Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-02-06 12:05 -0500 (Thu, 06 Feb 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4753
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4501
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4524
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4476
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4407
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1977/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.16.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-02-03 13:00 -0500 (Mon, 03 Feb 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_20
git_last_commit: 6bbe76f
git_last_commit_date: 2024-10-29 11:30:33 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    NA  
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  YES
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.16.0
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings singleCellTK_2.16.0.tar.gz
StartedAt: 2025-02-04 02:34:10 -0500 (Tue, 04 Feb 2025)
EndedAt: 2025-02-04 02:48:28 -0500 (Tue, 04 Feb 2025)
EllapsedTime: 857.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings singleCellTK_2.16.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.2 (2024-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0
    GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0
* running under: Ubuntu 24.04.1 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.16.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 32.921  0.329  33.333
runDoubletFinder         31.490  0.181  31.674
plotScDblFinderResults   29.434  0.316  29.827
runSeuratSCTransform     29.155  0.077  29.235
runScDblFinder           19.372  0.188  19.561
importExampleData        10.714  0.597  11.828
plotBatchCorrCompare     10.138  0.012  10.330
plotScdsHybridResults     8.505  0.040   7.850
plotDecontXResults        7.391  0.175   7.567
plotBcdsResults           7.364  0.051   6.682
runDecontX                6.498  0.002   6.500
plotEmptyDropsResults     6.435  0.007   6.444
plotEmptyDropsScatter     6.394  0.008   6.402
runEmptyDrops             6.261  0.018   6.278
runUMAP                   6.256  0.013   6.352
plotCxdsResults           6.201  0.068   6.347
plotUMAP                  6.006  0.015   6.098
detectCellOutlier         5.224  0.098   5.323
getEnrichRResult          0.600  0.079   8.009
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.141   0.030   0.159 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 20 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 20 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
251.120   4.253 258.031 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0010.0010.002
SEG0.0030.0000.003
calcEffectSizes0.1510.0140.165
combineSCE0.7140.0540.768
computeZScore0.2230.0060.229
convertSCEToSeurat3.7530.0693.822
convertSeuratToSCE0.3160.0070.323
dedupRowNames0.050.000.05
detectCellOutlier5.2240.0985.323
diffAbundanceFET0.0560.0020.058
discreteColorPalette0.0060.0000.007
distinctColors0.0020.0000.002
downSampleCells0.5250.0540.579
downSampleDepth0.3940.0000.394
expData-ANY-character-method0.1200.0030.123
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1550.0000.155
expData-set0.1380.0000.138
expData0.1180.0020.120
expDataNames-ANY-method0.1290.0000.129
expDataNames0.1060.0000.106
expDeleteDataTag0.0330.0000.033
expSetDataTag0.0240.0000.024
expTaggedData0.0240.0000.024
exportSCE0.0210.0000.021
exportSCEtoAnnData0.0960.0010.097
exportSCEtoFlatFile0.0840.0140.099
featureIndex0.0350.0010.036
generateSimulatedData0.0490.0010.050
getBiomarker0.0540.0010.055
getDEGTopTable0.6360.0600.695
getDiffAbundanceResults0.0490.0010.050
getEnrichRResult0.6000.0798.009
getFindMarkerTopTable1.3920.0241.417
getMSigDBTable0.0030.0000.003
getPathwayResultNames0.0230.0000.023
getSampleSummaryStatsTable0.1640.0160.180
getSoupX000
getTSCANResults0.9800.0351.015
getTopHVG0.7350.0100.745
importAnnData0.0010.0000.002
importBUStools0.1310.0010.133
importCellRanger0.7600.0090.769
importCellRangerV2Sample0.1260.0000.126
importCellRangerV3Sample0.2550.0010.257
importDropEst0.1730.0000.174
importExampleData10.714 0.59711.828
importGeneSetsFromCollection1.7050.0201.724
importGeneSetsFromGMT0.0600.0020.062
importGeneSetsFromList0.1120.0000.113
importGeneSetsFromMSigDB3.4100.1463.556
importMitoGeneSet0.0490.0020.050
importOptimus0.0020.0000.001
importSEQC0.1380.0010.139
importSTARsolo0.1410.0010.143
iterateSimulations0.1710.0020.173
listSampleSummaryStatsTables0.2490.0030.252
mergeSCEColData0.3590.0010.360
mouseBrainSubsetSCE0.0350.0010.036
msigdb_table0.0020.0000.002
plotBarcodeRankDropsResults0.5580.0020.560
