Back to Multiple platform build/check report for BioC 3.8 |
|
This page was generated on 2019-04-13 11:21:23 -0400 (Sat, 13 Apr 2019).
Package 1052/1649 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
netresponse 1.42.0 Leo Lahti
| malbec1 | Linux (Ubuntu 16.04.6 LTS) / x86_64 | OK | OK | WARNINGS | |||||||
tokay1 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ WARNINGS ] | OK | |||||||
merida1 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | WARNINGS | OK |
Package: netresponse |
Version: 1.42.0 |
Command: C:\Users\biocbuild\bbs-3.8-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:netresponse.install-out.txt --library=C:\Users\biocbuild\bbs-3.8-bioc\R\library --no-vignettes --timings netresponse_1.42.0.tar.gz |
StartedAt: 2019-04-13 04:09:37 -0400 (Sat, 13 Apr 2019) |
EndedAt: 2019-04-13 04:16:55 -0400 (Sat, 13 Apr 2019) |
EllapsedTime: 438.0 seconds |
RetCode: 0 |
Status: WARNINGS |
CheckDir: netresponse.Rcheck |
Warnings: 1 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.8-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:netresponse.install-out.txt --library=C:\Users\biocbuild\bbs-3.8-bioc\R\library --no-vignettes --timings netresponse_1.42.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.8-bioc/meat/netresponse.Rcheck' * using R version 3.5.3 (2019-03-11) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'netresponse/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'netresponse' version '1.42.0' * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'netresponse' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking compiled code ... NOTE File 'netresponse/libs/i386/netresponse.dll': Found 'rand', possibly from 'rand' (C) Object: 'netresponse.o' Found 'srand', possibly from 'srand' (C) Object: 'netresponse.o' Compiled code should not call entry points which might terminate R nor write to stdout/stderr instead of to the console, nor use Fortran I/O nor system RNGs. See 'Writing portable packages' in the 'Writing R Extensions' manual. * checking files in 'vignettes' ... WARNING Files in the 'vignettes' directory but no files in 'inst/doc': 'NetResponse.Rmd', 'NetResponse.md', 'TODO/TODO.Rmd', 'fig/NetResponse2-1.png', 'fig/NetResponse2b-1.png', 'fig/NetResponse3-1.png', 'fig/NetResponse4-1.png', 'fig/NetResponse5-1.png', 'fig/NetResponse7-1.png', 'fig/vdp-1.png', 'main.R', 'netresponse.bib', 'netresponse.pdf' Package has no Sweave vignette sources and no VignetteBuilder field. * checking examples ... ** running examples for arch 'i386' ... OK Examples with CPU or elapsed time > 5s user system elapsed ICMg.combined.sampler 36.08 0.04 36.13 ** running examples for arch 'x64' ... OK Examples with CPU or elapsed time > 5s user system elapsed ICMg.combined.sampler 40.56 0.01 40.58 * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'ICMg.test.R' Running 'bicmixture.R' Running 'mixture.model.test.R' Running 'mixture.model.test.multimodal.R' Running 'mixture.model.test.singlemode.R' Running 'timing.R' Running 'toydata2.R' Running 'validate.netresponse.R' Running 'validate.pca.basis.R' Running 'vdpmixture.R' OK ** running tests for arch 'x64' ... Running 'ICMg.test.R' Running 'bicmixture.R' Running 'mixture.model.test.R' Running 'mixture.model.test.multimodal.R' Running 'mixture.model.test.singlemode.R' Running 'timing.R' Running 'toydata2.R' Running 'validate.netresponse.R' Running 'validate.pca.basis.R' Running 'vdpmixture.R' OK * checking PDF version of manual ... OK * DONE Status: 1 WARNING, 1 NOTE See 'C:/Users/biocbuild/bbs-3.8-bioc/meat/netresponse.Rcheck/00check.log' for details.
