Back to Multiple platform build/check report for BioC 3.8 |
|
This page was generated on 2019-04-16 11:48:13 -0400 (Tue, 16 Apr 2019).
Package 68/1649 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
aroma.light 3.12.0 Henrik Bengtsson
| malbec1 | Linux (Ubuntu 16.04.6 LTS) / x86_64 | OK | OK | [ OK ] | |||||||
merida1 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK |
Package: aroma.light |
Version: 3.12.0 |
Command: /home/biocbuild/bbs-3.8-bioc/R/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/home/biocbuild/bbs-3.8-bioc/R/library --no-vignettes --timings aroma.light_3.12.0.tar.gz |
StartedAt: 2019-04-15 22:13:55 -0400 (Mon, 15 Apr 2019) |
EndedAt: 2019-04-15 22:15:09 -0400 (Mon, 15 Apr 2019) |
EllapsedTime: 74.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: aroma.light.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.8-bioc/R/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/home/biocbuild/bbs-3.8-bioc/R/library --no-vignettes --timings aroma.light_3.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.8-bioc/meat/aroma.light.Rcheck’ * using R version 3.5.3 (2019-03-11) * using platform: x86_64-pc-linux-gnu (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘aroma.light/DESCRIPTION’ ... OK * this is package ‘aroma.light’ version ‘3.12.0’ * package encoding: latin1 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... NOTE Found the following hidden files and directories: inst/rsp/.rspPlugins These were most likely included in error. See section ‘Package structure’ in the ‘Writing R Extensions’ manual. * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘aroma.light’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking examples ... OK Examples with CPU or elapsed time > 5s user system elapsed normalizeCurveFit 8.676 0.024 8.711 normalizeAffine 7.464 0.020 7.522 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘backtransformAffine.matrix.R’ Running ‘backtransformPrincipalCurve.matrix.R’ Running ‘callNaiveGenotypes.R’ Running ‘distanceBetweenLines.R’ Running ‘findPeaksAndValleys.R’ Running ‘fitPrincipalCurve.matrix.R’ Running ‘fitXYCurve.matrix.R’ Running ‘iwpca.matrix.R’ Running ‘likelihood.smooth.spline.R’ Running ‘medianPolish.matrix.R’ Running ‘normalizeAffine.matrix.R’ Running ‘normalizeAverage.list.R’ Running ‘normalizeAverage.matrix.R’ Running ‘normalizeCurveFit.matrix.R’ Running ‘normalizeDifferencesToAverage.R’ Running ‘normalizeFragmentLength-ex1.R’ Running ‘normalizeFragmentLength-ex2.R’ Running ‘normalizeQuantileRank.list.R’ Running ‘normalizeQuantileRank.matrix.R’ Running ‘normalizeQuantileSpline.matrix.R’ Running ‘normalizeTumorBoost,flavors.R’ Running ‘normalizeTumorBoost.R’ Running ‘robustSmoothSpline.R’ Running ‘rowAverages.matrix.R’ Running ‘sampleCorrelations.matrix.R’ Running ‘sampleTuples.R’ Running ‘wpca.matrix.R’ Running ‘wpca2.matrix.R’ OK * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.8-bioc/meat/aroma.light.Rcheck/00check.log’ for details.
aroma.light.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.8-bioc/R/bin/R CMD INSTALL aroma.light ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.8-bioc/R/library’ * installing *source* package ‘aroma.light’ ... ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** testing if installed package can be loaded * DONE (aroma.light)
aroma.light.Rcheck/tests/backtransformAffine.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > X <- matrix(1:8, nrow=4, ncol=2) > X[2,2] <- NA_integer_ > > print(X) [,1] [,2] [1,] 1 5 [2,] 2 NA [3,] 3 7 [4,] 4 8 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=c(1,5))) [,1] [,2] [1,] 0 0 [2,] 1 NA [3,] 2 2 [4,] 3 3 > > # Returns a 4x2 matrix > print(backtransformAffine(X, b=c(1,1/2))) [,1] [,2] [1,] 1 10 [2,] 2 NA [3,] 3 14 [4,] 4 16 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=matrix(1:4,ncol=1))) [,1] [,2] [1,] 0 4 [2,] 0 NA [3,] 0 4 [4,] 0 4 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=matrix(1:3,ncol=1))) [,1] [,2] [1,] 0 4 [2,] 0 NA [3,] 0 4 [4,] 3 7 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2))) [,1] [,2] [1,] 0 2 [2,] 0 NA [3,] 2 3 [4,] 2 3 > > # Returns a 4x1 matrix > print(backtransformAffine(X, b=c(1,1/2), project=TRUE)) [,1] [1,] 2.8 [2,] 1.6 [3,] 5.2 [4,] 6.4 > > # If the columns of X are identical, and a identity > # backtransformation is applied and projected, the > # same matrix is returned. > X <- matrix(1:4, nrow=4, ncol=3) > Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE) > print(X) [,1] [,2] [,3] [1,] 1 1 1 [2,] 2 2 2 [3,] 3 3 3 [4,] 4 4 4 > print(Y) [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 > stopifnot(sum(X[,1]-Y) <= .Machine$double.eps) > > > # If the columns of X are identical, and a identity > # backtransformation is applied and projected, the > # same matrix is returned. > X <- matrix(1:4, nrow=4, ncol=3) > X[,2] <- X[,2]*2; X[,3] <- X[,3]*3 > print(X) [,1] [,2] [,3] [1,] 1 2 3 [2,] 2 4 6 [3,] 3 6 9 [4,] 4 8 12 > Y <- backtransformAffine(X, b=c(1,2,3)) > print(Y) [,1] [,2] [,3] [1,] 1 1 1 [2,] 2 2 2 [3,] 3 3 3 [4,] 4 4 4 > Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE) > print(Y) [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 > stopifnot(sum(X[,1]-Y) <= .Machine$double.eps) > > proc.time() user system elapsed 0.332 0.024 0.347
aroma.light.Rcheck/tests/backtransformPrincipalCurve.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Consider the case where K=4 measurements have been done > # for the same underlying signals 'x'. The different measurements > # have different systematic variation > # > # y_k = f(x_k) + eps_k; k = 1,...,K. > # > # In this example, we assume non-linear measurement functions > # > # f(x) = a + b*x + x^c + eps(b*x) > # > # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential. > # We also assume heteroscedastic zero-mean noise with standard > # deviation proportional to the rescaled underlying signal 'x'. > # > # Furthermore, we assume that measurements k=2 and k=3 undergo the > # same transformation, which may illustrate that the come from > # the same batch. However, when *fitting* the model below we > # will assume they are independent. > > # Transforms > a <- c(2, 15, 15, 3) > b <- c(2, 3, 3, 4) > c <- c(1, 2, 2, 1/2) > K <- length(a) > > # The true signal > N <- 1000 > x <- rexp(N) > > # The noise > bX <- outer(b,x) > E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x)) > > # The transformed signals with noise > Xc <- t(sapply(c, FUN=function(c) x^c)) > Y <- a + bX + Xc + E > Y <- t(Y) > > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Fit principal curve > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Fit principal curve through Y = (y_1, y_2, ..., y_K) > fit <- fitPrincipalCurve(Y) > > # Flip direction of 'lambda'? > rho <- cor(fit$lambda, Y[,1], use="complete.obs") > flip <- (rho < 0) > if (flip) { + fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda + } > > L <- ncol(fit$s) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Backtransform data according to model fit > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Backtransform toward the principal