Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-21 11:40 -0400 (Fri, 21 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" 4777
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" 4545
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4576
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4528
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4458
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 249/2313HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.71.1  (landing page)
Ben Bolstad
Snapshot Date: 2025-03-20 13:40 -0400 (Thu, 20 Mar 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 824836d
git_last_commit_date: 2024-12-14 17:47:34 -0400 (Sat, 14 Dec 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.71.1
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings BufferedMatrix_1.71.1.tar.gz
StartedAt: 2025-03-20 20:27:50 -0400 (Thu, 20 Mar 2025)
EndedAt: 2025-03-20 20:28:15 -0400 (Thu, 20 Mar 2025)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings BufferedMatrix_1.71.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-03-13 r87965)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.71.1’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.71.1’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.21-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.21-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.21-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.235   0.054   0.275 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 477857 25.6    1045514 55.9   639582 34.2
Vcells 884348  6.8    8388608 64.0  2081263 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Mar 20 20:28:05 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Mar 20 20:28:05 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5d6906c575e0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Mar 20 20:28:06 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Mar 20 20:28:06 2025"
> 
> ColMode(tmp2)
<pointer: 0x5d6906c575e0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]      [,3]       [,4]
[1,] 99.8413563 -0.2304007 1.5534375  0.6391734
[2,]  1.9643816  0.1253614 0.2973677 -2.8118881
[3,] -0.3610790 -0.2785768 0.8215645 -1.3620550
[4,]  0.4737786 -0.7378443 1.6408699  0.4250215
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 99.8413563 0.2304007 1.5534375 0.6391734
[2,]  1.9643816 0.1253614 0.2973677 2.8118881
[3,]  0.3610790 0.2785768 0.8215645 1.3620550
[4,]  0.4737786 0.7378443 1.6408699 0.4250215
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9920647 0.4800007 1.2463697 0.7994832
[2,] 1.4015640 0.3540642 0.5453144 1.6768685
[3,] 0.6008985 0.5278037 0.9064020 1.1670711
[4,] 0.6883158 0.8589787 1.2809644 0.6519368
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.76200 30.03041 39.01714 33.63401
[2,]  40.98002 28.66600 30.75051 44.58057
[3,]  31.37006 30.55661 34.88558 38.03277
[4,]  32.35694 34.32763 39.45051 31.94439
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5d6907e512d0>
> exp(tmp5)
<pointer: 0x5d6907e512d0>
> log(tmp5,2)
<pointer: 0x5d6907e512d0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 467.8127
> Min(tmp5)
[1] 52.71676
> mean(tmp5)
[1] 73.63985
> Sum(tmp5)
[1] 14727.97
> Var(tmp5)
[1] 860.6487
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.63533 72.52104 71.93442 70.26890 73.02065 74.12522 68.06865 70.23292
 [9] 70.91811 72.67328
> rowSums(tmp5)
 [1] 1852.707 1450.421 1438.688 1405.378 1460.413 1482.504 1361.373 1404.658
 [9] 1418.362 1453.466
> rowVars(tmp5)
 [1] 7862.65259  106.07914   65.78322   94.45268   70.83597   81.02505
 [7]   60.77506   82.84145   74.34784   64.88732
> rowSd(tmp5)
 [1] 88.671600 10.299473  8.110685  9.718677  8.416411  9.001392  7.795836
 [8]  9.101728  8.622519  8.055267
> rowMax(tmp5)
 [1] 467.81266  92.78862  88.69813  87.07128  85.54250  90.25277  87.18844
 [8]  85.90446  87.54194  92.83434
> rowMin(tmp5)
 [1] 58.66736 55.64949 58.94349 52.71676 54.98229 57.99338 55.99136 54.50704
 [9] 56.03570 59.21383
> 
> colMeans(tmp5)
 [1] 111.47082  67.71463  71.43205  73.85700  71.66035  73.45449  75.14724
 [8]  69.93527  72.36077  74.10586  71.56342  73.44173  73.00189  73.97869
[15]  69.40526  68.55686  70.38246  69.50360  72.51084  69.31379
> colSums(tmp5)
 [1] 1114.7082  677.1463  714.3205  738.5700  716.6035  734.5449  751.4724
 [8]  699.3527  723.6077  741.0586  715.6342  734.4173  730.0189  739.7869
[15]  694.0526  685.5686  703.8246  695.0360  725.1084  693.1379
> colVars(tmp5)
 [1] 15715.65779    56.07670    67.24493    89.06954    75.12396    60.09749
 [7]    93.35492    55.68473    83.46664   100.56694    88.32237    83.97934
[13]   170.72859    65.18804    43.71927    48.30292   129.48939   116.45691
[19]    51.72939    69.67948
> colSd(tmp5)
 [1] 125.362107   7.488438   8.200301   9.437666   8.667408   7.752257
 [7]   9.662035   7.462220   9.136008  10.028307   9.397998   9.164024
[13]  13.066315   8.073911   6.612055   6.950030  11.379341  10.791520
[19]   7.192315   8.347423
> colMax(tmp5)
 [1] 467.81266  79.52286  83.73980  92.78862  85.54250  83.29158  88.69813
 [8]  80.38318  87.07128  85.88471  87.54194  85.66930  92.83434  86.41628
[15]  77.43317  80.32503  86.76530  90.25277  88.19685  86.42436
> colMin(tmp5)
 [1] 64.21312 57.99338 60.47612 61.35341 58.94349 63.69612 60.94426 60.16002
 [9] 57.20020 56.03570 55.99136 58.78441 54.98229 61.89623 58.66736 58.32928
[17] 52.71676 55.64949 60.83841 54.50704
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.63533 72.52104 71.93442 70.26890 73.02065 74.12522 68.06865 70.23292
 [9] 70.91811       NA
> rowSums(tmp5)
 [1] 1852.707 1450.421 1438.688 1405.378 1460.413 1482.504 1361.373 1404.658
 [9] 1418.362       NA
> rowVars(tmp5)
 [1] 7862.65259  106.07914   65.78322   94.45268   70.83597   81.02505