netresponse.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O https://malbec1.bioconductor.org/BBS/3.8/bioc/src/contrib/netresponse_1.42.0.tar.gz && rm -rf netresponse.buildbin-libdir && mkdir netresponse.buildbin-libdir && C:\Users\biocbuild\bbs-3.8-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=netresponse.buildbin-libdir netresponse_1.42.0.tar.gz && C:\Users\biocbuild\bbs-3.8-bioc\R\bin\R.exe CMD INSTALL netresponse_1.42.0.zip && rm netresponse_1.42.0.tar.gz netresponse_1.42.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 1030k 100 1030k 0 0 23.0M 0 --:--:-- --:--:-- --:--:-- 25.1M install for i386 * installing *source* package 'netresponse' ... ** libs C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.8-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O3 -Wall -std=gnu99 -mtune=generic -c netresponse.c -o netresponse.o netresponse.c: In function 'mHPpost': netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable] const char *prior_fields[]={"Mumu","S2mu", ^ netresponse.c: In function 'vdp_mk_hp_posterior': netresponse.c:210:3: warning: 'U_hat_table' may be used uninitialized in this function [-Wmaybe-uninitialized] update_centroids(datalen, ncentroids, dim1, dim2, ^ netresponse.c:210:3: warning: 'data2_int' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c: In function 'mLogLambda': netresponse.c:713:3: warning: 'U_p' may be used uninitialized in this function [-Wmaybe-uninitialized] vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^ netresponse.c:713:3: warning: 'KsiBeta' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'KsiAlpha' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'BetaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'AlphaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mutilde' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mubar' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'S2mu' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mumu' may be used uninitialized in this function [-Wmaybe-uninitialized] C:/Rtools/mingw_32/bin/gcc -shared -s -static-libgcc -o netresponse.dll tmp.def netresponse.o -LC:/extsoft/lib/i386 -LC:/extsoft/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.8-B/R/bin/i386 -lR installing to C:/Users/biocbuild/bbs-3.8-bioc/meat/netresponse.buildbin-libdir/netresponse/libs/i386 ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package 'netresponse' finding HTML links ... done ICMg.combined.sampler html ICMg.get.comp.memberships html ICMg.links.sampler html NetResponseModel-class html P.S html P.Sr html P.r.s html P.rS html P.rs.joint html P.rs.joint.individual html P.s.individual html P.s.r html PlotMixture html PlotMixtureBivariate html PlotMixtureMultivariate html PlotMixtureMultivariate.deprecated html PlotMixtureUnivariate html add.ellipse html bic.mixture html bic.mixture.multivariate html bic.mixture.univariate html bic.select.best.mode html centerData html check.matrix html check.network html continuous.responses html detect.responses html dna html enrichment.list.factor html enrichment.list.factor.minimal html factor.responses html factor.responses.minimal html filter.netw html filter.network html find.similar.features html generate.toydata html get.dat-NetResponseModel-method html get.mis html get.model.parameters html get.subnets-NetResponseModel-method html getqofz-NetResponseModel-method html independent.models html list.responses.continuous.multi html list.responses.continuous.single html list.responses.factor html list.responses.factor.minimal html list.significant.responses html listify.groupings html mixture.model html model.stats html netresponse-package html order.responses html osmo html pick.model.pairs html pick.model.parameters html plotPCA html plot_associations html plot_data html plot_expression html plot_matrix html plot_response html plot_responses html plot_scale html plot_subnet html read.sif html remove.negative.edges html response.enrichment html response2sample html sample2response html set.breaks html toydata html update.model.pair html vdp.mixt html vectorize.groupings html write.netresponse.results html ** building package indices ** installing vignettes ** testing if installed package can be loaded In R CMD INSTALL install for x64 * installing *source* package 'netresponse' ... ** libs C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.8-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mtune=generic -c netresponse.c -o netresponse.o netresponse.c: In function 'mHPpost': netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable] const char *prior_fields[]={"Mumu","S2mu", ^ netresponse.c: In function 'mLogLambda': netresponse.c:713:3: warning: 'U_p' may be used uninitialized in this function [-Wmaybe-uninitialized] vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^ netresponse.c:713:3: warning: 'KsiBeta' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'KsiAlpha' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'BetaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'AlphaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mutilde' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mubar' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'S2mu' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mumu' may