estimate nu: DONE
nu change (abs) | max: 0.0273438105507502 | median:  0.0148852611818011 | mean:  0.0148852611818011
Nu mean: 1.69735147626627
Marginal errors | max: 0.00326864580272002 | median 0.00111524657842832 | mean: 0.00131556083122533
Estimate dispersion: START
Effective number of cores used: 1
Executing 3 genes batches from [1:3] to [8:10]
Estimate dispersion: DONE
dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 5 cells batches from [1:4] to [17:20]
Estimate nu: DONE
nu change (abs) | max: 0 | median:  0 | mean:  0
Nu mean: 1.69735147626627
Marginal errors | max: 7.56328383637594e-05 | median 1.72948087246994e-05 | mean: 2.99252342141898e-05
Estimate dispersion/nu: DONE
calculating NN.. done
calculating NN.. done
calculating YN..NY..YY.. done
Calculate cells' coex: START
Retrieving expected cells' contingency table
calculating NN.. done
calculating YN..NY..YY.. done
Calculating cells' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed cells' yes/yes contingency table
calculating YY.. done
Estimating cells' coex
Calculate cells' coex: DONE
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
Estimate 'dispersion'/'nu': START
Estimate dispersion: START
Effective number of cores used: 1
Executing 3 genes batches from [1:3] to [8:10]
Estimate dispersion: DONE
dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 5 cells batches from [1:4] to [17:20]
Estimate nu: DONE
nu change (abs) | max: 1.75719246031746 | median:  1.07229953342014 | mean:  1.07229953342014
Nu mean: 1.68489292689732
Marginal errors | max: 0.255353289373158 | median 0.0807577993228143 | mean: 0.101980750205761
Estimate dispersion: START
Effective number of cores used: 1
Executing 3 genes batches from [1:3] to [8:10]
Estimate dispersion: DONE
dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 5 cells batches from [1:4] to [17:20]
Estimate nu: DONE
nu change (abs) | max: 0.0273438105507502 | median:  0.0148852611818011 | mean:  0.0148852611818011
Nu mean: 1.69735147626627
Marginal errors | max: 0.00326864580272002 | median 0.00111524657842832 | mean: 0.00131556083122533
Estimate dispersion: START
Effective number of cores used: 1
Executing 3 genes batches from [1:3] to [8:10]
Estimate dispersion: DONE
dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10
Estimate nu: START
Effective number of cores used: 1
Executing 5 cells batches from [1:4] to [17:20]
Estimate nu: DONE
nu change (abs) | max: 0 | median:  0 | mean:  0
Nu mean: 1.69735147626627
Marginal errors | max: 7.56328383637594e-05 | median 1.72948087246994e-05 | mean: 2.99252342141898e-05
Estimate dispersion/nu: DONE
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.181818181818182
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Calculating S: START
Calculating S: DONE
Calculating G: START
calculating YY.. done
calculating YN..NY..NN.. done
calculating NN.. done
calculating NY..YN..YY.. done
Estimating G
Calculating G: DONE
Using S
Calculating S: START
Calculating S: DONE
calculating PValues: START
Get p-values genome wide on columns and genome wide on rows
calculating PValues: DONE
Using G
Calculating G: START
calculating YY.. done
calculating YN..NY..NN.. done
calculating NN.. done
calculating NY..YN..YY.. done
Estimating G
Calculating G: DONE
calculating PValues: START
Get p-values on a set of genes on columns and on a set of genes on rows
calculating PValues: DONE
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Using G
Calculating G: START
calculating YY.. done
calculating YN..NY..NN.. done
calculating NN.. done
calculating NY..YN..YY.. done
Estimating G
Calculating G: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Initializing `COTAN` meta-data
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [1200] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0
Only analysis time 0.0647223989168803
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.195704134305318
Only genes' coex time 0.119491203625997
Initializing `COTAN` meta-data
Condition test
n cells 1200
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [1200] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0
Only analysis time 0.0613004485766093
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.189942149321238
Only genes' coex time 0.116385368506114
Using S
Calculating S: START
Calculating S: DONE
calculating PValues: START
Get p-values on a set of genes on columns and genome wide on rows
calculating PValues: DONE
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Initializing `COTAN` meta-data
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [1200] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0
Only analysis time 0.060724417368571
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.194974382718404
Only genes' coex time 0.122265847524007
Creating cells' uniform clustering: START
In iteration 0 the number of cells to re-cluster is 1200 cells belonging to 0 clusters
Creating Seurat object: START
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Centering and scaling data matrix

