Back to the "Multiple platform build/check report" | A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z |
This page was generated on 2016-09-21 03:48:08 -0700 (Wed, 21 Sep 2016).
Package 332/1257 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | |||||
doppelgangR 1.1.2 Levi Waldron
| zin1 | Linux (Ubuntu 16.04 LTS) / x86_64 | NotNeeded | OK | ERROR | ||||||
moscato1 | Windows Server 2008 R2 Standard (64-bit) / x64 | NotNeeded | OK | [ ERROR ] | OK | ||||||
morelia | Mac OS X Mavericks (10.9.5) / x86_64 | NotNeeded | OK | ERROR | OK |
Package: doppelgangR |
Version: 1.1.2 |
Command: rm -rf doppelgangR.buildbin-libdir doppelgangR.Rcheck && mkdir doppelgangR.buildbin-libdir doppelgangR.Rcheck && D:\biocbld\bbs-3.4-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=doppelgangR.buildbin-libdir doppelgangR_1.1.2.tar.gz >doppelgangR.Rcheck\00install.out 2>&1 && cp doppelgangR.Rcheck\00install.out doppelgangR-install.out && D:\biocbld\bbs-3.4-bioc\R\bin\R.exe CMD check --library=doppelgangR.buildbin-libdir --install="check:doppelgangR-install.out" --force-multiarch --no-vignettes --timings doppelgangR_1.1.2.tar.gz |
StartedAt: 2016-09-20 07:21:30 -0700 (Tue, 20 Sep 2016) |
EndedAt: 2016-09-20 07:30:23 -0700 (Tue, 20 Sep 2016) |
EllapsedTime: 533.4 seconds |
RetCode: 1 |
Status: ERROR |
CheckDir: doppelgangR.Rcheck |
Warnings: NA |
############################################################################## ############################################################################## ### ### Running command: ### ### rm -rf doppelgangR.buildbin-libdir doppelgangR.Rcheck && mkdir doppelgangR.buildbin-libdir doppelgangR.Rcheck && D:\biocbld\bbs-3.4-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=doppelgangR.buildbin-libdir doppelgangR_1.1.2.tar.gz >doppelgangR.Rcheck\00install.out 2>&1 && cp doppelgangR.Rcheck\00install.out doppelgangR-install.out && D:\biocbld\bbs-3.4-bioc\R\bin\R.exe CMD check --library=doppelgangR.buildbin-libdir --install="check:doppelgangR-install.out" --force-multiarch --no-vignettes --timings doppelgangR_1.1.2.tar.gz ### ############################################################################## ############################################################################## * using log directory 'D:/biocbld/bbs-3.4-bioc/meat/doppelgangR.Rcheck' * using R version 3.3.1 (2016-06-21) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'doppelgangR/DESCRIPTION' ... OK * this is package 'doppelgangR' version '1.1.2' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'doppelgangR' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK ** checking loading without being on the library search path ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK ** checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking installed files from 'inst/doc' ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK Examples with CPU or elapsed time > 5s user system elapsed plot-methods 11.26 0.88 47.76 corFinder 8.17 0.31 12.09 doppelgangR 4.51 0.24 21.32 ** running examples for arch 'x64' ... OK Examples with CPU or elapsed time > 5s user system elapsed plot-methods 13.79 1.12 52.93 corFinder 7.87 0.27 8.17 doppelgangR 4.61 0.35 26.46 * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'maintest.R' Warning message: running command '"D:/biocbld/BBS-3˜1.4-B/R/bin/i386/R" CMD BATCH --vanilla "maintest.R" "maintest.Rout"' had status 1 ERROR Running the tests in 'tests/maintest.R' failed. Last 13 lines of output: > ##------------------------------------------ > cat("\n") > cat("Check caching, with a third ExpressionSet that is almost identical to the first: \n") Check caching, with a third ExpressionSet that is almost identical to the first: > ##------------------------------------------ > esets2 <- c(esets, esets[[1]]) > names(esets2)[3] <- "o" > exprs(esets2[[3]]) <- exprs(esets2[[3]]) + rnorm(nrow(esets2[[3]]) * ncol(esets2[[3]]), sd=0.1) Error in (function (od, vd) : object and replacement value dimnames differ Calls: exprs<- ... .validate_assayDataElementReplace -> Map -> mapply -> <Anonymous> Execution halted ** running tests for arch 'x64' ... Running 'maintest.R' Warning message: running command '"D:/biocbld/BBS-3˜1.4-B/R/bin/x64/R" CMD BATCH --vanilla "maintest.R" "maintest.Rout"' had status 1 ERROR Running the tests in 'tests/maintest.R' failed. Last 13 lines of output: > ##------------------------------------------ > cat("\n") > cat("Check caching, with a third ExpressionSet that is almost identical to the first: \n") Check caching, with a third ExpressionSet that is almost identical to the first: > ##------------------------------------------ > esets2 <- c(esets, esets[[1]]) > names(esets2)[3] <- "o" > exprs(esets2[[3]]) <- exprs(esets2[[3]]) + rnorm(nrow(esets2[[3]]) * ncol(esets2[[3]]), sd=0.1) Error in (function (od, vd) : object and replacement value dimnames differ Calls: exprs<- ... .validate_assayDataElementReplace -> Map -> mapply -> <Anonymous> Execution halted * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 ERRORs See 'D:/biocbld/bbs-3.4-bioc/meat/doppelgangR.Rcheck/00check.log' for details.
maintest.Rout.fail:
R version 3.3.1 (2016-06-21) -- "Bug in Your Hair" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(RUnit) > library(Biobase) Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, cbind, colnames, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > library(doppelgangR) Loading required package: BiocParallel > > ncor <- 0; npheno <- 0; nsmoking <- 0 > options(stringsAsFactors=FALSE) > set.seed(1) > m1 <- matrix(rnorm(1100), ncol=11) > colnames(m1) <- paste("m", 1:11, sep="") > rownames(m1) <- make.names(1:nrow(m1)) > n1 <- matrix(rnorm(1000), ncol=10) > colnames(n1) <- paste("n", 1:10, sep="") > rownames(n1) <- make.names(1:nrow(n1)) > ##m:1 & n:1 are expression doppelgangers: > m1[, 1] <- n1[, 1] + rnorm(100, sd=0.25); ncor <- ncor+1 > ##m:2 & m:3 are expression doppelgangers: > m1[, 2] <- m1[, 3] + rnorm(100, sd=0.25); ncor <- ncor+1 > ##n:2 & n:3 are expression doppelgangers: > n1[, 2] <- n1[, 3] + rnorm(100, sd=0.25); ncor <- ncor+1 > ##n:8 & n:9 are expression doppelgangers: > n1[, 8] <- n1[, 9] + rnorm(100, sd=0.25); ncor <- ncor+1 > #n:4 & m:6 are expression doppelgangers: > n1[, 4] <- m1[, 6] + rnorm(100, sd=0.25); ncor <- ncor+1 > #n:5 & m:4 are expression doppelgangers: > n1[, 5] <- m1[, 4] + rnorm(100, sd=0.25); ncor <- ncor+1 > > ## > ##m:10 and n:10 are phenotype doppelgangers: > m.pdata <- matrix(letters[sample(1:26, size=110, replace=TRUE)], ncol=10) > n.pdata <- matrix(letters[sample(1:26, size=100, replace=TRUE)], ncol=10) > n.pdata[10, ] <- m.pdata[10, ]; npheno <- npheno+1 > ##Create ExpressionSets > m.eset <- ExpressionSet(assayData=m1) > m.eset$id <- toupper(colnames(m1)) > pData(m.eset) <- data.frame(c(pData(m.eset), data.frame(m.pdata))) > ## > n.eset <- ExpressionSet(assayData=n1) > n.eset$id <- toupper(colnames(n1)) > ##m5 and n4 are "smoking gun" doppelgangers: > n.eset$id[4] <- "gotcha" > m.eset$id[5] <- "gotcha" > pData(n.eset) <- data.frame(c(pData(n.eset), data.frame(n.pdata))) > nsmoking <- nsmoking+1 > ## > esets <- list(m=m.eset, n=n.eset) > > ##------------------------------------------ > ##Check of all three types of doppelgangers: > ##------------------------------------------ > res1 <- doppelgangR(esets, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df1 <- summary(res1) > > checkIdentical(df1[df1$sample1=="m:1" & df1$sample2=="n:1", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:2" & df1$sample2=="m:3", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:6" & df1$sample2=="n:4", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="n:2" & df1$sample2=="n:3", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:6" & df1$sample2=="n:4", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:10" & df1$sample2=="n:10", "pheno.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:5" & df1$sample2=="n:4", "smokinggun.doppel"], TRUE) [1] TRUE > checkEquals(nrow(df1), ncor+npheno+nsmoking) [1] TRUE > checkEquals(sum(df1$expr.doppel), ncor) [1] TRUE > checkEquals(sum(df1$pheno.doppel), npheno) [1] TRUE > checkEquals(sum(df1$smokinggun.doppel), nsmoking) [1] TRUE > checkEquals(sum(is.na(df1$expr.similarity)), 0) [1] TRUE > checkEquals(sum(is.na(df1$pheno.similarity)), 0) [1] TRUE > checkEquals(sum(is.na(df1$smokinggun.similarity)), 0) [1] TRUE > checkEquals(df1$id, c("M2:M3", "N2:N3", "N8:N9", "M1:N1", "gotcha:gotcha", "M6:gotcha", "M4:N5", "M10:N10")) [1] TRUE > for (i in match(paste("X", 1:10, sep=""), colnames(df1))){ + cat(paste("Checking column", i, "\n")) + checkEquals(all(grepl("[a-z]:[a-z]", df1[[i]])), TRUE) + } Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > ##------------------------------------------ > cat("\n") > cat("Check without smoking guns: \n") Check without smoking guns: > ##------------------------------------------ > res2 <- doppelgangR(esets, smokingGunFinder.args=NULL, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df2 <- summary(res2) > for (i in grep("pheno.similarity|smokinggun.similarity", colnames(df1), invert=TRUE)){ + cat(paste("Checking column", i, "\n")) + checkEquals(df2[, i], df1[!df1$smokinggun.doppel, i]) + } Checking column 1 Checking column 2 Checking column 3 Checking column 4 Checking column 6 Checking column 8 Checking column 9 Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > > ##------------------------------------------ > cat("\n") > cat("Check without phenotype: \n") Check without phenotype: > ##------------------------------------------ > res3 <- doppelgangR(esets, phenoFinder.args=NULL, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Finalizing... > df3 <- summary(res3) > for (i in grep("pheno.similarity", colnames(df1), invert=TRUE)){ + cat(paste("Checking column", i, "\n")) + checkEquals(df3[, i], df1[!df1$pheno.doppel, i]) + } Checking column 1 Checking column 2 Checking column 3 Checking column 4 Checking column 6 Checking column 7 Checking column 8 Checking column 9 Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > ##------------------------------------------ > cat("\n") > cat("Check without expression: \n") Check without expression: > ##------------------------------------------ > res4 <- doppelgangR(esets, corFinder.args=NULL, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df4 <- summary(res4) > for (i in grep("expr.similarity", colnames(df1), invert=TRUE)){ + cat(paste("Checking column", i, "\n")) + checkEquals(df4[, i], df1[!df1$expr.doppel, i]) + } Checking column 1 Checking column 2 Checking column 4 Checking column 5 Checking column 6 Checking column 7 Checking column 8 Checking column 9 Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > ##------------------------------------------ > cat("\n") > cat("Check smoking guns only: \n") Check smoking guns only: > ##------------------------------------------ > res4b <- doppelgangR(esets, corFinder.args=NULL, phenoFinder.args=NULL, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Identifying smoking-gun doppelgangers... Working on datasets n and n Identifying smoking-gun doppelgangers... Working on datasets m and n Identifying smoking-gun doppelgangers... Finalizing... > df4b <- summary(res4b); rownames(df4b) <- NULL > df4b.compare <- df1[df1$smokinggun.doppel, ]; rownames(df4b.compare) <- NULL > checkIdentical(df4b.compare[, -3:-6], df4b[, -3:-6]) ##don't check expr and pheno columns [1] TRUE > > > ##------------------------------------------ > cat("\n") > cat("Check pruning: \n") Check pruning: > ##------------------------------------------ > res5 <- doppelgangR(esets, manual.smokingguns="id", automatic.smokingguns=FALSE, intermediate.pruning=TRUE, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df5 <- summary(res5) > checkEquals(df1, df5) [1] TRUE > > ##------------------------------------------ > cat("\n") > cat("Check caching, with a third ExpressionSet that is almost identical to the first: \n") Check caching, with a third ExpressionSet that is almost identical to the first: > ##------------------------------------------ > esets2 <- c(esets, esets[[1]]) > names(esets2)[3] <- "o" > exprs(esets2[[3]]) <- exprs(esets2[[3]]) + rnorm(nrow(esets2[[3]]) * ncol(esets2[[3]]), sd=0.1) Error in (function (od, vd) : object and replacement value dimnames differ Calls: exprs<- ... .validate_assayDataElementReplace -> Map -> mapply -> <Anonymous> Execution halted
maintest.Rout.fail:
R version 3.3.1 (2016-06-21) -- "Bug in Your Hair" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(RUnit) > library(Biobase) Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, cbind, colnames, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > library(doppelgangR) Loading required package: BiocParallel > > ncor <- 0; npheno <- 0; nsmoking <- 0 > options(stringsAsFactors=FALSE) > set.seed(1) > m1 <- matrix(rnorm(1100), ncol=11) > colnames(m1) <- paste("m", 1:11, sep="") > rownames(m1) <- make.names(1:nrow(m1)) > n1 <- matrix(rnorm(1000), ncol=10) > colnames(n1) <- paste("n", 1:10, sep="") > rownames(n1) <- make.names(1:nrow(n1)) > ##m:1 & n:1 are expression doppelgangers: > m1[, 1] <- n1[, 1] + rnorm(100, sd=0.25); ncor <- ncor+1 > ##m:2 & m:3 are expression doppelgangers: > m1[, 2] <- m1[, 3] + rnorm(100, sd=0.25); ncor <- ncor+1 > ##n:2 & n:3 are expression doppelgangers: > n1[, 2] <- n1[, 3] + rnorm(100, sd=0.25); ncor <- ncor+1 > ##n:8 & n:9 are expression doppelgangers: > n1[, 8] <- n1[, 9] + rnorm(100, sd=0.25); ncor <- ncor+1 > #n:4 & m:6 are expression doppelgangers: > n1[, 4] <- m1[, 6] + rnorm(100, sd=0.25); ncor <- ncor+1 > #n:5 & m:4 are expression doppelgangers: > n1[, 5] <- m1[, 4] + rnorm(100, sd=0.25); ncor <- ncor+1 > > ## > ##m:10 and n:10 are phenotype doppelgangers: > m.pdata <- matrix(letters[sample(1:26, size=110, replace=TRUE)], ncol=10) > n.pdata <- matrix(letters[sample(1:26, size=100, replace=TRUE)], ncol=10) > n.pdata[10, ] <- m.pdata[10, ]; npheno <- npheno+1 > ##Create ExpressionSets > m.eset <- ExpressionSet(assayData=m1) > m.eset$id <- toupper(colnames(m1)) > pData(m.eset) <- data.frame(c(pData(m.eset), data.frame(m.pdata))) > ## > n.eset <- ExpressionSet(assayData=n1) > n.eset$id <- toupper(colnames(n1)) > ##m5 and n4 are "smoking gun" doppelgangers: > n.eset$id[4] <- "gotcha" > m.eset$id[5] <- "gotcha" > pData(n.eset) <- data.frame(c(pData(n.eset), data.frame(n.pdata))) > nsmoking <- nsmoking+1 > ## > esets <- list(m=m.eset, n=n.eset) > > ##------------------------------------------ > ##Check of all three types of doppelgangers: > ##------------------------------------------ > res1 <- doppelgangR(esets, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df1 <- summary(res1) > > checkIdentical(df1[df1$sample1=="m:1" & df1$sample2=="n:1", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:2" & df1$sample2=="m:3", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:6" & df1$sample2=="n:4", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="n:2" & df1$sample2=="n:3", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:6" & df1$sample2=="n:4", "expr.