 [7]   60.77506   82.84145   74.34784   57.89821
> rowSd(tmp5)
 [1] 88.671600 10.299473  8.110685  9.718677  8.416411  9.001392  7.795836
 [8]  9.101728  8.622519  7.609088
> rowMax(tmp5)
 [1] 467.81266  92.78862  88.69813  87.07128  85.54250  90.25277  87.18844
 [8]  85.90446  87.54194        NA
> rowMin(tmp5)
 [1] 58.66736 55.64949 58.94349 52.71676 54.98229 57.99338 55.99136 54.50704
 [9] 56.03570       NA
> 
> colMeans(tmp5)
 [1] 111.47082  67.71463  71.43205  73.85700  71.66035  73.45449  75.14724
 [8]  69.93527  72.36077  74.10586  71.56342  73.44173  73.00189  73.97869
[15]  69.40526  68.55686        NA  69.50360  72.51084  69.31379
> colSums(tmp5)
 [1] 1114.7082  677.1463  714.3205  738.5700  716.6035  734.5449  751.4724
 [8]  699.3527  723.6077  741.0586  715.6342  734.4173  730.0189  739.7869
[15]  694.0526  685.5686        NA  695.0360  725.1084  693.1379
> colVars(tmp5)
 [1] 15715.65779    56.07670    67.24493    89.06954    75.12396    60.09749
 [7]    93.35492    55.68473    83.46664   100.56694    88.32237    83.97934
[13]   170.72859    65.18804    43.71927    48.30292          NA   116.45691
[19]    51.72939    69.67948
> colSd(tmp5)
 [1] 125.362107   7.488438   8.200301   9.437666   8.667408   7.752257
 [7]   9.662035   7.462220   9.136008  10.028307   9.397998   9.164024
[13]  13.066315   8.073911   6.612055   6.950030         NA  10.791520
[19]   7.192315   8.347423
> colMax(tmp5)
 [1] 467.81266  79.52286  83.73980  92.78862  85.54250  83.29158  88.69813
 [8]  80.38318  87.07128  85.88471  87.54194  85.66930  92.83434  86.41628
[15]  77.43317  80.32503        NA  90.25277  88.19685  86.42436
> colMin(tmp5)
 [1] 64.21312 57.99338 60.47612 61.35341 58.94349 63.69612 60.94426 60.16002
 [9] 57.20020 56.03570 55.99136 58.78441 54.98229 61.89623 58.66736 58.32928
[17]       NA 55.64949 60.83841 54.50704
> 
> Max(tmp5,na.rm=TRUE)
[1] 467.8127
> Min(tmp5,na.rm=TRUE)
[1] 52.71676
> mean(tmp5,na.rm=TRUE)
[1] 73.71234
> Sum(tmp5,na.rm=TRUE)
[1] 14668.76
> Var(tmp5,na.rm=TRUE)
[1] 863.9391
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.63533 72.52104 71.93442 70.26890 73.02065 74.12522 68.06865 70.23292
 [9] 70.91811 73.38167
> rowSums(tmp5,na.rm=TRUE)
 [1] 1852.707 1450.421 1438.688 1405.378 1460.413 1482.504 1361.373 1404.658
 [9] 1418.362 1394.252
> rowVars(tmp5,na.rm=TRUE)
 [1] 7862.65259  106.07914   65.78322   94.45268   70.83597   81.02505
 [7]   60.77506   82.84145   74.34784   57.89821
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.671600 10.299473  8.110685  9.718677  8.416411  9.001392  7.795836
 [8]  9.101728  8.622519  7.609088
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.81266  92.78862  88.69813  87.07128  85.54250  90.25277  87.18844
 [8]  85.90446  87.54194  92.83434
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.66736 55.64949 58.94349 52.71676 54.98229 57.99338 55.99136 54.50704
 [9] 56.03570 61.29735
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.47082  67.71463  71.43205  73.85700  71.66035  73.45449  75.14724
 [8]  69.93527  72.36077  74.10586  71.56342  73.44173  73.00189  73.97869
[15]  69.40526  68.55686  71.62342  69.50360  72.51084  69.31379
> colSums(tmp5,na.rm=TRUE)
 [1] 1114.7082  677.1463  714.3205  738.5700  716.6035  734.5449  751.4724
 [8]  699.3527  723.6077  741.0586  715.6342  734.4173  730.0189  739.7869
[15]  694.0526  685.5686  644.6108  695.0360  725.1084  693.1379
> colVars(tmp5,na.rm=TRUE)
 [1] 15715.65779    56.07670    67.24493    89.06954    75.12396    60.09749
 [7]    93.35492    55.68473    83.46664   100.56694    88.32237    83.97934
[13]   170.72859    65.18804    43.71927    48.30292   128.35081   116.45691
[19]    51.72939    69.67948
> colSd(tmp5,na.rm=TRUE)
 [1] 125.362107   7.488438   8.200301   9.437666   8.667408   7.752257
 [7]   9.662035   7.462220   9.136008  10.028307   9.397998   9.164024
[13]  13.066315   8.073911   6.612055   6.950030  11.329202  10.791520
[19]   7.192315   8.347423
> colMax(tmp5,na.rm=TRUE)
 [1] 467.81266  79.52286  83.73980  92.78862  85.54250  83.29158  88.69813
 [8]  80.38318  87.07128  85.88471  87.54194  85.66930  92.83434  86.41628
[15]  77.43317  80.32503  86.76530  90.25277  88.19685  86.42436
> colMin(tmp5,na.rm=TRUE)
 [1] 64.21312 57.99338 60.47612 61.35341 58.94349 63.69612 60.94426 60.16002
 [9] 57.20020 56.03570 55.99136 58.78441 54.98229 61.89623 58.66736 58.32928
[17] 52.71676 55.64949 60.83841 54.50704
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.63533 72.52104 71.93442 70.26890 73.02065 74.12522 68.06865 70.23292
 [9] 70.91811      NaN
> rowSums(tmp5,na.rm=TRUE)
 [1] 1852.707 1450.421 1438.688 1405.378 1460.413 1482.504 1361.373 1404.658
 [9] 1418.362    0.000
> rowVars(tmp5,na.rm=TRUE)
 [1] 7862.65259  106.07914   65.78322   94.45268   70.83597   81.02505
 [7]   60.77506   82.84145   74.34784         NA
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.671600 10.299473  8.110685  9.718677  8.416411  9.001392  7.795836
 [8]  9.101728  8.622519        NA
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.81266  92.78862  88.69813  87.07128  85.54250  90.25277  87.18844
 [8]  85.90446  87.54194        NA
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.66736 55.64949 58.94349 52.71676 54.98229 57.99338 55.99136 54.50704
 [9] 56.03570       NA
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.64623  67.04959  71.70157  73.91748  72.64444  72.69888  74.97587
 [8]  69.88230  71.26066  73.42074  71.82274  72.78961  70.79828  74.03180
[15]  70.18396  69.36347       NaN  69.46437  72.69744  68.97210
> colSums(tmp5,na.rm=TRUE)
 [1] 1040.8160  603.4463  645.3142  665.2573  653.8000  654.2899  674.7829
 [8]  628.9407  641.3460  660.7867  646.4047  655.1065  637.1846  666.2862