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
PC_ 1 
Positive:  g-000558, g-000570, g-000499, g-000504, g-000546, g-000506, g-000503, g-000517, g-000596, g-000528 
	   g-000527, g-000580, g-000592, g-000578, g-000509, g-000488, g-000555, g-000577, g-000534, g-000583 
	   g-000598, g-000535, g-000512, g-000554, g-000519, g-000525, g-000548, g-000544, g-000502, g-000541 
Negative:  g-000133, g-000007, g-000074, g-000141, g-000057, g-000235, g-000170, g-000019, g-000195, g-000140 
	   g-000183, g-000031, g-000046, g-000178, g-000177, g-000161, g-000157, g-000139, g-000011, g-000135 
	   g-000125, g-000208, g-000061, g-000085, g-000204, g-000104, g-000237, g-000004, g-000038, g-000128 
PC_ 2 
Positive:  g-000039, g-000050, g-000175, g-000078, g-000116, g-000189, g-000135, g-000047, g-000072, g-000087 
	   g-000063, g-000235, g-000066, g-000109, g-000018, g-000074, g-000231, g-000136, g-000034, g-000207 
	   g-000128, g-000167, g-000171, g-000049, g-000182, g-000013, g-000054, g-000062, g-000240, g-000158 
Negative:  g-000584, g-000583, g-000544, g-000519, g-000575, g-000516, g-000585, g-000486, g-000489, g-000539 
	   g-000484, g-000502, g-000523, g-000595, g-000305, g-000574, g-000599, g-000589, g-000509, g-000538 
	   g-000526, g-000551, g-000579, g-000590, g-000445, g-000556, g-000543, g-000501, g-000504, g-000570 
PC_ 3 
Positive:  g-000015, g-000575, g-000483, g-000316, g-000025, g-000364, g-000050, g-000278, g-000443, g-000360 
	   g-000332, g-000124, g-000212, g-000387, g-000536, g-000252, g-000251, g-000321, g-000501, g-000470 
	   g-000582, g-000106, g-000455, g-000368, g-000081, g-000104, g-000437, g-000288, g-000386, g-000317 
Negative:  g-000211, g-000337, g-000129, g-000185, g-000397, g-000403, g-000253, g-000098, g-000390, g-000303 
	   g-000052, g-000088, g-000463, g-000468, g-000236, g-000209, g-000005, g-000375, g-000342, g-000262 
	   g-000388, g-000091, g-000413, g-000285, g-000003, g-000095, g-000142, g-000205, g-000432, g-000241 
PC_ 4 
Positive:  g-000379, g-000193, g-000212, g-000434, g-000593, g-000513, g-000177, g-000223, g-000069, g-000131 
	   g-000162, g-000345, g-000462, g-000484, g-000448, g-000229, g-000365, g-000302, g-000010, g-000366 
	   g-000051, g-000535, g-000269, g-000270, g-000155, g-000529, g-000373, g-000008, g-000393, g-000306 
Negative:  g-000334, g-000398, g-000292, g-000095, g-000097, g-000202, g-000382, g-000195, g-000007, g-000079 
	   g-000086, g-000240, g-000263, g-000317, g-000576, g-000557, g-000160, g-000154, g-000214, g-000228 
	   g-000313, g-000053, g-000524, g-000374, g-000568, g-000188, g-000358, g-000528, g-000362, g-000150 
PC_ 5 
Positive:  g-000451, g-000339, g-000295, g-000328, g-000544, g-000061, g-000227, g-000391, g-000556, g-000237 
	   g-000067, g-000165, g-000449, g-000591, g-000087, g-000129, g-000197, g-000203, g-000487, g-000505 
	   g-000333, g-000029, g-000271, g-000064, g-000583, g-000156, g-000448, g-000153, g-000526, g-000393 
Negative:  g-000518, g-000108, g-000186, g-000170, g-000401, g-000337, g-000047, g-000599, g-000432, g-000578 
	   g-000042, g-000065, g-000493, g-000261, g-000533, g-000256, g-000560, g-000596, g-000368, g-000381 
	   g-000535, g-000338, g-000215, g-000159, g-000365, g-000234, g-000173, g-000387, g-000225, g-000272 
Computing nearest neighbor graph
Computing SNN
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 1200
Number of edges: 55489