curve (the "common scale") > YN1 <- backtransformPrincipalCurve(Y, fit=fit) > stopifnot(ncol(YN1) == K) > > > # Backtransform toward the first dimension > YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1) > stopifnot(ncol(YN2) == K) > > > # Backtransform toward the last (fitted) dimension > YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L) > stopifnot(ncol(YN3) == K) > > > # Backtransform toward the third dimension (dimension by dimension) > # Note, this assumes that K == L. > YN4 <- Y > for (cc in 1:L) { + YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit, + targetDimension=1, dimensions=cc) + } > stopifnot(identical(YN4, YN2)) > > > # Backtransform a subset toward the first dimension > # Note, this assumes that K == L. > YN5 <- backtransformPrincipalCurve(Y, fit=fit, + targetDimension=1, dimensions=2:3) > stopifnot(identical(YN5, YN2[,2:3])) > stopifnot(ncol(YN5) == 2) > > > # Extract signals from measurement #2 and backtransform according > # its model fit. Signals are standardized to target dimension 1. > y6 <- Y[,2,drop=FALSE] > yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2, + targetDimension=1) > stopifnot(identical(yN6, YN2[,2,drop=FALSE])) > stopifnot(ncol(yN6) == 1) > > > # Extract signals from measurement #2 and backtransform according > # the the model fit of measurement #3 (because we believe these > # two have undergone very similar transformations. > # Signals are standardized to target dimension 1. > y7 <- Y[,2,drop=FALSE] > yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3, + targetDimension=1) > stopifnot(ncol(yN7) == 1) > > rho <- cor(yN7, yN6) > print(rho) [,1] [1,] 0.9999907 > stopifnot(rho > 0.999) > > proc.time() user system elapsed 0.992 0.044 1.028
aroma.light.Rcheck/tests/callNaiveGenotypes.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > layout(matrix(1:3, ncol=1)) > par(mar=c(2,4,4,1)+0.1) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A bimodal distribution > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > xAA <- rnorm(n=10000, mean=0, sd=0.1) > xBB <- rnorm(n=10000, mean=1, sd=0.1) > x <- c(xAA,xBB) > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -0.00271382 1.6824738152 2 valley 0.48940694 0.0003961886 3 peak 0.99393411 1.6928023544 > calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20) Calling genotypes from allele B fractions (BAFs)... Fitting naive genotype model... Fitting naive genotype model from normal allele B fractions (BAFs)... Flavor: density Censoring BAFs... Before: Min. 1st Qu. Median Mean 3rd Qu. Max. -0.3464336 0.0009548 0.4795035 0.5000191 0.9987828 1.3872795 [1] 20000 After: Min. 1st Qu. Median Mean 3rd Qu. Max. -Inf 0.0009548 0.4795035 0.9987828 Inf [1] 16801 Censoring BAFs...done Copy number level #1 (C=1) of 1... Identified extreme points in density of BAF: type x density 1 peak 0.01486508 1.638528940 2 valley 0.49486748 0.003982696 3 peak 0.97829848 1.645721489 Local minimas ("valleys") in BAF: type x density 2 valley 0.4948675 0.003982696 Copy number level #1 (C=1) of 1...done Fitting naive genotype model from normal allele B fractions (BAFs)...done [[1]] [[1]]$flavor [1] "density" [[1]]$cn [1] 1 [[1]]$nbrOfGenotypeGroups [1] 2 [[1]]$tau [1] 0.4948675 [[1]]$n [1] 16801 [[1]]$fit type x density 1 peak 0.01486508 1.638528940 2 valley 0.49486748 0.003982696 3 peak 0.97829848 1.645721489 [[1]]$fitValleys type x density 2 valley 0.4948675 0.003982696 attr(,"class") [1] "NaiveGenotypeModelFit" "list" Fitting naive genotype model...done Copy number level #1 (C=1) of 1... Model fit: $flavor [1] "density" $cn [1] 1 $nbrOfGenotypeGroups [1] 2 $tau [1] 0.4948675 $n [1] 16801 $fit type x density 1 peak 0.01486508 1.638528940 2 valley 0.49486748 0.003982696 3 peak 0.97829848 1.645721489 $fitValleys type x density 2 valley 0.4948675 0.003982696 Genotype threshholds [1]: 0.494867484389698 TCN=1 => BAF in {0,1}. Call regions: A = (-Inf,0.495], B = (0.495,+Inf) Copy number level #1 (C=1) of 1...done Calling genotypes from allele B fractions (BAFs)...done > xc <- split(x, calls) > print(table(calls)) calls 0 1 10000 10000 > xx <- c(list(x),xc) > plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)") > abline(v=fit$x) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution with missing values > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > xAB <- rnorm(n=10000, mean=1/2, sd=0.1) > x <- c(xAA,xAB,xBB) > x[sample(length(x), size=0.05*length(x))] <- NA_real_ > x[sample(length(x), size=0.01*length(x))] <- -Inf > x[sample(length(x), size=0.01*length(x))] <- +Inf > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -0.001515704 1.1673813 2 valley 0.245950678 0.1900223 3 peak 0.497345098 1.1733567 4 valley 0.748739517 0.1872118 5 peak 0.992277861 1.1822548 > calls <- callNaiveGenotypes(x) > xc <- split(x, calls) > print(table(calls)) calls 0 0.5 1 9595 9332 9603 > xx <- c(list(x),xc) > plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)") > abline(v=fit$x) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution with clear separation > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > xAA <- rnorm(n=10000, mean=0, sd=0.02) > xAB <- rnorm(n=10000, mean=1/2, sd=0.02) > xBB <- rnorm(n=10000, mean=1, sd=0.02) > x <- c(xAA,xAB,xBB) > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -0.003753526 2.608879e+00 2 valley 0.248176808 3.176407e-05 3 peak 0.497307916 2.607444e+00 4 valley 0.746439025 3.154717e-05 5 peak 0.995570133 2.605976e+00 > calls <- callNaiveGenotypes(x) > xc <- split(x, calls) > print(table(calls)) calls 0 0.5 1 10000 10000 10000 > xx <- c(list(x),xc) > plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')") > abline(v=fit$x) > > proc.time() user system elapsed 0.540 0.028 0.563
aroma.light.Rcheck/tests/distanceBetweenLines.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > for (zzz in 0) { + + # This example requires plot3d() in R.basic [http://www.braju.com/R/] + if (!require(pkgName <- "R.basic", character.only=TRUE)) break + + layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE)) + + ############################################################ + # Lines in two-dimensions + ############################################################ + x <- list(a=c(1,0), b=c(1,2)) + y <- list(a=c(0,2), b=c(1,1)) + fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b) + + xlim <- ylim <- c(-1,8) + plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim) + + # Highlight the offset coordinates for both lines + points(t(x$a), pch="+", col="red") + text(t(x$a), label=expression(a[x]), adj=c(-1,0.5)) + points(t(y$a), pch="+", col="blue") + text(t(y$a), label=expression(a[y]), adj=c(-1,0.5)) + + v <- c(-1,1)*10 + xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v) + yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v) + + lines(xv, col="red") + lines(yv, col="blue") + + points(t(fit$xs), cex=2.0, col="red") + text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5)) + points(t(fit$yt), cex=1.5, col="blue") + text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5)) + print(fit) + + + ############################################################ + # Lines in three-dimensions + ############################################################ + x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal' + y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line + fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b) + + xlim <- ylim <- zlim <- c(-1,3) + dummy <- t(c(1,1,1))*100 + + # Coordinates for the lines in 3d + v <- seq(-10,10, by=1) + xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v) + yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v) + + for (theta in seq(30,140,length.out=3)) { + plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="", + xlim=ylim, ylim=ylim, zlim=zlim) + + # Highlight the offset coordinates for both lines + points3d(t(x$a), pch="+", col="red") + text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5)) + points3d(t(y$a), pch="+", col="blue") + text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5)) + + # Draw the lines + lines3d(xv, col="red") + lines3d(yv, col="blue") + + # Draw the two points that are closest to each other + points3d(t(fit$xs), cex=2.0, col="red") + text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5)) + points3d(t(fit$yt), cex=1.5, col="blue") + text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5)) + + # Draw the distance between the two points + lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2) + } + + print(fit) + + } # for (zzz in 0) Loading required package: R.basic Warning message: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : there is no package called 'R.basic' > rm(zzz) > > proc.time() user system elapsed 0.532 0.040 0.564
aroma.light.Rcheck/tests/findPeaksAndValleys.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > layout(matrix(1:3, ncol=1)) > par(mar=c(2,4,4,1)+0.1) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A unimodal distribution > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > x1 <- rnorm(n=10000, mean=0, sd=1) > x <- x1 > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -3.3312483 0.001905374 2 valley -3.2815484 0.001899151 3 peak -0.1007569 0.388320106 > plot(density(x), lwd=2, main="x1") > abline(v=fit$x) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > x2 <- rnorm(n=10000, mean=4, sd=1) > x3 <- rnorm(n=10000, mean=8, sd=1) > x <- c(x1,x2,x3) > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -0.08214774 0.12140687 2 valley 1.98458966 0.04514989 3 peak 3.94799020 0.12265531 4 valley 5.98028197 0.04533996 5 peak 7.97812813 0.12497358 > plot(density(x), lwd=2, main="c(x1,x2,x3)") > abline(v=fit$x) > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution with clear separation > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > x1b <- rnorm(n=10000, mean=0, sd=0.1) > x2b <- rnorm(n=10000, mean=4, sd=0.1) > x3b <- rnorm(n=10000, mean=8, sd=0.1) > x <- c(x1b,x2b,x3b) > > # Illustrating explicit usage of density() > d <- density(x) > fit <- findPeaksAndValleys(d, tol=0) > print(fit) type x density 1 peak -0.0119823 3.430762e-01 2 valley 1.9659614 1.246924e-06 3 peak 3.9654046 3.418269e-01 4 valley 5.9648477 1.292343e-06 5 peak 7.9857902 3.429812e-01 > plot(d, lwd=2, main="c(x1b,x2b,x3b)") > abline(v=fit$x) > > proc.time() user system elapsed 0.332 0.032 0.358
aroma.light.Rcheck/tests/fitPrincipalCurve.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate data from the model y <- a + bx + x^c + eps(bx) > J <- 1000 > x <- rexp(J) > a <- c(2,15,3) > b <- c(2,3,4) > c <- c(1,2,1/2) > bx <- outer(b,x) > xc <- t(sapply(c, FUN=function(c) x^c)) > eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x)) > y <- a + bx + xc + eps > y <- t(y) > > # Fit principal curve through (y_1, y_2, y_3) > fit <- fitPrincipalCurve(y, verbose=TRUE) Fitting principal curve... Data size: 1000x3 Identifying missing values... Identifying missing values...done Data size after removing non-finite data points: 1000x3 Calling principal_curve()... Starting curve---distance^2: 2323449 Iteration 1---distance^2: 332.8689 Iteration 2---distance^2: 332.204 Iteration 3---distance^2: 332.2235 Converged: TRUE Number of iterations: 3 Processing time/iteration: 0.1s (0.0s/iteration) Calling principal_curve()...done Fitting principal curve...done > > # Flip direction of 'lambda'? > rho <- cor(fit$lambda, y[,1], use="complete.obs") > flip <- (rho < 0) > if (flip) { + fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda + } > > > # Backtransform (y_1, y_2, y_3) to be proportional to each other > yN <- backtransformPrincipalCurve(y, fit=fit) > > # Same backtransformation dimension by dimension > yN2 <- y > for (cc in 1:ncol(y)) { + yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc) + } > stopifnot(identical(yN2, yN)) > > > xlim <- c(0, 1.04*max(x)) > ylim <- range(c(y,yN), na.rm=TRUE) > > > # Pairwise signals vs x before and after transform > layout(matrix(1:4, nrow=2, byrow=TRUE)) > par(mar=c(4,4,3,2)+0.1) > for (cc in 1:3) { + ylab <- substitute(y[c], env=list(c=cc)) + plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab) + abline(h=a[cc], lty=3) + mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]), + cex=0.8, las=2, line=0, adj=1.1, padj=-0.2) + points(x, y[,cc]) + points(x, yN[,cc], col="tomato") + legend("topleft", col=c("black", "tomato"), pch=19, + c("orignal", "transformed"), bty="n") + } > title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2) > > > # Pairwise signals before and after transform > layout(matrix(1:4, nrow=2, byrow=TRUE)) > par(mar=c(4,4,3,2)+0.1) > for (rr in 3:2) { + ylab <- substitute(y[c], env=list(c=rr)) + for (cc in 1:2) { + if (cc == rr) { + plot.new() + next + } + xlab <- substitute(y[c], env=list(c=cc)) + plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab) + abline(a=0, b=1, lty=2) + points(y[,c(cc,rr)]) + points(yN[,c(cc,rr)], col="tomato") + legend("topleft", col=c("black", "tomato"), pch=19, + c("orignal", "transformed"), bty="n") + } + } > title(main="Pairwise signals before and after transform", outer=TRUE, line=-2) > > proc.time() user system elapsed 0.796 0.064 0.855
aroma.light.Rcheck/tests/fitXYCurve.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate data from the model y <- a + bx + x^c + eps(bx) > x <- rexp(1000) > a <- c(2,15) > b <- c(2,1) > c <- c(1,2) > bx <- outer(b,x) > xc <- t(sapply(c, FUN=function(c) x^c)) > eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x)) > Y <- a + bx + xc + eps > Y <- t(Y) > > lim <- c(0,70) > plot(Y, xlim=lim, ylim=lim) > > # Fit principal curve through a subset of (y_1, y_2) > subset <- sample(nrow(Y), size=0.3*nrow(Y)) > fit <- fitXYCurve(Y[subset,], bandwidth=0.2) > > lines(fit, col="red", lwd=2) > > # Backtransform (y_1, y_2) keeping y_1 unchanged > YN <- backtransformXYCurve(Y, fit=fit) > points(YN, col="blue") > abline(a=0, b=1, col="red", lwd=2) > > proc.time() user system elapsed 0.492 0.024 0.510