be used uninitialized in this function [-Wmaybe-uninitialized] C:/Rtools/mingw_64/bin/gcc -shared -s -static-libgcc -o netresponse.dll tmp.def netresponse.o -LC:/extsoft/lib/x64 -LC:/extsoft/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.8-B/R/bin/x64 -lR installing to C:/Users/biocbuild/bbs-3.8-bioc/meat/netresponse.buildbin-libdir/netresponse/libs/x64 ** testing if installed package can be loaded * MD5 sums packaged installation of 'netresponse' as netresponse_1.42.0.zip * DONE (netresponse) In R CMD INSTALL In R CMD INSTALL * installing to library 'C:/Users/biocbuild/bbs-3.8-bioc/R/library' package 'netresponse' successfully unpacked and MD5 sums checked In R CMD INSTALL
netresponse.Rcheck/tests_i386/bicmixture.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("˜/Rpackages/netresponse/netresponse/R/internals.R") > #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ############################################# > > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > dd <- 3 # Dimensionality of data > Nc <- 5 # Number of components > Ns <- 200 # Number of data points > sd0 <- 3 # component spread > rgam.shape = 2 # parameters for Gamma distribution > rgam.scale = 2 # parameters for Gamma distribution to define precisions > > > # Generate means and variances (covariance diagonals) for the components > component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd) > component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale), + nrow = Nc, ncol = dd) > component.sds <- sqrt(component.vars) > > > # Size for each component -> sample randomly for each data point from uniform distr. > # i.e. cluster assignments > sample2comp <- sample.int(Nc, Ns, replace = TRUE) > > D <- array(NA, dim = c(Ns, dd)) > for (i in 1:Ns) { + # component identity of this sample + ci <- sample2comp[[i]] + cm <- component.means[ci,] + csd <- component.sds[ci,] + D[i,] <- rnorm(dd, mean = cm, sd = csd) + } > > > ###################################################################### > > # Fit mixture model > out <- mixture.model(D, mixture.method = "bic") > > # FIXME rowmeans(qofz) is constant but not 1 > #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE) > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$mu[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$mu[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$sd[ord.out,] > sds.in <- sqrt(component.vars[ord.in,]) > > # ----------------------------------------------------------- > > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > ###################################################### > > #for (ci in 1:nrow(means.out)) { > # points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19) > # el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,]) > # lines(el, col = "red") > #} > > #for (ci in 1:nrow(means.in)) { > # points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19) > # el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,]) > # lines(el, col = "blue") > #} > > > > > > > proc.time() user system elapsed 2.90 0.21 3.09 |
netresponse.Rcheck/tests_x64/bicmixture.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("˜/Rpackages/netresponse/netresponse/R/internals.R") > #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ############################################# > > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > dd <- 3 # Dimensionality of data > Nc <- 5 # Number of components > Ns <- 200 # Number of data points > sd0 <- 3 # component spread > rgam.shape = 2 # parameters for Gamma distribution > rgam.scale = 2 # parameters for Gamma distribution to define precisions > > > # Generate means and variances (covariance diagonals) for the components > component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd) > component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale), + nrow = Nc, ncol = dd) > component.sds <- sqrt(component.vars) > > > # Size for each component -> sample randomly for each data point from uniform distr. > # i.e. cluster assignments > sample2comp <- sample.int(Nc, Ns, replace = TRUE) > > D <- array(NA, dim = c(Ns, dd)) > for (i in 1:Ns) { + # component identity of this sample + ci <- sample2comp[[i]] + cm <- component.means[ci,] + csd <- component.sds[ci,] + D[i,] <- rnorm(dd, mean = cm, sd = csd) + } > > > ###################################################################### > > # Fit mixture model > out <- mixture.model(D, mixture.method = "bic") > > # FIXME rowmeans(qofz) is constant but not 1 > #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE) > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$mu[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$mu[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$sd[ord.out,] > sds.in <- sqrt(component.vars[ord.in,]) > > # ----------------------------------------------------------- > > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > ###################################################### > > #for (ci in 1:nrow(means.out)) { > # points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19) > # el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,]) > # lines(el, col = "red") > #} > > #for (ci in 1:nrow(means.in)) { > # points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19) > # el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,]) > # lines(el, col = "blue") > #} > > > > > > > proc.time() user system elapsed 3.32 0.21 3.53 |