plotBarcodeRankScatter0.6110.0000.611
plotBatchCorrCompare10.138 0.01210.330
plotBatchVariance0.2940.0020.296
plotBcdsResults7.3640.0516.682
plotBubble0.6750.0050.680
plotClusterAbundance0.8020.0000.802
plotCxdsResults6.2010.0686.347
plotDEGHeatmap2.0290.0162.045
plotDEGRegression3.0780.0223.096
plotDEGViolin3.8620.0613.917
plotDEGVolcano0.7780.0030.781
plotDecontXResults7.3910.1757.567
plotDimRed0.1820.0000.183
plotDoubletFinderResults32.921 0.32933.333
plotEmptyDropsResults6.4350.0076.444
plotEmptyDropsScatter6.3940.0086.402
plotFindMarkerHeatmap3.5770.0113.588
plotMASTThresholdGenes1.1930.0061.199
plotPCA0.2920.0040.296
plotPathway0.4990.0040.503
plotRunPerCellQCResults1.7910.0031.795
plotSCEBarAssayData0.1790.0000.179
plotSCEBarColData0.1730.0000.172
plotSCEBatchFeatureMean0.1990.0000.199
plotSCEDensity0.2020.0020.203
plotSCEDensityAssayData0.1530.0020.155
plotSCEDensityColData0.1930.0000.193
plotSCEDimReduceColData0.4860.0020.489
plotSCEDimReduceFeatures0.2390.0010.241
plotSCEHeatmap0.3860.0000.386
plotSCEScatter0.2240.0010.224
plotSCEViolin0.2210.0000.220
plotSCEViolinAssayData0.2610.0000.260
plotSCEViolinColData0.2140.0010.214
plotScDblFinderResults29.434 0.31629.827
plotScanpyDotPlot0.0210.0030.024
plotScanpyEmbedding0.0220.0010.024
plotScanpyHVG0.0220.0000.023
plotScanpyHeatmap0.0220.0000.022
plotScanpyMarkerGenes0.0210.0020.023
plotScanpyMarkerGenesDotPlot0.0200.0030.023
plotScanpyMarkerGenesHeatmap0.0210.0020.024
plotScanpyMarkerGenesMatrixPlot0.0230.0000.023
plotScanpyMarkerGenesViolin0.0230.0000.022
plotScanpyMatrixPlot0.0230.0000.023
plotScanpyPCA0.0210.0020.023
plotScanpyPCAGeneRanking0.0220.0020.024
plotScanpyPCAVariance0.0230.0000.023
plotScanpyViolin0.0230.0000.023
plotScdsHybridResults8.5050.0407.850
plotScrubletResults0.0230.0000.024
plotSeuratElbow0.0220.0010.022
plotSeuratHVG0.0240.0000.023
plotSeuratJackStraw0.0230.0000.023
plotSeuratReduction0.0230.0000.023
plotSoupXResults0.0000.0010.000
plotTSCANClusterDEG3.3830.0063.390
plotTSCANClusterPseudo1.1150.0011.116
plotTSCANDimReduceFeatures1.1350.0021.137
plotTSCANPseudotimeGenes1.2900.0041.293
plotTSCANPseudotimeHeatmap1.2070.0041.211
plotTSCANResults1.0340.0051.039
plotTSNE0.2780.0030.280
plotTopHVG0.4890.0020.492
plotUMAP6.0060.0156.098
readSingleCellMatrix0.0060.0000.006
reportCellQC0.0760.0000.076
reportDropletQC0.0220.0000.021
reportQCTool0.0740.0020.076
retrieveSCEIndex0.0270.0000.027
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.2030.0010.204
runBcds1.9440.0131.160
runCellQC0.0750.0000.075
runClusterSummaryMetrics0.3420.0000.342
runComBatSeq0.4090.0050.414
runCxds0.3000.0010.301
runCxdsBcdsHybrid1.9810.0821.241
runDEAnalysis2.0550.0632.119
runDecontX6.4980.0026.500
runDimReduce0.2730.0020.274
runDoubletFinder31.490 0.18131.674
runDropletQC0.0240.0000.024
runEmptyDrops6.2610.0186.278
runEnrichR0.5290.0452.930
runFastMNN1.6910.0561.747
runFeatureSelection0.2060.0070.213
runFindMarker1.3730.0231.397
runGSVA0.8220.0040.825
runHarmony0.0440.0000.044
runKMeans0.2000.0010.201
runLimmaBC0.0740.0000.074
runMNNCorrect0.380.000.38
runModelGeneVar0.2930.0010.294
runNormalization2.3590.0342.393
runPerCellQC0.3270.0010.328
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder19.372 0.18819.561
runScanpyFindClusters0.0220.0000.021
runScanpyFindHVG0.0210.0000.021
runScanpyFindMarkers0.0210.0000.020
runScanpyNormalizeData0.0880.0010.089
runScanpyPCA0.0220.0000.022
runScanpyScaleData0.0210.0000.021
runScanpyTSNE0.0220.0000.021
runScanpyUMAP0.0210.0000.021
runScranSNN0.2810.0020.283
runScrublet0.0210.0010.021
runSeuratFindClusters0.0210.0000.021
runSeuratFindHVG0.4330.0010.433
runSeuratHeatmap0.0220.0000.022
runSeuratICA0.0210.0000.021
runSeuratJackStraw0.0220.0000.022
runSeuratNormalizeData0.0220.0000.022
runSeuratPCA0.0210.0010.022
runSeuratSCTransform29.155 0.07729.235
runSeuratScaleData0.0220.0000.021
runSeuratUMAP0.0220.0000.021
runSingleR0.0320.0010.033
runSoupX000
runTSCAN0.5940.0000.593
runTSCANClusterDEAnalysis0.7080.0000.707
runTSCANDEG0.6940.0030.698
runTSNE0.7020.0020.705
runUMAP6.2560.0136.352
runVAM0.2910.0000.291
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.1580.0000.158
scaterCPM0.1330.0050.138
scaterPCA0.4230.0010.424
scaterlogNormCounts0.2190.0070.226
sce0.0220.0000.022
sctkListGeneSetCollections0.0730.0010.073
sctkPythonInstallConda0.0010.0000.000
sctkPythonInstallVirtualEnv000
selectSCTKConda0.0000.0010.000
selectSCTKVirtualEnvironment000
setRowNames0.0810.0000.081
setSCTKDisplayRow0.3030.0000.303
singleCellTK000
subDiffEx0.3180.0040.323
subsetSCECols0.0790.0010.080
subsetSCERows0.2520.0010.253
summarizeSCE0.0650.0000.065
trimCounts0.2000.0060.207