aroma.light.Rcheck/tests/iwpca.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > for (zzz in 0) { + + # This example requires plot3d() in R.basic [http://www.braju.com/R/] + if (!require(pkgName <- "R.basic", character.only=TRUE)) break + + # Simulate data from the model y <- a + bx + eps(bx) + x <- rexp(1000) + a <- c(2,15,3) + b <- c(2,3,4) + bx <- outer(b,x) + eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x)) + y <- a + bx + eps + y <- t(y) + + # Add some outliers by permuting the dimensions for 1/10 of the observations + idx <- sample(1:nrow(y), size=1/10*nrow(y)) + y[idx,] <- y[idx,c(2,3,1)] + + # Plot the data with fitted lines at four different view points + opar <- par(mar=c(1,1,1,1)+0.1) + N <- 4 + layout(matrix(1:N, nrow=2, byrow=TRUE)) + theta <- seq(0,270,length.out=N) + phi <- rep(20, length.out=N) + xlim <- ylim <- zlim <- c(0,45) + persp <- list() + for (kk in seq_along(theta)) { + # Plot the data + persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim) + } + + # Weights on the observations + # Example a: Equal weights + w <- NULL + # Example b: More weight on the outliers (uncomment to test) + w <- rep(1, length(x)); w[idx] <- 0.8 + + # ...and show all iterations too with different colors. + maxIter <- c(seq(1,20,length.out=10),Inf) + col <- topo.colors(length(maxIter)) + # Show the fitted value for every iteration + for (ii in seq_along(maxIter)) { + # Fit a line using IWPCA through data + fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE) + + ymid <- fit$xMean + d0 <- apply(y, MARGIN=2, FUN=min) - ymid + d1 <- apply(y, MARGIN=2, FUN=max) - ymid + b <- fit$vt[1,] + y0 <- -b * max(abs(d0)) + y1 <- b * max(abs(d1)) + yline <- matrix(c(y0,y1), nrow=length(b), ncol=2) + yline <- yline + ymid + + for (kk in seq_along(theta)) { + # Set pane to draw in + par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1) + # Set the viewpoint of the pane + options(persp.matrix=persp[[kk]]) + + # Get the first principal component + points3d(t(ymid), col=col[ii]) + lines3d(t(yline), col=col[ii]) + + # Highlight the last one + if (ii == length(maxIter)) + lines3d(t(yline), col="red", lwd=3) + } + } + + par(opar) + + } # for (zzz in 0) Loading required package: R.basic Warning message: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : there is no package called 'R.basic' > rm(zzz) > > proc.time() user system elapsed 0.380 0.044 0.416
aroma.light.Rcheck/tests/likelihood.smooth.spline.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Define f(x) > f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x)) > > # Simulate data from this function in the range [a,b] > a <- -2; b <- 5 > x <- seq(a, b, length.out=3000) > y <- eval(f) > > # Add some noise to the data > y <- y + rnorm(length(y), 0, 10) > > # Plot the function and its second derivative > plot(x,y, type="l", lwd=4) > > # Fit a cubic smoothing spline and plot it > g <- smooth.spline(x,y, df=16) > lines(g, col="yellow", lwd=2, lty=2) > > # Calculating the (log) likelihood of the fitted spline > l <- likelihood(g) > > cat("Log likelihood with unique x values:\n") Log likelihood with unique x values: > print(l) Likelihood of smoothing spline: -288458.1 Log base: 2.718282 Weighted residuals sum of square: 288458.2 Penalty: -0.1197184 Smoothing parameter lambda: 0.0009257147 Roughness score: 129.3254 > > # Note that this is not the same as the log likelihood of the > # data on the fitted spline iff the x values are non-unique > x[1:5] <- x[1] # Non-unique x values > g <- smooth.spline(x,y, df=16) > l <- likelihood(g) > > cat("\nLog likelihood of the *spline* data set:\n") Log likelihood of the *spline* data set: > print(l) Likelihood of smoothing spline: -288053.1 Log base: 2.718282 Weighted residuals sum of square: 288053.2 Penalty: -0.1198303 Smoothing parameter lambda: 0.0009261969 Roughness score: 129.3789 > > # In cases with non unique x values one has to proceed as > # below if one want to get the log likelihood for the original > # data. > l <- likelihood(g, x=x, y=y) > cat("\nLog likelihood of the *original* data set:\n") Log likelihood of the *original* data set: > print(l) Likelihood of smoothing spline: -288456 Log base: 2.718282 Weighted residuals sum of square: 288456.1 Penalty: -0.1198301 Smoothing parameter lambda: 0.0009261969 Roughness score: 129.3786 > > > > > > > proc.time() user system elapsed 0.440 0.020 0.454
aroma.light.Rcheck/tests/medianPolish.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Deaths from sport parachuting; from ABC of EDA, p.224: > deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE) > rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA") > colnames(deaths) <- 1973:1975 > > print(deaths) 1973 1974 1975 1-24 14 15 14 25-74 7 4 7 75-199 8 2 10 200++ 15 9 10 NA 0 2 0 > > mp <- medianPolish(deaths) > mp1 <- medpolish(deaths, trace=FALSE) > print(mp) Median Polish Results (Dataset: "deaths") Overall: 8 Row Effects: 1-24 25-74 75-199 200++ NA 6 -1 0 2 -8 Column Effects: 1973 1974 1975 0 -1 0 Residuals: 1973 1974 1975 1-24 0 2 0 25-74 0 -2 0 75-199 0 -5 2 200++ 5 0 0 NA 0 3 0 > > ff <- c("overall", "row", "col", "residuals") > stopifnot(all.equal(mp[ff], mp1[ff])) > > # Validate decomposition: > stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid)) > > proc.time() user system elapsed 0.344 0.032 0.371
aroma.light.Rcheck/tests/normalizeAffine.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light") > rg <- read.table(pathname, header=TRUE, sep="\t") > nbrOfScans <- max(rg$slide) > > rg <- as.list(rg) > for (field in c("R", "G")) + rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans) > rg$slide <- rg$spot <- NULL > rg <- as.matrix(as.data.frame(rg)) > colnames(rg) <- rep(c("R", "G"), each=nbrOfScans) > > rgC <- rg > > layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE)) > > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + channelColor <- switch(channel, R="red", G="green") + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The raw data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + plotMvsAPairs(rg, channel=channel) + title(main=paste("Observed", channel)) + box(col=channelColor) + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The calibrated data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL) + + plotMvsAPairs(rgC, channel=channel) + title(main=paste("Calibrated", channel)) + box(col=channelColor) + } # for (channel ...) There were 50 or more warnings (use warnings() to see the first 50) > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # The average calibrated data > # > # Note how the red signals are weaker than the green. The reason > # for this can be that the scale factor in the green channel is > # greater than in the red channel, but it can also be that there > # is a remaining relative difference in bias between the green > # and the red channel, a bias that precedes the scanning. > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2) > colnames(rgCA) <- c("R", "G") > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + rgCA[,channel] <- calibrateMultiscan(rg[,sidx]) + } > > plotMvsA(rgCA) > title(main="Average calibrated") > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # The affine normalized average calibrated data > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Create a matrix where the columns represent the channels > # to be normalized. > rgCAN <- rgCA > # Affine normalization of channels > rgCAN <- normalizeAffine(rgCAN) > > plotMvsA(rgCAN) > title(main="Affine normalized A.C.") > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # It is always ok to rescale the affine normalized data if its > # done on (R,G); not on (A,M)! However, this is only needed for > # esthetic purposes. > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > rgCAN <- rgCAN * 2^5 > plotMvsA(rgCAN) > title(main="Rescaled normalized") > > > > proc.time() user system elapsed 2.820 0.048 2.867