[15]  631.6556  624.2713    0.0000  625.1793  654.2770  620.7489
> colVars(tmp5,na.rm=TRUE)
 [1] 17483.98185    58.11062    74.83335   100.16208    73.61949    61.18649
 [7]   104.69392    62.61376    80.28477   107.85716    98.60614    89.69256
[13]   137.44106    73.30482    42.36246    47.02127          NA   130.99670
[19]    57.80382    77.07596
> colSd(tmp5,na.rm=TRUE)
 [1] 132.227009   7.623032   8.650627  10.008101   8.580180   7.822179
 [7]  10.232005   7.912886   8.960177  10.385430   9.930062   9.470616
[13]  11.723526   8.561823   6.508645   6.857205         NA  11.445379
[19]   7.602883   8.779292
> colMax(tmp5,na.rm=TRUE)
 [1] 467.81266  79.52286  83.73980  92.78862  85.54250  83.29158  88.69813
 [8]  80.38318  87.07128  85.88471  87.54194  85.66930  85.90446  86.41628
[15]  77.43317  80.32503      -Inf  90.25277  88.19685  86.42436
> colMin(tmp5,na.rm=TRUE)
 [1] 64.21312 57.99338 60.47612 61.35341 58.94349 63.69612 60.94426 60.16002
 [9] 57.20020 56.03570 55.99136 58.78441 54.98229 61.89623 58.66736 58.32928
[17]      Inf 55.64949 60.83841 54.50704
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 324.03408 125.69645  96.91127 172.71590 227.12807 169.68404 399.38443
 [8] 182.90287 214.50482 183.01609
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 324.03408 125.69645  96.91127 172.71590 227.12807 169.68404 399.38443
 [8] 182.90287 214.50482 183.01609
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14  2.842171e-14  0.000000e+00  0.000000e+00  0.000000e+00
 [6]  2.842171e-14  1.136868e-13 -5.684342e-14 -1.136868e-13 -2.842171e-14
[11]  0.000000e+00 -3.979039e-13 -5.684342e-14  1.705303e-13  2.842171e-14
[16] -2.842171e-14 -5.684342e-14  5.684342e-14 -5.684342e-14 -5.684342e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   1 
1   1 
7   4 
4   7 
1   12 
6   9 
6   14 
7   1 
3   9 
10   16 
3   5 
6   7 
4   15 
10   18 
6   18 
1   11 
7   11 
8   1 
3   16 
8   2 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.778638
> Min(tmp)
[1] -3.37316
> mean(tmp)
[1] -0.1242622
> Sum(tmp)
[1] -12.42622
> Var(tmp)
[1] 1.290656
> 
> rowMeans(tmp)
[1] -0.1242622
> rowSums(tmp)
[1] -12.42622
> rowVars(tmp)
[1] 1.290656
> rowSd(tmp)
[1] 1.136071
> rowMax(tmp)
[1] 2.778638
> rowMin(tmp)
[1] -3.37316
> 
> colMeans(tmp)
  [1] -0.541672417 -1.951991857 -2.354714488 -0.043649602  1.888177632
  [6]  1.173041699  1.701099097 -1.277793989 -2.631906083  0.058411701
 [11]  1.345934054  0.776189574  0.640505899 -1.037118895  0.612861078
 [16] -1.482721270  0.761004183 -0.829910969 -1.546293169  0.487991825
 [21] -0.790386870  0.043075216  0.443460271  0.671355909  0.173647327
 [26] -0.240402161 -0.625539903 -1.081306065 -0.267833110 -1.857973798
 [31] -0.774350929 -0.883469025 -0.908485146 -0.623479670  0.222455221
 [36] -2.183444925 -0.954399074  0.291591734 -0.027729801  0.440877046
 [41] -0.551851460  1.841873418  0.405224449  1.312494736  0.085716642
 [46] -2.501052830 -1.284319889 -0.210873586  0.061751232 -0.833171611
 [51]  0.730768527  1.078995128 -0.151699310  0.090917333 -3.373159761
 [56]  2.230386584  1.418083524 -1.026851999  1.799736768  1.152374193
 [61] -0.331099182  0.359343676  0.031665432  1.232260308  0.080376965
 [66] -0.703695907 -1.134836071  0.318613663 -0.771565961  0.649950835
 [71]  2.778637719  0.068696562 -0.554750944  0.859374052  0.148202675
 [76] -0.204111263  0.986595163 -1.030691122 -0.759335341  1.913131309
 [81]  0.166994340 -0.056503983 -1.451069168  0.320594391  1.021903737
 [86]  0.752787448 -0.187797939 -0.288026784  1.272921739  1.129208564
 [91] -1.092094318 -1.406828182 -1.863842836  0.301425085 -1.751523414
 [96] -0.778329326 -0.009718903 -0.665771728 -0.313030927 -0.554732646
> colSums(tmp)
  [1] -0.541672417 -1.951991857 -2.354714488 -0.043649602  1.888177632
  [6]  1.173041699  1.701099097 -1.277793989 -2.631906083  0.058411701
 [11]  1.345934054  0.776189574  0.640505899 -1.037118895  0.612861078
 [16] -1.482721270  0.761004183 -0.829910969 -1.546293169  0.487991825
 [21] -0.790386870  0.043075216  0.443460271  0.671355909  0.173647327
 [26] -0.240402161 -0.625539903 -1.081306065 -0.267833110 -1.857973798
 [31] -0.774350929 -0.883469025 -0.908485146 -0.623479670  0.222455221
 [36] -2.183444925 -0.954399074  0.291591734 -0.027729801  0.440877046
 [41] -0.551851460  1.841873418  0.405224449  1.312494736  0.085716642
 [46] -2.501052830 -1.284319889 -0.210873586  0.061751232 -0.833171611
 [51]  0.730768527  1.078995128 -0.151699310  0.090917333 -3.373159761
 [56]  2.230386584  1.418083524 -1.026851999  1.799736768  1.152374193
 [61] -0.331099182  0.359343676  0.031665432  1.232260308  0.080376965
 [66] -0.703695907 -1.134836071  0.318613663 -0.771565961  0.649950835
 [71]  2.778637719  0.068696562 -0.554750944  0.859374052  0.148202675
 [76] -0.204111263  0.986595163 -1.030691122 -0.759335341  1.913131309
 [81]  0.166994340 -0.056503983 -1.451069168  0.320594391  1.021903737
 [86]  0.752787448 -0.187797939 -0.288026784  1.272921739  1.129208564
 [91] -1.092094318 -1.406828182 -1.863842836  0.301425085 -1.751523414
 [96] -0.778329326 -0.009718903 -0.665771728 -0.313030927 -0.554732646
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.541672417 -1.951991857 -2.354714488 -0.043649602  1.888177632
  [6]  1.173041699  1.701099097 -1.277793989 -2.631906083  0.058411701
 [11]  1.345934054  0.776189574  0.640505899 -1.037118895  0.612861078
 [16] -1.482721270  0.761004183 -0.829910969 -1.546293169  0.487991825
 [21] -0.790386870  0.043075216  0.443460271  0.671355909  0.173647327
 [26] -0.240402161 -0.625539903 -1.081306065 -0.267833110 -1.857973798
 [31] -0.774350929 -0.883469025 -0.908485146 -0.623479670  0.222455221
 [36] -2.183444925 -0.954399074  0.291591734 -0.027729801  0.440877046