netresponse.Rcheck/tests_i386/ICMg.test.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Test script for the ICMg method > > # Load the package > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > data(osmo) # Load data > > # Set parameters > C.boost = 1 > alpha = 10 > beta = 0.01 > B.num = 10 > B.size = 10 > S.num = 10 > S.size = 10 > C = 24 > pm0 = 0 > V0 = 1 > V = 0.1 > > # Run combined ICMg sampler > res = ICMg.combined.sampler(osmo$ppi, osmo$exp, C, alpha, beta, pm0, V0, V, B.num, B.size, S.num, S.size, C.boost) Sampling ICMg2... nodes:10250links:1711observations:133components:24alpha:10beta:0.01 Sampling200iterationcs Burnin iterations:100 I: 0 n(z):428423409412457415426422439403450384413462441428417459435430468415385429 m(z):816584747873626979656880667266737470745875676672 I:10 convL:-0.479717908656148n(z):4274292014332213793596003753452185267238336312294302276276278383461470403 convN:-0.0117711166301349m(z):516417565247979352561857089526850285446779043162112 I:20 convL:-0.406763710315724n(z):3514652404362143823026283223861833314238320277247268190193296510644781413 convN:-0.00322514240194744m(z):50601851514310984545113385109537155295351788748180108 I:30 convL:-0.389780632565301n(z):3044392733952333753006333794281727364235296299239281173173240585717803359 convN:-0.00229485826437178m(z):50601851514310984545113285109537155295351788748181108 I:40 convL:-0.365378593141548n(z):3044592604062443752886973225021695362273271297190261163191227597709814343 convN:-0.00308859428192431m(z):50541851514310985545513487109547155295251788748178108 I:50 convL:-0.359183900385927n(z):2704192724182353743036673485411757374312248313184239173166200645733769290 convN:-0.0041348498360967m(z):50551849514310989545113486111537155295351788748178108 I:60 convL:-0.344605245317887n(z):3034062854102313592685922815931784362333238338179239172158180682765786306 convN:-0.00661535743116072m(z):50551848514310890545113286111537254295252778848181108 I:70 convL:-0.339078056881019n(z):2754093023802833762955602665301845384347231286163211173165179725787806272 convN:-0.00259344384824696m(z):50551848514310990565113386111537155295351798748179105 I:80 convL:-0.336332710738166n(z):2764402653952613872995302745641837386353215258174208182172175704759853283 convN:-0.00173073221252916m(z):50551848514310890565113286111566955295351778848181105 I:90 convL:-0.336633169144404n(z):2384282723812573762895033095601875365364258303184183178168169721691902276 convN:-0.00201111017183236m(z):50551848514310889565113286112577055295251778748181105 I:100 convL:-0.322991537402716n(z):2414252593852693642875093265641887363363274295188200183161163713705859267 convN:-Infm(z):51551848514310889565113386112576955295351778748179105 Sample iterations:100 I:110 convL:-0.330477874570725n(z):2634292563572923802815382826101884324388244269185179184157190713731868246 convN:-0.00355515946143753m(z):50551850514310989565113586112576955295350778748176105 I:120 convL:-0.333714052523403n(z):2484432623652673672835392876311870332358244270193177191150169688717903296 convN:-0.00257048251549619m(z):50551848514310890565113587111566955295350778948178104 I:130 convL:-0.326060924247017n(z):2474282903632623542635533286291821354376211299178186204148191653742880290 convN:-0.00610920779468357m(z):50541848514310989565013787111567055295251778948177104 I:140 convL:-0.339958144061511n(z):2924092813762473672874812946201833371386257289172184180156192676773865262 convN:-0.00293351506623642m(z):50551849514310889565013387112577055295251778848179104 I:150 convL:-0.328002575021972n(z):2874272773612423752864952985981836354400234298185176173157197708758856272 convN:-0.00337633320961183m(z):50551848514310889565013387112577055295251778848180104 I:160 convL:-0.333115779884941n(z):2854322693552573552855003156381858372381266323177150171158195655705902246 convN:-0.00172190771297211m(z):50551848514310889565013387112577055295251778748180105 I:170 convL:-0.316770574187423n(z):2904202633612373652564752896021905351429220324201157158158205702725873284 convN:-0.00145932449500817m(z):50551848514310890565013187112577055295251778848181104 I:180 convL:-0.33443895149239n(z):2854012493602243612694862806011918404388218308223163171170181743738835274 convN:-0.00275308647133559m(z):50551848514310889565013287112567055295251788848181104 I:190 convL:-0.314346400944757n(z):2943912523622153562674602946411894399412190293203175183165181729726898270 convN:-0.00347474884735854m(z):50541848514310889565113386112576955295350778748182105 I:200 convL:-0.319898323112704n(z):3114072613752513502594312956001918449364233293192178187164194683723852280 convN:-0.00371309078773136m(z):50541848514310890565113487111577055295251778748179105 DONE > > # Compute component membership probabilities for the data points > res$comp.memb <- ICMg.get.comp.memberships(osmo$ppi, res) > > # Compute (hard) clustering for nodes > res$clustering <- apply(res$comp.memb, 2, which.max) > > proc.time() user system elapsed 8.28 0.20 8.46 |