aroma.light.Rcheck/tests/normalizeAverage.list.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate ten samples of different lengths > N <- 10000 > X <- list() > for (kk in 1:8) { + rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]] + size <- runif(1, min=0.3, max=1) + a <- rgamma(1, shape=20, rate=10) + b <- rgamma(1, shape=10, rate=10) + values <- rfcn(size*N, a, b) + + # "Censor" values + values[values < 0 | values > 8] <- NA_real_ + + X[[kk]] <- values + } > > # Add 20% missing values > X <- lapply(X, FUN=function(x) { + x[sample(length(x), size=0.20*length(x))] <- NA_real_ + x + }) > > # Normalize quantiles > Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE)) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, Xn, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions") > > proc.time() user system elapsed 0.372 0.036 0.397
aroma.light.Rcheck/tests/normalizeAverage.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate three samples with on average 20% missing values > N <- 10000 > X <- cbind(rnorm(N, mean=3, sd=1), + rnorm(N, mean=4, sd=2), + rgamma(N, shape=2, rate=1)) > X[sample(3*N, size=0.20*3*N)] <- NA_real_ > > # Normalize quantiles > Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE)) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, Xn, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions") > > proc.time() user system elapsed 0.296 0.028 0.317
aroma.light.Rcheck/tests/normalizeCurveFit.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light") > rg <- read.table(pathname, header=TRUE, sep="\t") > nbrOfScans <- max(rg$slide) > > rg <- as.list(rg) > for (field in c("R", "G")) + rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans) > rg$slide <- rg$spot <- NULL > rg <- as.matrix(as.data.frame(rg)) > colnames(rg) <- rep(c("R", "G"), each=nbrOfScans) > > layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE)) > > rgC <- rg > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + channelColor <- switch(channel, R="red", G="green") + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The raw data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + plotMvsAPairs(rg[,sidx]) + title(main=paste("Observed", channel)) + box(col=channelColor) + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The calibrated data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL) + + plotMvsAPairs(rgC[,sidx]) + title(main=paste("Calibrated", channel)) + box(col=channelColor) + } # for (channel ...) > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # The average calibrated data > # > # Note how the red signals are weaker than the green. The reason > # for this can be that the scale factor in the green channel is > # greater than in the red channel, but it can also be that there > # is a remaining relative difference in bias between the green > # and the red channel, a bias that precedes the scanning. > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > rgCA <- rg > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + rgCA[,sidx] <- calibrateMultiscan(rg[,sidx]) + } > > rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2) > colnames(rgCAavg) <- c("R", "G") > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE) + } > > # Add some "fake" outliers > outliers <- 1:600 > rgCAavg[outliers,"G"] <- 50000 > > plotMvsA(rgCAavg) > title(main="Average calibrated (AC)") > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Normalize data > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Weight-down outliers when normalizing > weights <- rep(1, nrow(rgCAavg)) > weights[outliers] <- 0.001 > > # Affine normalization of channels > rgCANa <- normalizeAffine(rgCAavg, weights=weights) > # It is always ok to rescale the affine normalized data if its > # done on (R,G); not on (A,M)! However, this is only needed for > # esthetic purposes. > rgCANa <- rgCANa *2^1.4 > plotMvsA(rgCANa) > title(main="Normalized AC") > > # Curve-fit (lowess) normalization > rgCANlw <- normalizeLowess(rgCAavg, weights=weights) Warning message: In normalizeCurveFit.matrix(X, method = "lowess", ...) : Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights. > plotMvsA(rgCANlw, col="orange", add=TRUE) > > # Curve-fit (loess) normalization > rgCANl <- normalizeLoess(rgCAavg, weights=weights) > plotMvsA(rgCANl, col="red", add=TRUE) > > # Curve-fit (robust spline) normalization > rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights) > plotMvsA(rgCANrs, col="blue", add=TRUE) > > legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19, + col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n") > > > plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine])) > title(main="Normalized AC") > plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE) > plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE) > abline(a=0, b=1, lty=2) > legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19, + col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n") > > > proc.time() user system elapsed 8.200 0.088 8.294
aroma.light.Rcheck/tests/normalizeDifferencesToAverage.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate three shifted tracks of different lengths with same profiles > ns <- c(A=2, B=1, C=0.25)*1000 > xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) }) > zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n)) > > yy <- list( + A = rnorm(ns["A"], mean=0, sd=0.5), + B = rnorm(ns["B"], mean=5, sd=0.4), + C = rnorm(ns["C"], mean=-5, sd=1.1) + ) > yy <- lapply(yy, FUN=function(y) { + n <- length(y) + y[1:(n/2)] <- y[1:(n/2)] + 2 + y[1:(n/4)] <- y[1:(n/4)] - 4 + y + }) > > # Shift all tracks toward the first track > yyN <- normalizeDifferencesToAverage(yy, baseline=1) > > # The baseline channel is not changed > stopifnot(identical(yy[[1]], yyN[[1]])) > > # Get the estimated parameters > fit <- attr(yyN, "fit") > > # Plot the tracks > layout(matrix(1:2, ncol=1)) > x <- unlist(xx) > col <- unlist(zz) > y <- unlist(yy) > yN <- unlist(yyN) > plot(x, y, col=col, ylim=c(-10,10)) > plot(x, yN, col=col, ylim=c(-10,10)) > > proc.time() user system elapsed 0.504 0.048 0.545