 [41] -0.551851460  1.841873418  0.405224449  1.312494736  0.085716642
 [46] -2.501052830 -1.284319889 -0.210873586  0.061751232 -0.833171611
 [51]  0.730768527  1.078995128 -0.151699310  0.090917333 -3.373159761
 [56]  2.230386584  1.418083524 -1.026851999  1.799736768  1.152374193
 [61] -0.331099182  0.359343676  0.031665432  1.232260308  0.080376965
 [66] -0.703695907 -1.134836071  0.318613663 -0.771565961  0.649950835
 [71]  2.778637719  0.068696562 -0.554750944  0.859374052  0.148202675
 [76] -0.204111263  0.986595163 -1.030691122 -0.759335341  1.913131309
 [81]  0.166994340 -0.056503983 -1.451069168  0.320594391  1.021903737
 [86]  0.752787448 -0.187797939 -0.288026784  1.272921739  1.129208564
 [91] -1.092094318 -1.406828182 -1.863842836  0.301425085 -1.751523414
 [96] -0.778329326 -0.009718903 -0.665771728 -0.313030927 -0.554732646
> colMin(tmp)
  [1] -0.541672417 -1.951991857 -2.354714488 -0.043649602  1.888177632
  [6]  1.173041699  1.701099097 -1.277793989 -2.631906083  0.058411701
 [11]  1.345934054  0.776189574  0.640505899 -1.037118895  0.612861078
 [16] -1.482721270  0.761004183 -0.829910969 -1.546293169  0.487991825
 [21] -0.790386870  0.043075216  0.443460271  0.671355909  0.173647327
 [26] -0.240402161 -0.625539903 -1.081306065 -0.267833110 -1.857973798
 [31] -0.774350929 -0.883469025 -0.908485146 -0.623479670  0.222455221
 [36] -2.183444925 -0.954399074  0.291591734 -0.027729801  0.440877046
 [41] -0.551851460  1.841873418  0.405224449  1.312494736  0.085716642
 [46] -2.501052830 -1.284319889 -0.210873586  0.061751232 -0.833171611
 [51]  0.730768527  1.078995128 -0.151699310  0.090917333 -3.373159761
 [56]  2.230386584  1.418083524 -1.026851999  1.799736768  1.152374193
 [61] -0.331099182  0.359343676  0.031665432  1.232260308  0.080376965
 [66] -0.703695907 -1.134836071  0.318613663 -0.771565961  0.649950835
 [71]  2.778637719  0.068696562 -0.554750944  0.859374052  0.148202675
 [76] -0.204111263  0.986595163 -1.030691122 -0.759335341  1.913131309
 [81]  0.166994340 -0.056503983 -1.451069168  0.320594391  1.021903737
 [86]  0.752787448 -0.187797939 -0.288026784  1.272921739  1.129208564
 [91] -1.092094318 -1.406828182 -1.863842836  0.301425085 -1.751523414
 [96] -0.778329326 -0.009718903 -0.665771728 -0.313030927 -0.554732646
> colMedians(tmp)
  [1] -0.541672417 -1.951991857 -2.354714488 -0.043649602  1.888177632
  [6]  1.173041699  1.701099097 -1.277793989 -2.631906083  0.058411701
 [11]  1.345934054  0.776189574  0.640505899 -1.037118895  0.612861078
 [16] -1.482721270  0.761004183 -0.829910969 -1.546293169  0.487991825
 [21] -0.790386870  0.043075216  0.443460271  0.671355909  0.173647327
 [26] -0.240402161 -0.625539903 -1.081306065 -0.267833110 -1.857973798
 [31] -0.774350929 -0.883469025 -0.908485146 -0.623479670  0.222455221
 [36] -2.183444925 -0.954399074  0.291591734 -0.027729801  0.440877046
 [41] -0.551851460  1.841873418  0.405224449  1.312494736  0.085716642
 [46] -2.501052830 -1.284319889 -0.210873586  0.061751232 -0.833171611
 [51]  0.730768527  1.078995128 -0.151699310  0.090917333 -3.373159761
 [56]  2.230386584  1.418083524 -1.026851999  1.799736768  1.152374193
 [61] -0.331099182  0.359343676  0.031665432  1.232260308  0.080376965
 [66] -0.703695907 -1.134836071  0.318613663 -0.771565961  0.649950835
 [71]  2.778637719  0.068696562 -0.554750944  0.859374052  0.148202675
 [76] -0.204111263  0.986595163 -1.030691122 -0.759335341  1.913131309
 [81]  0.166994340 -0.056503983 -1.451069168  0.320594391  1.021903737
 [86]  0.752787448 -0.187797939 -0.288026784  1.272921739  1.129208564
 [91] -1.092094318 -1.406828182 -1.863842836  0.301425085 -1.751523414
 [96] -0.778329326 -0.009718903 -0.665771728 -0.313030927 -0.554732646
> colRanges(tmp)
           [,1]      [,2]      [,3]       [,4]     [,5]     [,6]     [,7]
[1,] -0.5416724 -1.951992 -2.354714 -0.0436496 1.888178 1.173042 1.701099
[2,] -0.5416724 -1.951992 -2.354714 -0.0436496 1.888178 1.173042 1.701099
          [,8]      [,9]     [,10]    [,11]     [,12]     [,13]     [,14]
[1,] -1.277794 -2.631906 0.0584117 1.345934 0.7761896 0.6405059 -1.037119
[2,] -1.277794 -2.631906 0.0584117 1.345934 0.7761896 0.6405059 -1.037119
         [,15]     [,16]     [,17]     [,18]     [,19]     [,20]      [,21]
[1,] 0.6128611 -1.482721 0.7610042 -0.829911 -1.546293 0.4879918 -0.7903869
[2,] 0.6128611 -1.482721 0.7610042 -0.829911 -1.546293 0.4879918 -0.7903869
          [,22]     [,23]     [,24]     [,25]      [,26]      [,27]     [,28]
[1,] 0.04307522 0.4434603 0.6713559 0.1736473 -0.2404022 -0.6255399 -1.081306
[2,] 0.04307522 0.4434603 0.6713559 0.1736473 -0.2404022 -0.6255399 -1.081306
          [,29]     [,30]      [,31]     [,32]      [,33]      [,34]     [,35]
[1,] -0.2678331 -1.857974 -0.7743509 -0.883469 -0.9084851 -0.6234797 0.2224552
[2,] -0.2678331 -1.857974 -0.7743509 -0.883469 -0.9084851 -0.6234797 0.2224552
         [,36]      [,37]     [,38]      [,39]    [,40]      [,41]    [,42]
[1,] -2.183445 -0.9543991 0.2915917 -0.0277298 0.440877 -0.5518515 1.841873
[2,] -2.183445 -0.9543991 0.2915917 -0.0277298 0.440877 -0.5518515 1.841873
         [,43]    [,44]      [,45]     [,46]    [,47]      [,48]      [,49]
[1,] 0.4052244 1.312495 0.08571664 -2.501053 -1.28432 -0.2108736 0.06175123
[2,] 0.4052244 1.312495 0.08571664 -2.501053 -1.28432 -0.2108736 0.06175123
          [,50]     [,51]    [,52]      [,53]      [,54]    [,55]    [,56]
[1,] -0.8331716 0.7307685 1.078995 -0.1516993 0.09091733 -3.37316 2.230387
[2,] -0.8331716 0.7307685 1.078995 -0.1516993 0.09091733 -3.37316 2.230387
        [,57]     [,58]    [,59]    [,60]      [,61]     [,62]      [,63]
[1,] 1.418084 -1.026852 1.799737 1.152374 -0.3310992 0.3593437 0.03166543
[2,] 1.418084 -1.026852 1.799737 1.152374 -0.3310992 0.3593437 0.03166543