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:10" & df1$sample2=="n:10", "pheno.doppel"], TRUE) [1] TRUE > checkIdentical(df1[df1$sample1=="m:5" & df1$sample2=="n:4", "smokinggun.doppel"], TRUE) [1] TRUE > checkEquals(nrow(df1), ncor+npheno+nsmoking) [1] TRUE > checkEquals(sum(df1$expr.doppel), ncor) [1] TRUE > checkEquals(sum(df1$pheno.doppel), npheno) [1] TRUE > checkEquals(sum(df1$smokinggun.doppel), nsmoking) [1] TRUE > checkEquals(sum(is.na(df1$expr.similarity)), 0) [1] TRUE > checkEquals(sum(is.na(df1$pheno.similarity)), 0) [1] TRUE > checkEquals(sum(is.na(df1$smokinggun.similarity)), 0) [1] TRUE > checkEquals(df1$id, c("M2:M3", "N2:N3", "N8:N9", "M1:N1", "gotcha:gotcha", "M6:gotcha", "M4:N5", "M10:N10")) [1] TRUE > for (i in match(paste("X", 1:10, sep=""), colnames(df1))){ + cat(paste("Checking column", i, "\n")) + checkEquals(all(grepl("[a-z]:[a-z]", df1[[i]])), TRUE) + } Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > ##------------------------------------------ > cat("\n") > cat("Check without smoking guns: \n") Check without smoking guns: > ##------------------------------------------ > res2 <- doppelgangR(esets, smokingGunFinder.args=NULL, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df2 <- summary(res2) > for (i in grep("pheno.similarity|smokinggun.similarity", colnames(df1), invert=TRUE)){ + cat(paste("Checking column", i, "\n")) + checkEquals(df2[, i], df1[!df1$smokinggun.doppel, i]) + } Checking column 1 Checking column 2 Checking column 3 Checking column 4 Checking column 6 Checking column 8 Checking column 9 Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > > ##------------------------------------------ > cat("\n") > cat("Check without phenotype: \n") Check without phenotype: > ##------------------------------------------ > res3 <- doppelgangR(esets, phenoFinder.args=NULL, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Finalizing... > df3 <- summary(res3) > for (i in grep("pheno.similarity", colnames(df1), invert=TRUE)){ + cat(paste("Checking column", i, "\n")) + checkEquals(df3[, i], df1[!df1$pheno.doppel, i]) + } Checking column 1 Checking column 2 Checking column 3 Checking column 4 Checking column 6 Checking column 7 Checking column 8 Checking column 9 Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > ##------------------------------------------ > cat("\n") > cat("Check without expression: \n") Check without expression: > ##------------------------------------------ > res4 <- doppelgangR(esets, corFinder.args=NULL, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df4 <- summary(res4) > for (i in grep("expr.similarity", colnames(df1), invert=TRUE)){ + cat(paste("Checking column", i, "\n")) + checkEquals(df4[, i], df1[!df1$expr.doppel, i]) + } Checking column 1 Checking column 2 Checking column 4 Checking column 5 Checking column 6 Checking column 7 Checking column 8 Checking column 9 Checking column 10 Checking column 11 Checking column 12 Checking column 13 Checking column 14 Checking column 15 Checking column 16 Checking column 17 Checking column 18 Checking column 19 > > ##------------------------------------------ > cat("\n") > cat("Check smoking guns only: \n") Check smoking guns only: > ##------------------------------------------ > res4b <- doppelgangR(esets, corFinder.args=NULL, phenoFinder.args=NULL, manual.smokingguns="id", automatic.smokingguns=FALSE, cache.dir=NULL) Working on datasets m and m Identifying smoking-gun doppelgangers... Working on datasets n and n Identifying smoking-gun doppelgangers... Working on datasets m and n Identifying smoking-gun doppelgangers... Finalizing... > df4b <- summary(res4b); rownames(df4b) <- NULL > df4b.compare <- df1[df1$smokinggun.doppel, ]; rownames(df4b.compare) <- NULL > checkIdentical(df4b.compare[, -3:-6], df4b[, -3:-6]) ##don't check expr and pheno columns [1] TRUE > > > ##------------------------------------------ > cat("\n") > cat("Check pruning: \n") Check pruning: > ##------------------------------------------ > res5 <- doppelgangR(esets, manual.smokingguns="id", automatic.smokingguns=FALSE, intermediate.pruning=TRUE, cache.dir=NULL) Working on datasets m and m Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets n and n Calculating correlations... Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Working on datasets m and n Calculating correlations... Found 2 batches Adjusting for 0 covariate(s) or covariate level(s) Standardizing Data across genes Fitting L/S model and finding priors Finding parametric adjustments Adjusting the Data Identifying correlation doppelgangers... Identifying smoking-gun doppelgangers... Calculating phenotype similarities... Identifying phenotype doppelgangers... Finalizing... > df5 <- summary(res5) > checkEquals(df1, df5) [1] TRUE > > ##------------------------------------------ > cat("\n") > cat("Check caching, with a third ExpressionSet that is almost identical to the first: \n") Check caching, with a third ExpressionSet that is almost identical to the first: > ##------------------------------------------ > esets2 <- c(esets, esets[[1]]) > names(esets2)[3] <- "o" > exprs(esets2[[3]]) <- exprs(esets2[[3]]) + rnorm(nrow(esets2[[3]]) * ncol(esets2[[3]]), sd=0.1) Error in (function (od, vd) : object and replacement value dimnames differ Calls: exprs<- ... .validate_assayDataElementReplace -> Map -> mapply -> <Anonymous> Execution halted
doppelgangR.Rcheck/00install.out:
install for i386 * installing *source* package 'doppelgangR' ... ** R ** inst ** preparing package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded install for x64 * installing *source* package 'doppelgangR' ... ** testing if installed package can be loaded * MD5 sums packaged installation of 'doppelgangR' as doppelgangR_1.1.2.zip * DONE (doppelgangR)
doppelgangR.Rcheck/examples_i386/doppelgangR-Ex.timings:
name | user | system | elapsed | |
corFinder | 8.17 | 0.31 | 12.09 | |
doppelgangR | 4.51 | 0.24 | 21.32 | |
dst | 0 | 0 | 0 | |
mst.mle | 0.27 | 0.00 | 0.26 | |
outlierFinder | 2.37 | 0.06 | 2.44 | |
phenoDist | 3.70 | 0.09 | 3.79 | |
phenoFinder | 3.76 | 0.11 | 3.87 | |
plot-methods | 11.26 | 0.88 | 47.76 | |
smokingGunFinder | 4.21 | 0.14 | 4.36 | |
vectorHammingDist | 0 | 0 | 0 | |
vectorWeightedDist | 0 | 0 | 0 | |
doppelgangR.Rcheck/examples_x64/doppelgangR-Ex.timings:
name | user | system | elapsed | |
corFinder | 7.87 | 0.27 | 8.17 | |
doppelgangR | 4.61 | 0.35 | 26.46 | |
dst | 0 | 0 | 0 | |
mst.mle | 0.16 | 0.00 | 0.15 | |
outlierFinder | 2.36 | 0.09 | 2.45 | |
phenoDist | 4.77 | 0.19 | 4.96 | |
phenoFinder | 4.35 | 0.19 | 4.56 | |
plot-methods | 13.79 | 1.12 | 52.93 | |
smokingGunFinder | 3.32 | 0.16 | 3.48 | |
vectorHammingDist | 0 | 0 | 0 | |
vectorWeightedDist | 0 | 0 | 0 | |