aroma.light.Rcheck/tests/normalizeFragmentLength-ex1.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Example 1: Single-enzyme fragment-length normalization of 6 arrays > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Number samples > I <- 9 > > # Number of loci > J <- 1000 > > # Fragment lengths > fl <- seq(from=100, to=1000, length.out=J) > > # Simulate data points with unknown fragment lengths > hasUnknownFL <- seq(from=1, to=J, by=50) > fl[hasUnknownFL] <- NA_real_ > > # Simulate data > y <- matrix(0, nrow=J, ncol=I) > maxY <- 12 > for (kk in 1:I) { + k <- runif(n=1, min=3, max=5) + mu <- function(fl) { + mu <- rep(maxY, length(fl)) + ok <- !is.na(fl) + mu[ok] <- mu[ok] - fl[ok]^{1/k} + mu + } + eps <- rnorm(J, mean=0, sd=1) + y[,kk] <- mu(fl) + eps + } > > # Normalize data (to a zero baseline) > yN <- apply(y, MARGIN=2, FUN=function(y) { + normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median") + }) > > # The correction factors > rho <- y-yN > print(summary(rho)) V1 V2 V3 V4 Min. :6.227 Min. :4.160 Min. :6.734 Min. :7.707 1st Qu.:6.729 1st Qu.:4.916 1st Qu.:7.108 1st Qu.:7.957 Median :7.189 Median :5.605 Median :7.514 Median :8.214 Mean :7.270 Mean :5.779 Mean :7.576 Mean :8.291 3rd Qu.:7.791 3rd Qu.:6.603 3rd Qu.:8.009 3rd Qu.:8.605 Max. :8.555 Max. :7.929 Max. :8.680 Max. :9.129 V5 V6 V7 V8 Min. :6.811 Min. :6.329 Min. :6.485 Min. :6.286 1st Qu.:7.258 1st Qu.:6.639 1st Qu.:6.829 1st Qu.:6.794 Median :7.665 Median :7.013 Median :7.232 Median :7.303 Mean :7.703 Mean :7.177 Mean :7.364 Mean :7.396 3rd Qu.:8.142 3rd Qu.:7.688 3rd Qu.:7.880 3rd Qu.:7.977 Max. :8.722 Max. :8.493 Max. :8.629 Max. :8.789 V9 Min. :5.861 1st Qu.:6.334 Median :6.797 Mean :6.967 3rd Qu.:7.550 Max. :8.639 > # The correction for units with unknown fragment lengths > # equals the median correction factor of all other units > print(summary(rho[hasUnknownFL,])) V1 V2 V3 V4 Min. :7.189 Min. :5.605 Min. :7.514 Min. :8.214 1st Qu.:7.189 1st Qu.:5.605 1st Qu.:7.514 1st Qu.:8.214 Median :7.189 Median :5.605 Median :7.514 Median :8.214 Mean :7.189 Mean :5.605 Mean :7.514 Mean :8.214 3rd Qu.:7.189 3rd Qu.:5.605 3rd Qu.:7.514 3rd Qu.:8.214 Max. :7.189 Max. :5.605 Max. :7.514 Max. :8.214 V5 V6 V7 V8 Min. :7.665 Min. :7.013 Min. :7.232 Min. :7.303 1st Qu.:7.665 1st Qu.:7.013 1st Qu.:7.232 1st Qu.:7.303 Median :7.665 Median :7.013 Median :7.232 Median :7.303 Mean :7.665 Mean :7.013 Mean :7.232 Mean :7.303 3rd Qu.:7.665 3rd Qu.:7.013 3rd Qu.:7.232 3rd Qu.:7.303 Max. :7.665 Max. :7.013 Max. :7.232 Max. :7.303 V9 Min. :6.797 1st Qu.:6.797 Median :6.797 Mean :6.797 3rd Qu.:6.797 Max. :6.797 > > # Plot raw data > layout(matrix(1:9, ncol=3)) > xlim <- c(0,max(fl, na.rm=TRUE)) > ylim <- c(0,max(y, na.rm=TRUE)) > xlab <- "Fragment length" > ylab <- expression(log2(theta)) > for (kk in 1:I) { + plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab) + ok <- (is.finite(fl) & is.finite(y[,kk])) + lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2) + } > > # Plot normalized data > layout(matrix(1:9, ncol=3)) > ylim <- c(-1,1)*max(y, na.rm=TRUE)/2 > for (kk in 1:I) { + plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab) + ok <- (is.finite(fl) & is.finite(y[,kk])) + lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2) + } > > proc.time() user system elapsed 0.736 0.040 0.773
aroma.light.Rcheck/tests/normalizeFragmentLength-ex2.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Example 2: Two-enzyme fragment-length normalization of 6 arrays > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > set.seed(0xbeef) > > # Number samples > I <- 5 > > # Number of loci > J <- 3000 > > # Fragment lengths (two enzymes) > fl <- matrix(0, nrow=J, ncol=2) > fl[,1] <- seq(from=100, to=1000, length.out=J) > fl[,2] <- seq(from=1000, to=100, length.out=J) > > # Let 1/2 of the units be on both enzymes > fl[seq(from=1, to=J, by=4),1] <- NA_real_ > fl[seq(from=2, to=J, by=4),2] <- NA_real_ > > # Let some have unknown fragment lengths > hasUnknownFL <- seq(from=1, to=J, by=15) > fl[hasUnknownFL,] <- NA_real_ > > # Sty/Nsp mixing proportions: > rho <- rep(1, I) > rho[1] <- 1/3; # Less Sty in 1st sample > rho[3] <- 3/2; # More Sty in 3rd sample > > > # Simulate data > z <- array(0, dim=c(J,2,I)) > maxLog2Theta <- 12 > for (ii in 1:I) { + # Common effect for both enzymes + mu <- function(fl) { + k <- runif(n=1, min=3, max=5) + mu <- rep(maxLog2Theta, length(fl)) + ok <- is.finite(fl) + mu[ok] <- mu[ok] - fl[ok]^{1/k} + mu + } + + # Calculate the effect for each data point + for (ee in 1:2) { + z[,ee,ii] <- mu(fl[,ee]) + } + + # Update the Sty/Nsp mixing proportions + ee <- 2 + z[,ee,ii] <- rho[ii]*z[,ee,ii] + + # Add random errors + for (ee in 1:2) { + eps <- rnorm(J, mean=0, sd=1/sqrt(2)) + z[,ee,ii] <- z[,ee,ii] + eps + } + } > > > hasFl <- is.finite(fl) > > unitSets <- list( + nsp = which( hasFl[,1] & !hasFl[,2]), + sty = which(!hasFl[,1] & hasFl[,2]), + both = which( hasFl[,1] & hasFl[,2]), + none = which(!hasFl[,1] & !hasFl[,2]) + ) > > # The observed data is a mix of two enzymes > theta <- matrix(NA_real_, nrow=J, ncol=I) > > # Single-enzyme units > for (ee in 1:2) { + uu <- unitSets[[ee]] + theta[uu,] <- 2^z[uu,ee,] + } > > # Both-enzyme units (sum on intensity scale) > uu <- unitSets$both > theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2 > > # Missing units (sample from the others) > uu <- unitSets$none > theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu)) > > # Calculate target array > thetaT <- rowMeans(theta, na.rm=TRUE) > targetFcns <- list() > for (ee in 1:2) { + uu <- unitSets[[ee]] + fit <- lowess(fl[uu,ee], log2(thetaT[uu])) + class(fit) <- "lowess" + targetFcns[[ee]] <- function(fl, ...) { + predict(fit, newdata=fl) + } + } > > > # Fit model only to a subset of the data > subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10)) > > # Normalize data (to a target baseline) > thetaN <- matrix(NA_real_, nrow=J, ncol=I) > fits <- vector("list", I) > for (ii in 1:I) { + lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns, + fragmentLengths=fl, onMissing="median", + subsetToFit=subsetToFit, .returnFit=TRUE) + fits[[ii]] <- attr(lthetaNi, "modelFit") + thetaN[,ii] <- 2^lthetaNi + } > > > # Plot raw data > xlim <- c(0, max(fl, na.rm=TRUE)) > ylim <- c(0, max(log2(theta), na.rm=TRUE)) > Mlim <- c(-1,1)*4 > xlab <- "Fragment length" > ylab <- expression(log2(theta)) > Mlab <- expression(M==log[2](theta/theta[R])) > > layout(matrix(1:(3*I), ncol=I, byrow=TRUE)) > for (ii in 1:I) { + plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw") + + # Single-enzyme units + for (ee in 1:2) { + # The raw data + uu <- unitSets[[ee]] + points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1) + } + + # Both-enzyme units (use fragment-length for enzyme #1) + uu <- unitSets$both + points(fl[uu,1], log2(theta[uu,ii]), col=3+1) + + for (ee in 1:2) { + # The true effects + uu <- unitSets[[ee]] + lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3) + + # The estimated effects + fit <- fits[[ii]][[ee]]$fit + lines(fit, col="orange", lwd=3) + + muT <- targetFcns[[ee]](fl[uu,ee]) + lines(fl[uu,ee], muT, col="cyan", lwd=1) + } + } > > # Calculate log-ratios > thetaR <- rowMeans(thetaN, na.rm=TRUE) > M <- log2(thetaN/thetaR) > > # Plot normalized data > for (ii in 1:I) { + plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized") + # Single-enzyme units + for (ee in 1:2) { + # The normalized data + uu <- unitSets[[ee]] + points(fl[uu,ee], M[uu,ii], col=ee+1) + } + # Both-enzyme units (use fragment-length for enzyme #1) + uu <- unitSets$both + points(fl[uu,1], M[uu,ii], col=3+1) + } > > ylim <- c(0,1.5) > for (ii in 1:I) { + data <- list() + for (ee in 1:2) { + # The normalized data + uu <- unitSets[[ee]] + data[[ee]] <- M[uu,ii] + } + uu <- unitSets$both + if (length(uu) > 0) + data[[3]] <- M[uu,ii] + + uu <- unitSets$none + if (length(uu) > 0) + data[[4]] <- M[uu,ii] + + cols <- seq_along(data)+1 + plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized") + + abline(v=0, lty=2) + } > > > proc.time() user system elapsed 0.952 0.036 0.984