       [,64]      [,65]      [,66]     [,67]     [,68]     [,69]     [,70]
[1,] 1.23226 0.08037696 -0.7036959 -1.134836 0.3186137 -0.771566 0.6499508
[2,] 1.23226 0.08037696 -0.7036959 -1.134836 0.3186137 -0.771566 0.6499508
        [,71]      [,72]      [,73]     [,74]     [,75]      [,76]     [,77]
[1,] 2.778638 0.06869656 -0.5547509 0.8593741 0.1482027 -0.2041113 0.9865952
[2,] 2.778638 0.06869656 -0.5547509 0.8593741 0.1482027 -0.2041113 0.9865952
         [,78]      [,79]    [,80]     [,81]       [,82]     [,83]     [,84]
[1,] -1.030691 -0.7593353 1.913131 0.1669943 -0.05650398 -1.451069 0.3205944
[2,] -1.030691 -0.7593353 1.913131 0.1669943 -0.05650398 -1.451069 0.3205944
        [,85]     [,86]      [,87]      [,88]    [,89]    [,90]     [,91]
[1,] 1.021904 0.7527874 -0.1877979 -0.2880268 1.272922 1.129209 -1.092094
[2,] 1.021904 0.7527874 -0.1877979 -0.2880268 1.272922 1.129209 -1.092094
         [,92]     [,93]     [,94]     [,95]      [,96]        [,97]      [,98]
[1,] -1.406828 -1.863843 0.3014251 -1.751523 -0.7783293 -0.009718903 -0.6657717
[2,] -1.406828 -1.863843 0.3014251 -1.751523 -0.7783293 -0.009718903 -0.6657717
          [,99]     [,100]
[1,] -0.3130309 -0.5547326
[2,] -0.3130309 -0.5547326
> 
> 
> Max(tmp2)
[1] 2.101961
> Min(tmp2)
[1] -2.37081
> mean(tmp2)
[1] 0.1529973
> Sum(tmp2)
[1] 15.29973
> Var(tmp2)
[1] 0.9200389
> 
> rowMeans(tmp2)
  [1] -1.410644582 -0.280640757 -0.053247441 -2.000393041 -1.649013143
  [6] -2.370810124  0.120217225  0.017786484  0.609908387  0.128187976
 [11]  0.814426460 -0.040008233  0.720386598  0.819535426  1.053246046
 [16]  0.400158314  0.676988383  1.261169914  0.766494916  1.052604899
 [21]  0.379011526  0.415538075  0.179578435 -0.462769975  0.242998302
 [26] -0.001161708 -0.260868591 -0.252605269  1.670226479  1.448783270
 [31] -1.315754607 -0.246630722 -1.340914590 -1.110923500  0.128499121
 [36] -0.709890513  0.312056050 -1.150043504  0.612275137  0.260810840
 [41] -0.033729007  0.584115071 -0.334633751 -0.904894758  1.064629930
 [46] -0.529192745 -0.638745936 -1.689795715 -0.657699316  1.877514310
 [51]  0.130377194  0.977499149  0.709072511  1.075701311 -0.601772831
 [56] -0.454462519  1.571381191  0.104222491  0.724954392 -0.052958299
 [61]  1.705805251  0.703527545  0.162154959  1.650205077 -1.230778467
 [66]  0.277325648 -0.419958487 -0.653167438 -0.298590773  0.541478994
 [71]  0.266996828 -0.257807859  0.814618492  0.093843273  1.007996050
 [76]  1.038845325  0.545530681  0.880243325 -0.490944284  1.230587904
 [81] -0.531889590  1.264052846  2.051936938  1.068848804 -1.289174409
 [86]  1.075572139  0.819928795 -0.493619316  0.554360457  0.312941526
 [91] -0.455695835  1.842872212 -0.883707551 -2.085116350  2.101961214
 [96] -1.195765706 -0.866972962  0.628374439  0.458394438  0.998360754
> rowSums(tmp2)
  [1] -1.410644582 -0.280640757 -0.053247441 -2.000393041 -1.649013143
  [6] -2.370810124  0.120217225  0.017786484  0.609908387  0.128187976
 [11]  0.814426460 -0.040008233  0.720386598  0.819535426  1.053246046
 [16]  0.400158314  0.676988383  1.261169914  0.766494916  1.052604899
 [21]  0.379011526  0.415538075  0.179578435 -0.462769975  0.242998302
 [26] -0.001161708 -0.260868591 -0.252605269  1.670226479  1.448783270
 [31] -1.315754607 -0.246630722 -1.340914590 -1.110923500  0.128499121
 [36] -0.709890513  0.312056050 -1.150043504  0.612275137  0.260810840
 [41] -0.033729007  0.584115071 -0.334633751 -0.904894758  1.064629930
 [46] -0.529192745 -0.638745936 -1.689795715 -0.657699316  1.877514310
 [51]  0.130377194  0.977499149  0.709072511  1.075701311 -0.601772831
 [56] -0.454462519  1.571381191  0.104222491  0.724954392 -0.052958299
 [61]  1.705805251  0.703527545  0.162154959  1.650205077 -1.230778467
 [66]  0.277325648 -0.419958487 -0.653167438 -0.298590773  0.541478994
 [71]  0.266996828 -0.257807859  0.814618492  0.093843273  1.007996050
 [76]  1.038845325  0.545530681  0.880243325 -0.490944284  1.230587904
 [81] -0.531889590  1.264052846  2.051936938  1.068848804 -1.289174409
 [86]  1.075572139  0.819928795 -0.493619316  0.554360457  0.312941526
 [91] -0.455695835  1.842872212 -0.883707551 -2.085116350  2.101961214
 [96] -1.195765706 -0.866972962  0.628374439  0.458394438  0.998360754
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -1.410644582 -0.280640757 -0.053247441 -2.000393041 -1.649013143
  [6] -2.370810124  0.120217225  0.017786484  0.609908387  0.128187976
 [11]  0.814426460 -0.040008233  0.720386598  0.819535426  1.053246046
 [16]  0.400158314  0.676988383  1.261169914  0.766494916  1.052604899
 [21]  0.379011526  0.415538075  0.179578435 -0.462769975  0.242998302
 [26] -0.001161708 -0.260868591 -0.252605269  1.670226479  1.448783270
 [31] -1.315754607 -0.246630722 -1.340914590 -1.110923500  0.128499121
 [36] -0.709890513  0.312056050 -1.150043504  0.612275137  0.260810840
 [41] -0.033729007  0.584115071 -0.334633751 -0.904894758  1.064629930
 [46] -0.529192745 -0.638745936 -1.689795715 -0.657699316  1.877514310
 [51]  0.130377194  0.977499149  0.709072511  1.075701311 -0.601772831
 [56] -0.454462519  1.571381191  0.104222491  0.724954392 -0.052958299
 [61]  1.705805251  0.703527545  0.162154959  1.650205077 -1.230778467
 [66]  0.277325648 -0.419958487 -0.653167438 -0.298590773  0.541478994
 [71]  0.266996828 -0.257807859  0.814618492  0.093843273  1.007996050
 [76]  1.038845325  0.545530681  0.880243325 -0.490944284  1.230587904
 [81] -0.531889590  1.264052846  2.051936938  1.068848804 -1.289174409
 [86]  1.075572139  0.819928795 -0.493619316  0.554360457  0.312941526
 [91] -0.455695835  1.842872212 -0.883707551 -2.085116350  2.101961214
 [96] -1.195765706 -0.866972962  0.628374439  0.458394438  0.998360754
> rowMin(tmp2)
  [1] -1.410644582 -0.280640757 -0.053247441 -2.000393041 -1.649013143