netresponse.Rcheck/tests_x64/ICMg.test.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Test script for the ICMg method > > # Load the package > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > data(osmo) # Load data > > # Set parameters > C.boost = 1 > alpha = 10 > beta = 0.01 > B.num = 10 > B.size = 10 > S.num = 10 > S.size = 10 > C = 24 > pm0 = 0 > V0 = 1 > V = 0.1 > > # Run combined ICMg sampler > res = ICMg.combined.sampler(osmo$ppi, osmo$exp, C, alpha, beta, pm0, V0, V, B.num, B.size, S.num, S.size, C.boost) Sampling ICMg2... nodes:10250links:1711observations:133components:24alpha:10beta:0.01 Sampling200iterationcs Burnin iterations:100 I: 0 n(z):425411440422451429459455401465433410428452408423393407430442408416432410 m(z):856469805670756365684176708078617386867663796681 I:10 convL:-0.51961830426294n(z):1964121983891550245972591523283533389225247466337326230370383351347338349 convN:-0.00598026027401599m(z):451076773146351009662939380373855895547597375617649 I:20 convL:-0.415523877877975n(z):2163872283811614196988889482299388449222252453312324198390363346322263288 convN:-0.0087144922532075m(z):46866678145359811157919182394958895555637273477154 I:30 convL:-0.379350476960332n(z):19441924042115772101005992564308399483270249400274330186368275324271270221 convN:-0.0036592544727111m(z):478166761503510511655938981385060875557637073407153 I:40 convL:-0.370677986010068n(z):180499204398154119510681282489309354440285242402245352142378222290274252207 convN:-0.00324183574496793m(z):478266761503510512360919181385159805555587174446653 I:50 convL:-0.362620199677817n(z):175530214378154720010331410479297324436268259382267348150386211280239247190 convN:-0.00433564901491265m(z):477866711503511012560929182385459805552597173456751 I:60 convL:-0.351865485692638n(z):165534214346161321410041396454301305479272275388262357146383211263256242170 convN:-0.00209075684111098m(z):477966711493511012560919181395559805553587174446751 I:70 convL:-0.352577189513199n(z):16252522135116052359981468444283318436297234355262376146363208286265264148 convN:-0.00295280290168015m(z):477966711513511012560919181385459805552597174446751 I:80 convL:-0.351884102075756n(z):16953123834416312119631437438283271499307233350272343131392211281271278166 convN:-0.00336196593039861m(z):477966711503510912560938882395460825552587173446751 I:90 convL:-0.333345780691125n(z):17556923230816002259551516482286259534310227348288350141384183224249257148 convN:-0.00404606571143788m(z):477866711533510512560928884385460825552597174446751 I:100 convL:-0.343704824570221n(z):18154522233616042519711499476293241584300212319293329140400208213252227154 convN:-0.00211776764947067m(z):477966711543510412560928983395459825553587173446751 Sample iterations:100 I:110 convL:-0.350984385232619n(z):19655422933615872359371556457291229571335216317276324132393197228242262150 convN:-0.00153963557683921m(z):477966711543510412560928883385460825553597173446751 I:120 convL:-0.346266343921852n(z):15758522933215742469211559442308253621325245299295345132382186185243230156 convN:-0.00458013591165896m(z):477766711553510412460928884395560825553587173446751 I:130 convL:-0.31989196357795n(z):16765723833515712469071555456281258608311236263253346150397178207238233159 convN:-0.00318674968754439m(z):477966711563510412360928883395460825553587173446751 I:140 convL:-0.32277350326581n(z):13762322932815562399031576464294238609325252293278366137401176203232228163 convN:-0.0026845625517416m(z):477966711573510112460928884385460825553597173446751 I:150 convL:-0.332532148577022n(z):15662922831015682359401567456274266589310237283286377132386183217238238145 convN:-0.00148193001216185m(z):477966711583510012560928983395459825553587173446751 I:160 convL:-0.332053291234978n(z):13760623331216002099381570430282264599330263300275338147389191215224244154 convN:-0.00183466394534414m(z):47796672158359912560928983385459825553597173446751 I:170 convL:-0.34385256359576n(z):13261122831816072108871588441265251631312281273271342141392223207242269128 convN:-0.00227314073978873m(z):477966711563510112660928983395458825553597173446751 I:180 convL:-0.335850728069077n(z):13964025031215752199631560417287256644291253263291325143381188172246294141 convN:-0.00145624610002483m(z):477966711563510012660928984395458825553597173446751 I:190 convL:-0.326389431267356n(z):14461722733215561889481643410280239608310273265297300163387201177258282145 convN:-0.00243844599937679m(z):46796671158349912660928883395459825553607273446751 I:200 convL:-0.325372542729545n(z):13061122933015002099631679414277252619290252272293301149391220188251286144 convN:-0.00115320799415236m(z):477966711563510112660928983385459825553617173446551 DONE > > # Compute component membership probabilities for the data points > res$comp.memb <- ICMg.get.comp.memberships(osmo$ppi, res) > > # Compute (hard) clustering for nodes > res$clustering <- apply(res$comp.memb, 2, which.max) > > proc.time() user system elapsed 7.35 0.20 7.54 |