aroma.light.Rcheck/tests/normalizeQuantileRank.list.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate ten samples of different lengths > N <- 10000 > X <- list() > for (kk in 1:8) { + rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]] + size <- runif(1, min=0.3, max=1) + a <- rgamma(1, shape=20, rate=10) + b <- rgamma(1, shape=10, rate=10) + values <- rfcn(size*N, a, b) + + # "Censor" values + values[values < 0 | values > 8] <- NA_real_ + + X[[kk]] <- values + } > > # Add 20% missing values > X <- lapply(X, FUN=function(x) { + x[sample(length(x), size=0.20*length(x))] <- NA_real_ + x + }) > > # Normalize quantiles > Xn <- normalizeQuantile(X) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions") > > proc.time() user system elapsed 0.528 0.044 0.562
aroma.light.Rcheck/tests/normalizeQuantileRank.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate three samples with on average 20% missing values > N <- 10000 > X <- cbind(rnorm(N, mean=3, sd=1), + rnorm(N, mean=4, sd=2), + rgamma(N, shape=2, rate=1)) > X[sample(3*N, size=0.20*3*N)] <- NA_real_ > > # Normalize quantiles > Xn <- normalizeQuantile(X) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, Xn, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions") > > proc.time() user system elapsed 0.412 0.052 0.460
aroma.light.Rcheck/tests/normalizeQuantileSpline.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate three samples with on average 20% missing values > N <- 10000 > X <- cbind(rnorm(N, mean=3, sd=1), + rnorm(N, mean=4, sd=2), + rgamma(N, shape=2, rate=1)) > X[sample(3*N, size=0.20*3*N)] <- NA_real_ > > # Plot the data > layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE)) > xlim <- range(X, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions") > > Xn <- normalizeQuantile(X) > plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions") > plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions") > > Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99) > plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions") > plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions") > > proc.time() user system elapsed 1.412 0.052 1.458
aroma.light.Rcheck/tests/normalizeTumorBoost,flavors.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > library("R.utils") Loading required package: R.oo Loading required package: R.methodsS3 R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help. R.oo v1.22.0 (2018-04-21) successfully loaded. See ?R.oo for help. Attaching package: 'R.oo' The following objects are masked from 'package:methods': getClasses, getMethods The following objects are masked from 'package:base': attach, detach, gc, load, save R.utils v2.8.0 successfully loaded. See ?R.utils for help. Attaching package: 'R.utils' The following object is masked from 'package:utils': timestamp The following objects are masked from 'package:base': cat, commandArgs, getOption, inherits, isOpen, parse, warnings > > # Load data > pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light") > data <- loadObject(pathname) > > # Drop loci with missing values > data <- na.omit(data) > > attachLocally(data) > pos <- position/1e6 > > # Call naive genotypes > muN <- callNaiveGenotypes(betaN) > > # Genotype classes > isAA <- (muN == 0) > isAB <- (muN == 1/2) > isBB <- (muN == 1) > > # Sanity checks > stopifnot(all(muN[isAA] == 0)) > stopifnot(all(muN[isAB] == 1/2)) > stopifnot(all(muN[isBB] == 1)) > > # TumorBoost normalization with different flavors > betaTNs <- list() > for (flavor in c("v1", "v2", "v3", "v4")) { + betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor) + + # Assert that no non-finite values are introduced + stopifnot(all(is.finite(betaTN))) + + # Assert that nothing is flipped + stopifnot(all(betaTN[isAA] < 1/2)) + stopifnot(all(betaTN[isBB] > 1/2)) + + betaTNs[[flavor]] <- betaTN + } > > # Plot > layout(matrix(1:4, ncol=1)) > par(mar=c(2.5,4,0.5,1)+0.1) > ylim <- c(-0.05, 1.05) > col <- rep("#999999", length(muN)) > col[muN == 1/2] <- "#000000" > for (flavor in names(betaTNs)) { + betaTN <- betaTNs[[flavor]] + ylab <- sprintf("betaTN[%s]", flavor) + plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab) + } > > proc.time() user system elapsed 0.668 0.020 0.681
aroma.light.Rcheck/tests/normalizeTumorBoost.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > library("R.utils") Loading required package: R.oo Loading required package: R.methodsS3 R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help. R.oo v1.22.0 (2018-04-21) successfully loaded. See ?R.oo for help. Attaching package: 'R.oo' The following objects are masked from 'package:methods': getClasses, getMethods The following objects are masked from 'package:base': attach, detach, gc, load, save R.utils v2.8.0 successfully loaded. See ?R.utils for help. Attaching package: 'R.utils' The following object is masked from 'package:utils': timestamp The following objects are masked from 'package:base': cat, commandArgs, getOption, inherits, isOpen, parse, warnings > > # Load data > pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light") > data <- loadObject(pathname) > attachLocally(data) > pos <- position/1e6 > muN <- genotypeN > > layout(matrix(1:4, ncol=1)) > par(mar=c(2.5,4,0.5,1)+0.1) > ylim <- c(-0.05, 1.05) > col <- rep("#999999", length(muN)) > col[muN == 1/2] <- "#000000" > > # Allele B fractions for the normal sample > plot(pos, betaN, col=col, ylim=ylim) > > # Allele B fractions for the tumor sample > plot(pos, betaT, col=col, ylim=ylim) > > # TumorBoost w/ naive genotype calls > betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE) > plot(pos, betaTN, col=col, ylim=ylim) > > # TumorBoost w/ external multi-sample genotype calls > betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE) > plot(pos, betaTNx, col=col, ylim=ylim) > > proc.time() user system elapsed 0.420 0.028 0.443
aroma.light.Rcheck/tests/robustSmoothSpline.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > data(cars) > attach(cars) > plot(speed, dist, main = "data(cars) & robust smoothing splines") > > # Fit a smoothing spline using L_2 norm > cars.spl <- smooth.spline(speed, dist) > lines(cars.spl, col = "blue") > > # Fit a smoothing spline using L_1 norm > cars.rspl <- robustSmoothSpline(speed, dist) > lines(cars.rspl, col = "red") > > # Fit a smoothing spline using L_2 norm with 10 degrees of freedom > lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue") > > # Fit a smoothing spline using L_1 norm with 10 degrees of freedom > lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red") > > # Fit a smoothing spline using Tukey's biweight norm > cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric") > lines(cars.rspl, col = "purple") > > legend(5,120, c( + paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)), + paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)), + paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)), + "standard with s( * , df = 10)", "robust with s( * , df = 10)" + ), + col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2), + bg='bisque') > > proc.time() user system elapsed 0.360 0.020 0.377