  [6] -2.370810124  0.120217225  0.017786484  0.609908387  0.128187976
 [11]  0.814426460 -0.040008233  0.720386598  0.819535426  1.053246046
 [16]  0.400158314  0.676988383  1.261169914  0.766494916  1.052604899
 [21]  0.379011526  0.415538075  0.179578435 -0.462769975  0.242998302
 [26] -0.001161708 -0.260868591 -0.252605269  1.670226479  1.448783270
 [31] -1.315754607 -0.246630722 -1.340914590 -1.110923500  0.128499121
 [36] -0.709890513  0.312056050 -1.150043504  0.612275137  0.260810840
 [41] -0.033729007  0.584115071 -0.334633751 -0.904894758  1.064629930
 [46] -0.529192745 -0.638745936 -1.689795715 -0.657699316  1.877514310
 [51]  0.130377194  0.977499149  0.709072511  1.075701311 -0.601772831
 [56] -0.454462519  1.571381191  0.104222491  0.724954392 -0.052958299
 [61]  1.705805251  0.703527545  0.162154959  1.650205077 -1.230778467
 [66]  0.277325648 -0.419958487 -0.653167438 -0.298590773  0.541478994
 [71]  0.266996828 -0.257807859  0.814618492  0.093843273  1.007996050
 [76]  1.038845325  0.545530681  0.880243325 -0.490944284  1.230587904
 [81] -0.531889590  1.264052846  2.051936938  1.068848804 -1.289174409
 [86]  1.075572139  0.819928795 -0.493619316  0.554360457  0.312941526
 [91] -0.455695835  1.842872212 -0.883707551 -2.085116350  2.101961214
 [96] -1.195765706 -0.866972962  0.628374439  0.458394438  0.998360754
> 
> colMeans(tmp2)
[1] 0.1529973
> colSums(tmp2)
[1] 15.29973
> colVars(tmp2)
[1] 0.9200389
> colSd(tmp2)
[1] 0.9591866
> colMax(tmp2)
[1] 2.101961
> colMin(tmp2)
[1] -2.37081
> colMedians(tmp2)
[1] 0.2112884
> colRanges(tmp2)
          [,1]
[1,] -2.370810
[2,]  2.101961
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  7.952150  3.393019  2.850362 -6.854887  1.591741  1.408139  2.909620
 [8]  2.067920 -4.742940 -1.048176
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.7107936
[2,]  0.1516419
[3,]  0.8301905
[4,]  1.2176900
[5,]  2.2477364
> 
> rowApply(tmp,sum)
 [1] -1.82202514 -1.63341126  1.66739188  4.18970237 -0.87872893  3.02191539
 [7] -1.83459805  0.33922771  6.40380701  0.07366796
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10    4    8    8    3    6    9   10    4     5
 [2,]    9   10    3    4    5    7    7    9    6     2
 [3,]    4    3    6    5    4   10   10    8    9     1
 [4,]    3    8    1    3    7    1    3    1    3     7
 [5,]    5    9    4    2    9    8    5    7    2    10
 [6,]    2    7   10    1    8    5    6    3    5     9
 [7,]    6    6    5    7   10    2    4    6   10     4
 [8,]    7    1    7   10    2    3    8    4    8     8
 [9,]    8    2    2    9    1    4    2    5    1     6
[10,]    1    5    9    6    6    9    1    2    7     3
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.34417789  1.48860462 -2.27938769  0.64423969 -0.23999009 -0.27307832
 [7]  1.57654228  0.05051829  3.27890486 -1.96805215 -0.60025296 -1.98558109
[13] -0.55264835 -0.96209979 -3.19475627 -1.98985697 -0.82235383 -2.66875164
[19]  1.66280047  4.95628273
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.4606870
[2,] -0.1971241
[3,]  0.3745400
[4,]  0.6140756
[5,]  1.0133733
> 
> rowApply(tmp,sum)
[1] -1.9642150  1.6835620 -3.2203689 -0.3800828  1.3463664
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    9   13    8   18   12
[2,]   17    6    7   14   18
[3,]    4   17    2   15    2
[4,]   15   19   13    2   11
[5,]    7   14   14    1   14
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]        [,4]       [,5]       [,6]
[1,] -0.1971241  0.9220075 -1.0636114  0.52462814 -0.3715211 -2.1708529
[2,]  0.6140756 -0.4352348  0.9394675  1.39021730  0.7247753  0.4636966
[3,] -0.4606870 -0.6634694 -1.2211244 -0.05881941  0.2770948  0.9109654
[4,]  1.0133733  0.3825048  0.4712989 -1.25416963 -1.5026766  1.0158630
[5,]  0.3745400  1.2827967 -1.4054183  0.04238329  0.6323375 -0.4927504
            [,7]       [,8]       [,9]      [,10]     [,11]      [,12]
[1,] -0.09650029 -0.1849935  1.5366199 -2.0549883  1.354641  0.5840951
[2,]  0.95821458  0.3595704 -0.8693079  1.8073191 -1.136028 -1.7670952
[3,] -0.73333445  1.0857950  0.5422107 -1.3242710 -1.173584 -0.3021289
[4,] -0.21332097  0.3753478  0.9724492 -0.2082754 -0.363987 -0.3099046
[5,]  1.66148341 -1.5852015  1.0969330 -0.1878367  0.718706 -0.1905475
          [,13]      [,14]       [,15]      [,16]      [,17]      [,18]
[1,] -1.3072481  0.4782653 -0.90128571 -0.7200572  0.1681840  0.1640850
[2,]  0.7878774  0.1889389 -0.01861866 -1.7140718 -0.1164473 -1.4529246
[3,] -0.1311851 -1.1599121 -0.43460107  1.1487501 -0.4411411 -0.7792441
[4,] -0.7131044 -0.9854740 -0.96208190  0.3371315  0.1371339 -0.4851702
[5,]  0.8110119  0.5160821 -0.87816894 -1.0416095 -0.5700835 -0.1154977
          [,19]     [,20]
[1,] -0.2156448 1.5870868
[2,]  0.7351176 0.2240202
[3,]  1.3291853 0.3691321
[4,]  1.1113924 0.8015873
[5,] -1.2972500 1.9744564
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  652  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
            col1       col2      col3      col4      col5     col6     col7
row1 0.002591972 -0.7129109 -1.701529 0.6273715 0.4703973 0.263337 0.844198
          col8       col9      col10     col11     col12       col13     col14
row1 0.6342062 -0.5496641 -0.4514329 0.4853733 -2.044205 -0.05162961 0.2426195
        col15      col16       col17     col18       col19     col20
row1 0.849832 -0.5750197 -0.03733175 -1.548848 -0.04151501 0.6079831
> tmp[,"col10"]
          col10
row1 -0.4514329
row2  0.9561319
row3 -1.9268319
row4 -1.0853000
row5  1.0065790
> tmp[c("row1","row5"),]
             col1       col2      col3       col4      col5       col6
row1  0.002591972 -0.7129109 -1.701529  0.6273715 0.4703973  0.2633370
row5 -0.451948418  1.4932703  1.206271 -0.2470058 1.0619275 -0.2821934