Running Louvain algorithm with multilevel refinement...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.6846
Number of communities: 4
Elapsed time: 0 seconds
Used resolution for Seurat clusterization is: 0.5
00:44:28 UMAP embedding parameters a = 0.9922 b = 1.112
00:44:28 Read 1200 rows and found 50 numeric columns
00:44:28 Using Annoy for neighbor search, n_neighbors = 30
00:44:28 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
00:44:28 Writing NN index file to temp file /tmp/Rtmpb0L3MS/file7c477d02e002
00:44:28 Searching Annoy index using 1 thread, search_k = 3000
00:44:29 Annoy recall = 100%
00:44:29 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
00:44:31 Initializing from normalized Laplacian + noise (using RSpectra)
00:44:31 Commencing optimization for 500 epochs, with 42270 positive edges
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
00:44:35 Optimization finished
Creating Seurat object: DONE
* checking uniformity of cluster '0' of 4 clusters
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [353] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5
Only analysis time 0.0418162027994792
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.000521353300055463
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.168143320083618
Only genes' coex time 0.114351383845011
Checking uniformity for the cluster '0' with 353 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
cluster 0 is uniform
* checking uniformity of cluster '1' of 4 clusters
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [315] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.05303955078125 | max: 52.125 | % negative: 32.6666666666667
Only analysis time 0.0409494996070862
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.288990571270105
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.164812715848287
Only genes' coex time 0.111107297738393
Checking uniformity for the cluster '1' with 315 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
cluster 1 is uniform
* checking uniformity of cluster '2' of 4 clusters
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [311] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.0517578125 | max: 17.296875 | % negative: 8.66666666666667
Only analysis time 0.0410520156224569
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.00206322795341098
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.165801652272542
Only genes' coex time 0.113435486952464
Checking uniformity for the cluster '2' with 311 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
cluster 2 is uniform
* checking uniformity of cluster '3' of 4 clusters
Cotan analysis functions started
Genes/cells selection done: dropped [1] genes and [0] cells
Working on [599] genes and [221] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:599] to [1:599]
Estimate dispersion: DONE
dispersion | min: -0.06640625 | max: 79 | % negative: 35.0584307178631
Only analysis time 0.0385003527005513
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.333583750695604
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.159976879755656
Only genes' coex time 0.109172813097636
Checking uniformity for the cluster '3' with 221 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
cluster 3 is uniform

Found 4 uniform and  0 non-uniform clusters
NO new possible uniform clusters! Unclustered cell left: 0
The final raw clusterization contains [ 4 ] different clusters: 00_0000, 00_0001, 00_0002, 00_0003
Creating cells' uniform clustering: DONE
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [315] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.05303955078125 | max: 52.125 | % negative: 32.6666666666667
Only analysis time 0.040785284837087
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.288990571270105
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.160236136118571
Only genes' coex time 0.107983799775441
Checking uniformity for the cluster 'Cluster_2' with 315 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
GDI plot
Removed 0 low GDI genes (such as the fully-expressed) in GDI plot
findClustersMarkers - START
Differential Expression Analysis - START
* analysis of cluster: '1' - START
* analysis of cluster: '1' - DONE
* analysis of cluster: '2' - START
* analysis of cluster: '2' - DONE
* analysis of cluster: '3' - START
* analysis of cluster: '3' - DONE
* analysis of cluster: '4' - START
* analysis of cluster: '4' - DONE