aroma.light.Rcheck/tests/rowAverages.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > X <- matrix(1:30, nrow=5L, ncol=6L) > mu <- rowMeans(X) > sd <- apply(X, MARGIN=1L, FUN=sd) > > y <- rowAverages(X) > stopifnot(all(y == mu)) > stopifnot(all(attr(y,"deviance") == sd)) > stopifnot(all(attr(y,"df") == ncol(X))) > > proc.time() user system elapsed 0.368 0.028 0.392
aroma.light.Rcheck/tests/sampleCorrelations.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # Simulate 20000 genes with 10 observations each > X <- matrix(rnorm(n=20000), ncol=10) > > # Calculate the correlation for 5000 random gene pairs > cor <- sampleCorrelations(X, npairs=5000) > print(summary(cor)) Min. 1st Qu. Median Mean 3rd Qu. Max. -0.883381 -0.258269 -0.007982 -0.009503 0.236045 0.902420 > > > proc.time() user system elapsed 0.836 0.020 0.848
aroma.light.Rcheck/tests/sampleTuples.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > pairs <- sampleTuples(1:10, size=5, length=2) > print(pairs) [,1] [,2] [1,] 6 2 [2,] 1 6 [3,] 2 6 [4,] 6 10 [5,] 6 5 > > triples <- sampleTuples(1:10, size=5, length=3) > print(triples) [,1] [,2] [,3] [1,] 3 6 4 [2,] 8 4 5 [3,] 2 10 6 [4,] 5 6 2 [5,] 9 8 10 > > # Allow tuples with repeated elements > quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE) > print(quadruples) [,1] [,2] [,3] [,4] [1,] 1 2 1 3 [2,] 2 2 3 2 [3,] 1 3 1 3 [4,] 2 1 1 1 [5,] 2 2 2 2 > > proc.time() user system elapsed 0.236 0.012 0.243
aroma.light.Rcheck/tests/wpca.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > for (zzz in 0) { + + # This example requires plot3d() in R.basic [http://www.braju.com/R/] + if (!require(pkgName <- "R.basic", character.only=TRUE)) break + + # ------------------------------------------------------------- + # A first example + # ------------------------------------------------------------- + # Simulate data from the model y <- a + bx + eps(bx) + x <- rexp(1000) + a <- c(2,15,3) + b <- c(2,3,15) + bx <- outer(b,x) + eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x)) + y <- a + bx + eps + y <- t(y) + + # Add some outliers by permuting the dimensions for 1/3 of the observations + idx <- sample(1:nrow(y), size=1/3*nrow(y)) + y[idx,] <- y[idx,c(2,3,1)] + + # Down-weight the outliers W times to demonstrate how weights are used + W <- 10 + + # Plot the data with fitted lines at four different view points + N <- 4 + theta <- seq(0,180,length.out=N) + phi <- rep(30, length.out=N) + + # Use a different color for each set of weights + col <- topo.colors(W) + + opar <- par(mar=c(1,1,1,1)+0.1) + layout(matrix(1:N, nrow=2, byrow=TRUE)) + for (kk in seq(theta)) { + # Plot the data + plot3d(y, theta=theta[kk], phi=phi[kk]) + + # First, same weights for all observations + w <- rep(1, length=nrow(y)) + + for (ww in 1:W) { + # Fit a line using IWPCA through data + fit <- wpca(y, w=w, swapDirections=TRUE) + + # Get the first principal component + ymid <- fit$xMean + d0 <- apply(y, MARGIN=2, FUN=min) - ymid + d1 <- apply(y, MARGIN=2, FUN=max) - ymid + b <- fit$vt[1,] + y0 <- -b * max(abs(d0)) + y1 <- b * max(abs(d1)) + yline <- matrix(c(y0,y1), nrow=length(b), ncol=2) + yline <- yline + ymid + + points3d(t(ymid), col=col) + lines3d(t(yline), col=col) + + # Down-weight outliers only, because here we know which they are. + w[idx] <- w[idx]/2 + } + + # Highlight the last one + lines3d(t(yline), col="red", lwd=3) + } + + par(opar) + + } # for (zzz in 0) Loading required package: R.basic Warning message: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : there is no package called 'R.basic' > rm(zzz) > > proc.time() user system elapsed 0.472 0.024 0.492
aroma.light.Rcheck/tests/wpca2.matrix.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.12.0 (2018-09-04) successfully loaded. See ?aroma.light for help. > > # ------------------------------------------------------------- > # A second example > # ------------------------------------------------------------- > # Data > x <- c(1,2,3,4,5) > y <- c(2,4,3,3,6) > > opar <- par(bty="L") > opalette <- palette(c("blue", "red", "black")) > xlim <- ylim <- c(0,6) > > # Plot the data and the center mass > plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim) > points(mean(x), mean(y), cex=2, lwd=2, col="blue") > > > # Linear regression y ˜ x > fit <- lm(y ˜ x) > abline(fit, lty=1, col=1) > > # Linear regression y ˜ x through without intercept > fit <- lm(y ˜ x - 1) > abline(fit, lty=2, col=1) > > > # Linear regression x ˜ y > fit <- lm(x ˜ y) > c <- coefficients(fit) > b <- 1/c[2] > a <- -b*c[1] > abline(a=a, b=b, lty=1, col=2) > > # Linear regression x ˜ y through without intercept > fit <- lm(x ˜ y - 1) > b <- 1/coefficients(fit) > abline(a=0, b=b, lty=2, col=2) > > > # Orthogonal linear "regression" > fit <- wpca(cbind(x,y)) > > b <- fit$vt[1,2]/fit$vt[1,1] > a <- fit$xMean[2]-b*fit$xMean[1] > abline(a=a, b=b, lwd=2, col=3) > > # Orthogonal linear "regression" without intercept > fit <- wpca(cbind(x,y), center=FALSE) > b <- fit$vt[1,2]/fit$vt[1,1] > a <- fit$xMean[2]-b*fit$xMean[1] > abline(a=a, b=b, lty=2, lwd=2, col=3) > > legend(xlim[1],ylim[2], legend=c("lm(y˜x)", "lm(y˜x-1)", "lm(x˜y)", + "lm(x˜y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3), + lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2)) > > palette(opalette) > par(opar) > > proc.time() user system elapsed 0.340 0.020 0.355
aroma.light.Rcheck/aroma.light-Ex.timings
name | user | system | elapsed | |
backtransformAffine | 0.000 | 0.000 | 0.002 | |
backtransformPrincipalCurve | 0.640 | 0.012 | 0.658 | |
calibrateMultiscan | 0 | 0 | 0 | |
callNaiveGenotypes | 0.376 | 0.012 | 0.389 | |
distanceBetweenLines | 0.124 | 0.000 | 0.128 | |
findPeaksAndValleys | 0.044 | 0.000 | 0.047 | |
fitPrincipalCurve | 0.452 | 0.000 | 0.453 | |
fitXYCurve | 0.064 | 0.000 | 0.066 | |
iwpca | 0.064 | 0.000 | 0.067 | |
likelihood.smooth.spline | 0.072 | 0.000 | 0.069 | |
medianPolish | 0.000 | 0.004 | 0.004 | |
normalizeAffine | 7.464 | 0.020 | 7.522 | |
normalizeCurveFit | 8.676 | 0.024 | 8.711 | |
normalizeDifferencesToAverage | 0.248 | 0.000 | 0.247 | |
normalizeFragmentLength | 0.836 | 0.012 | 0.850 | |
normalizeQuantileRank | 0.176 | 0.004 | 0.179 | |
normalizeQuantileRank.matrix | 0.056 | 0.000 | 0.057 | |
normalizeQuantileSpline | 0.908 | 0.000 | 0.910 | |
normalizeTumorBoost | 0.184 | 0.008 | 0.206 | |
robustSmoothSpline | 0.112 | 0.004 | 0.116 | |
sampleCorrelations | 0.460 | 0.000 | 0.461 | |
sampleTuples | 0.000 | 0.000 | 0.001 | |
wpca | 0.060 | 0.000 | 0.058 | |