          col7      col8       col9      col10     col11      col12       col13
row1  0.844198 0.6342062 -0.5496641 -0.4514329 0.4853733 -2.0442048 -0.05162961
row5 -1.439877 2.1003582  0.1048450  1.0065790 0.6663351 -0.8544431  0.68636174
          col14      col15      col16       col17      col18       col19
row1  0.2426195  0.8498320 -0.5750197 -0.03733175 -1.5488476 -0.04151501
row5 -0.8124577 -0.2217904 -0.8617676  1.75925045  0.1498161 -1.21074111
         col20
row1 0.6079831
row5 0.5477947
> tmp[,c("col6","col20")]
           col6      col20
row1  0.2633370 0.60798308
row2  0.1633409 0.69184443
row3 -0.3532124 0.00720955
row4  1.9061420 0.58049365
row5 -0.2821934 0.54779475
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1  0.2633370 0.6079831
row5 -0.2821934 0.5477947
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4    col5    col6     col7     col8
row1 49.80948 51.96509 49.77516 51.05223 50.5872 105.806 50.45877 49.13018
         col9    col10    col11   col12    col13    col14    col15    col16
row1 49.92092 48.55702 49.68141 51.7489 51.08331 48.86214 49.76044 50.64215
        col17    col18    col19   col20
row1 50.33124 50.23216 50.14034 103.338
> tmp[,"col10"]
        col10
row1 48.55702
row2 29.41059
row3 30.71950
row4 30.35112
row5 50.84194
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.80948 51.96509 49.77516 51.05223 50.58720 105.8060 50.45877 49.13018
row5 49.64130 48.83707 50.03846 50.10706 49.86055 106.2283 47.52749 50.27907
         col9    col10    col11   col12    col13    col14    col15    col16
row1 49.92092 48.55702 49.68141 51.7489 51.08331 48.86214 49.76044 50.64215
row5 48.81195 50.84194 50.79596 48.8723 51.25065 49.31033 50.48458 52.03513
        col17    col18    col19    col20
row1 50.33124 50.23216 50.14034 103.3380
row5 50.37347 49.21336 50.45716 104.3495
> tmp[,c("col6","col20")]
          col6     col20
row1 105.80601 103.33797
row2  74.28466  74.34211
row3  75.78285  76.44114
row4  73.85340  75.65994
row5 106.22831 104.34948
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.8060 103.3380
row5 106.2283 104.3495
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.8060 103.3380
row5 106.2283 104.3495
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.4195596
[2,] -0.3836244
[3,]  0.2499750
[4,]  1.4699340
[5,]  0.5517978
> tmp[,c("col17","col7")]
          col17      col7
[1,]  0.3961990 1.4815456
[2,]  1.1718053 1.4999729
[3,]  0.5852968 0.2673885
[4,] -1.0531112 0.9663568
[5,]  0.1970610 0.6920737
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  1.2162003 -0.0763011
[2,] -1.2781739 -1.2909953
[3,]  2.2681440 -0.5873695
[4,] -1.2171888  0.8043419
[5,]  0.9340886  0.5757348
> subBufferedMatrix(tmp,1,c("col6"))[,1]
       col1
[1,] 1.2162
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,]  1.216200
[2,] -1.278174
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]        [,3]       [,4]      [,5]       [,6]     [,7]
row3 0.05478933 0.3544433  0.01755889 -0.8532265  1.362316  0.2306343 1.241615
row1 0.64009624 1.2659457 -1.45979854  0.9624634 -1.225277 -1.9414094 1.175214
           [,8]       [,9]      [,10]     [,11]       [,12]     [,13]
row3 -0.3027478 -1.7920357 -1.6667468 0.3886495  0.37363500 -1.057161
row1 -0.7540503  0.1673855 -0.2061666 0.7907027 -0.06925794 -1.206941
          [,14]      [,15]     [,16]     [,17]     [,18]      [,19]     [,20]
row3 -0.4027311  2.0935820 -1.302368  1.231687 -1.107853 0.09674646  1.257526
row1  0.8409166 -0.5652306 -0.376127 -1.178152  2.960004 0.23439055 -1.432130
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]     [,2]      [,3]        [,4]     [,5]         [,6]      [,7]
row2 0.4091773 1.110004 0.7144261 -0.04060022 -0.64182 -0.005806379 0.1587706
           [,8]       [,9]    [,10]
row2 -0.3079655 -0.2649101 -1.26981
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]       [,3]       [,4]        [,5]     [,6]       [,7]
row5 0.4729056 -0.9651063 -0.8023616 -0.1219309 -0.08088321 0.204478 -0.7368638
          [,8]        [,9]     [,10]    [,11]      [,12]       [,13]      [,14]
row5 -1.012073 -0.06151029 0.8033118 1.843336 -0.4059915 -0.02815885 -0.3077175
         [,15]      [,16]     [,17]      [,18]      [,19]    [,20]
row5 0.7023635 -0.8726626 -1.234933 -0.3320887 -0.3588632 2.206093
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5d6907b9cd30>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c978d4b63d"
 [2] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c9da43cc5" 
 [3] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c92f51fed0"
 [4] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c9336295e4"
 [5] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c91f01375f"
 [6] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c94b47ccc3"
 [7] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c951fd24d" 
 [8] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c95d5ac70f"
 [9] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c9498aed77"
[10] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c9190a4de9"
[11] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c939010ab5"
[12] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c97076181b"
[13] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c93ec7801" 
[14] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c952c402b" 
[15] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM3881c94edb800d"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5d690779bd70>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5d690779bd70>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5d690779bd70>
> rowMedians(tmp)
  [1]  0.203016282  0.044116363 -0.078126195 -0.127845457 -0.074321465
  [6]  0.493701616 -0.155991808  0.298901374  0.355448824  0.837647135