Differential Expression Analysis - DONE
clustersDeltaExpression - START
Handling cluster '1' with mean UDE 1.43530796540674
Handling cluster '2' with mean UDE 0.546546914955575
Handling cluster '3' with mean UDE 1.22034802329657
Handling cluster '4' with mean UDE 0.640931107489519
clustersDeltaExpression - DONE
findClustersMarkers - DONE
findClustersMarkers - START
Differential Expression Analysis - START
* analysis of cluster: '1' - START
* analysis of cluster: '1' - DONE
* analysis of cluster: '2' - START
* analysis of cluster: '2' - DONE
* analysis of cluster: '3' - START
* analysis of cluster: '3' - DONE
* analysis of cluster: '4' - START
* analysis of cluster: '4' - DONE

Differential Expression Analysis - DONE
clustersDeltaExpression - START
Handling cluster '1' with mean UDE 1.43530796540674
Handling cluster '2' with mean UDE 0.546546914955575
Handling cluster '3' with mean UDE 1.22034802329657
Handling cluster '4' with mean UDE 0.640931107489519
clustersDeltaExpression - DONE
findClustersMarkers - DONE
findClustersMarkers - START
Differential Expression Analysis - START
* analysis of cluster: '1' - START
* analysis of cluster: '1' - DONE
* analysis of cluster: '2' - START
* analysis of cluster: '2' - DONE
* analysis of cluster: '3' - START
* analysis of cluster: '3' - DONE
* analysis of cluster: '4' - START
* analysis of cluster: '4' - DONE

Differential Expression Analysis - DONE
clustersDeltaExpression - START
Handling cluster '1' with mean UDE 1.43530796540674
Handling cluster '2' with mean UDE 0.546546914955575
Handling cluster '3' with mean UDE 1.22034802329657
Handling cluster '4' with mean UDE 0.640931107489519
clustersDeltaExpression - DONE
findClustersMarkers - DONE
[1] "3"
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [311] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.0517578125 | max: 17.296875 | % negative: 8.66666666666667
Only analysis time 0.0416378498077393
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.00206322795341098
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.165233202775319
Only genes' coex time 0.111180635293325
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
[1] "1"
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [353] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5
Only analysis time 0.0433484315872192
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.000521353300055463
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.168302301565806
Only genes' coex time 0.113110284010569
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [10] genes and [20] cells
Initializing `COTAN` meta-data
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [1200] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [1200] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0
Only analysis time 0.0640702168146769
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.195110619068146
Only genes' coex time 0.118786851565043
Calculating gene coexpression space - START
Using S
Calculating S: START
Calculating S: DONE
calculating PValues: START
Get p-values on a set of genes on columns and genome wide on rows
calculating PValues: DONE
Number of selected secondary markers: 109
Calculating S: START
Calculating S: DONE
Number of columns (V set - secondary markers): 109
Number of rows (U set): 60
Calculating gene coexpression space - DONE
Establishing gene clusters - START
Calculating gene coexpression space - START
Using S
Calculating S: START
Calculating S: DONE
calculating PValues: START
Get p-values on a set of genes on columns and genome wide on rows
calculating PValues: DONE
Number of selected secondary markers: 109
Calculating S: START
Calculating S: DONE
Number of columns (V set - secondary markers): 109
Number of rows (U set): 60
Calculating gene coexpression space - DONE
Establishing gene clusters - DONE
Initializing `COTAN` meta-data
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [1200] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0
Only analysis time 0.0628777503967285
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.204465667406718
Only genes' coex time 0.127925634384155
Differential Expression Analysis - START
* analysis of cluster: '1' - START
* analysis of cluster: '1' - DONE
* analysis of cluster: '2' - START
* analysis of cluster: '2' - DONE
* analysis of cluster: '3' - START
* analysis of cluster: '3' - DONE
* analysis of cluster: '4' - START
* analysis of cluster: '4' - DONE

Differential Expression Analysis - DONE
clustersDeltaExpression - START
Handling cluster '1' with mean UDE 1.43530796540674
Handling cluster '2' with mean UDE 0.546546914955575
Handling cluster '3' with mean UDE 1.22034802329657
Handling cluster '4' with mean UDE 0.640931107489519
clustersDeltaExpression - DONE
In group G1 there are 3 detected over 3 genes
In group G2 there are 2 detected over 2 genes
In group G3 there are 5 detected over 5 genes
Merging cells' uniform clustering: START
Start merging smallest clusters: iteration 1
Differential Expression Analysis - START
* analysis of cluster: '1' - START
* analysis of cluster: '1' - DONE
* analysis of cluster: '2' - START
* analysis of cluster: '2' - DONE
* analysis of cluster: '3' - START
* analysis of cluster: '3' - DONE
* analysis of cluster: '4' - START
* analysis of cluster: '4' - DONE