 [11] -0.578346121 -0.121597743  0.476776582  0.262835297 -0.216918973
 [16] -0.295247925  0.240968092  0.061486903 -0.263788261  0.482206662
 [21] -0.022550565  0.197560709 -0.516724164 -0.101112509 -0.128434907
 [26]  0.302856262 -0.181288886 -0.279093142  0.033495025 -0.214865948
 [31]  0.431371295 -0.238817000  0.341818967 -0.214893724 -0.208674244
 [36] -0.028564776 -0.372406622  0.137758246  0.100038911 -0.202997461
 [41]  0.015691271 -0.199178249  0.428474306  0.047264199 -0.023516777
 [46] -0.535701483  0.339256842 -0.236831128 -0.328042955  0.179117665
 [51]  0.248105594 -0.230696836 -0.028407663  0.076144575  0.093266095
 [56] -0.112059785  0.857091438 -0.433700189 -0.001486357 -0.375065377
 [61] -0.904925735 -0.132609258  0.241805676  0.061925081 -0.517436947
 [66] -0.055801654  0.159630986 -0.670959596 -0.491031367 -0.117849823
 [71]  0.156660643 -0.538966806 -0.041637192  0.075778872  0.416687411
 [76]  0.200128372 -0.585031495 -0.057097581 -0.213217468 -0.091326819
 [81]  0.018162426  0.637852854 -0.293451489  0.200125040  0.037116420
 [86]  0.213813879 -0.067998440 -0.085202626  0.018459753 -0.276663731
 [91]  0.165692888 -0.056184302 -0.393242731  0.367303939 -0.221114218
 [96] -0.031600199 -0.247942710  0.446731267 -0.291034390 -0.387817834
[101]  1.056690157  0.190218329 -0.087436925  0.599423668  0.398397151
[106]  0.186810134 -0.024198419 -0.155300389 -0.196193726 -0.096117919
[111]  0.263962171 -0.440524482 -0.462906438  0.359979163 -0.619349374
[116] -0.336217350 -0.214380625 -0.184976156  0.237793350 -0.015745052
[121] -0.230891880  0.222042909  0.466670108  0.118254522 -0.176396868
[126] -0.112454080  0.012148464 -0.339619525  0.420082657  0.109807445
[131] -0.133957011  0.490813541 -0.379394660 -0.054130642 -0.040938224
[136] -0.330273371 -0.471712077  0.263557025 -0.281872231 -0.562160809
[141] -0.068572841  0.634268843 -0.435745755  0.303070546 -0.086923395
[146]  0.449899961  0.095306439 -0.131308193  0.014780871 -0.558062515
[151] -0.160204406 -0.205985648 -0.130230185 -0.271875779 -0.518846919
[156]  0.144163739 -0.073206614 -0.004727750 -0.115962893  0.134688871
[161] -0.056743984  0.105887139  0.201149573 -0.144358658  0.399640241
[166] -0.161585229 -0.113854751  0.144580867 -0.002315958  0.104093280
[171] -0.582147233 -0.299370237 -0.826358674  0.116003483  0.362618876
[176]  0.458695039  0.470298974  0.330980696  0.120286774 -0.177150275
[181] -0.508915302 -0.170278609  0.248221790 -0.537847510 -0.111573736
[186]  0.238912585  0.394690726 -0.188607146 -0.373485549  0.327068450
[191] -0.255621108 -0.488274965  0.130764090  0.283535427  0.571309697
[196]  0.067019681  0.057291928  0.163862597 -0.034782245 -0.072654868
[201]  0.261527880  0.025847097 -0.260521124  0.331884201  0.194471874
[206]  0.248894155 -0.016128993  0.311575786 -0.431341592  0.186336212
[211] -0.105964916  0.351021656 -0.100948053  0.011347662 -0.565206356
[216] -0.217534251 -0.017140079 -0.432100877  0.341829122 -0.348131177
[221] -0.228400347  0.121382287  0.211947707 -0.044132326 -0.352465325
[226]  0.114077522  0.788298971 -0.055106672 -0.031964768 -0.158558646
> 
> proc.time()
   user  system elapsed 
  1.376   1.435   2.799 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5b438ab20ac0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5b438ab20ac0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5b438ab20ac0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5b438ab20ac0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5b438aaed040>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438aaed040>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5b438aaed040>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438aaed040>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5b438aaed040>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438aaaf230>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438aaaf230>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5b438aaaf230>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5b438aaaf230>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5b438aaaf230>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x5b438aaaf230>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5b438aaaf230>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x5b438aaaf230>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5b438aaaf230>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438aa99b70>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x5b438aa99b70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438aa99b70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438aa99b70>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile3883d243b36791" "BufferedMatrixFile3883d24447daf6"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile3883d243b36791" "BufferedMatrixFile3883d24447daf6"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438be401e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438be401e0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5b438be401e0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5b438be401e0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x5b438be401e0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x5b438be401e0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438be8e320>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5b438be8e320>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5b438be8e320>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x5b438be8e320>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5b4389abeea0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5b4389abeea0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.244   0.064   0.296 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.238   0.049   0.275 

Example timings