Differential Expression Analysis - DONE
Clusters pairs for merging: c("1", "4") c("2", "3")
*1_4-merge
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [574] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333
Only analysis time 0.0476229826609294
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.000105379922351636
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.177380947271983
Only genes' coex time 0.117535348733266
Checking uniformity for the cluster '1_4-merge' with 574 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Clusters 1 and 4 can be merged
*2_3-merge
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [626] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667
Only analysis time 0.0494625846544902
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 5.54631170271769e-05
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.181282413005829
Only genes' coex time 0.119780846436818
Checking uniformity for the cluster '2_3-merge' with 626 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Clusters 2 and 3 can be merged
Start merging smallest clusters: iteration 2
Differential Expression Analysis - START
* analysis of cluster: '1_4-merge' - START
* analysis of cluster: '1_4-merge' - DONE
* analysis of cluster: '2_3-merge' - START
* analysis of cluster: '2_3-merge' - DONE

Differential Expression Analysis - DONE
Clusters pairs for merging: c("1_4-merge", "2_3-merge")
*1_4-merge_2_3-merge-merge
No genes/cells where dropped
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [1200] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0
Only analysis time 0.0619589964548747
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.200785883267721
Only genes' coex time 0.126433519522349
Checking uniformity for the cluster '1_4-merge_2_3-merge-merge' with 1200 cells
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Merging clusters 1_4-merge and 2_3-merge results in a too high GDI
No clusters leaf-pairs could be merged. Retrying with all neightbooring pairs
Clusters pairs for merging: c("1_4-merge", "2_3-merge")
*1_4-merge_2_3-merge-merge
Clusters 1_4-merge and 2_3-merge already analyzed and not mergeable: skip.
The final merged clusterization contains [2] different clusters: 1_4-merge, 2_3-merge
Merging cells' uniform clustering: DONE
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [626] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667
Only analysis time 0.049211064974467
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 5.54631170271769e-05
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.181829416751862
Only genes' coex time 0.120799752076467
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
Cotan analysis functions started
Genes/cells selection done: dropped [0] genes and [0] cells
Working on [600] genes and [574] cells
Estimate dispersion: START
Effective number of cores used: 1
Executing 1 genes batches from [1:600] to [1:600]
Estimate dispersion: DONE
dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333
Only analysis time 0.0467050313949585
Cotan genes' coex estimation started
Calculate genes' coex: START
Retrieving expected genes' contingency table
calculating NN.. done
calculating NY..YN..YY.. done
Calculating genes' coex normalization factor
Fraction of genes with very low expected contingency tables: 0.000105379922351636
Retrieving observed genes' yes/yes contingency table
calculating YY.. done
Estimating genes' coex
Calculate genes' coex: DONE
Total time 0.176633099714915
Only genes' coex time 0.11839591662089
Using S
Calculating S: START
Calculating S: DONE
Calculate GDI dataframe: START
Calculate GDI dataframe: DONE
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 312 ]
> 
> proc.time()
   user  system elapsed 
400.433   4.459 520.315 

Example timings

COTAN.Rcheck/COTAN-Ex.timings

nameusersystemelapsed
COTAN0.7070.0220.986
COTANObjectCreation 8.685 0.28212.053
CalculatingCOEX39.185 1.16554.910
ClustersList0.0080.0030.016
GenesCoexSpace10.501 0.29115.186
HandleMetaData0.1370.0080.210
HandlingClusterizations17.128 0.37724.011
HeatmapPlots36.871 0.96850.909
LegacyFastSymmMatrix0.0030.0020.012
LoggingFunctions0.0030.0020.008
ParametersEstimations22.883 0.74231.519
RawDataCleaning2.6990.0503.655
RawDataGetters0.1330.0080.182
UniformClusters521.449 4.651719.528
cosineDissimilarity0.0010.0010.001
getColorsVector0.0020.0000.003