netresponse.Rcheck/tests_i386/mixture.model.test.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Validate mixture models > > # Generate random data from five Gaussians. > # Detect modes > # Plot data points and detected clusters > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ####################### > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > par(mfrow = c(2,1)) > > for (mm in c("vdp", "bic")) { + + # Fit nonparametric Gaussian mixture model + #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R") + out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE) + + ############################################################ + + # Compare input data and results + + ord.out <- order(out$mu[,1]) + ord.in <- order(component.means[,1]) + + means.out <- out$mu[ord.out,] + means.in <- component.means[ord.in,] + + # Cluster stds and variances + sds.out <- out$sd[ord.out,] + vars.out <- sds.out^2 + + sds.in <- component.sds[ord.in,] + vars.in <- sds.in^2 + + # Check correspondence between input and output + if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } + + # Plot results (assuming 2D) + ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) + + real.modes <- sample2comp + obs.modes <- apply(out$qofz, 1, which.max) + + # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } + for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } + + } > > > proc.time() user system elapsed 2.39 0.23 2.61 |
netresponse.Rcheck/tests_x64/mixture.model.test.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Validate mixture models > > # Generate random data from five Gaussians. > # Detect modes > # Plot data points and detected clusters > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ####################### > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > par(mfrow = c(2,1)) > > for (mm in c("vdp", "bic")) { + + # Fit nonparametric Gaussian mixture model + #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R") + out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE) + + ############################################################ + + # Compare input data and results + + ord.out <- order(out$mu[,1]) + ord.in <- order(component.means[,1]) + + means.out <- out$mu[ord.out,] + means.in <- component.means[ord.in,] + + # Cluster stds and variances + sds.out <- out$sd[ord.out,] + vars.out <- sds.out^2 + + sds.in <- component.sds[ord.in,] + vars.in <- sds.in^2 + + # Check correspondence between input and output + if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } + + # Plot results (assuming 2D) + ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) + + real.modes <- sample2comp + obs.modes <- apply(out$qofz, 1, which.max) + + # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } + for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } + + } > > > proc.time() user system elapsed 2.60 0.15 2.76 |
netresponse.Rcheck/tests_i386/mixture.model.test.multimodal.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > # Three MODES > > # set.seed(34884) > set.seed(3488400) > > Ns <- 200 > Nd <- 2 > > D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd), + cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3)) + ) > > #X11() > par(mfrow = c(2,2)) > for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D3, mixture.method = mm, pca.basis = pp) + plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:", pp)) + + } + } > > # VDP is less sensitive than BIC in detecting Gaussian modes (more > # separation between the clusters needed) > > # pca.basis option is less important for sensitive detection but > # it will help to avoid overfitting to unimodal features that > # are not parallel to the axes (unimodal distribution often becomes > # splitted in two or more clusters in these cases) > > > proc.time() user system elapsed 6.62 0.32 6.92 |
netresponse.Rcheck/tests_x64/mixture.model.test.multimodal.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > # Three MODES > > # set.seed(34884) > set.seed(3488400) > > Ns <- 200 > Nd <- 2 > > D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd), + cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3)) + ) > > #X11() > par(mfrow = c(2,2)) > for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D3, mixture.method = mm, pca.basis = pp) + plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:", pp)) + + } + } > > # VDP is less sensitive than BIC in detecting Gaussian modes (more > # separation between the clusters needed) > > # pca.basis option is less important for sensitive detection but > # it will help to avoid overfitting to unimodal features that > # are not parallel to the axes (unimodal distribution often becomes > # splitted in two or more clusters in these cases) > > > proc.time() user system elapsed 4.29 0.18 4.46 |
netresponse.Rcheck/tests_i386/mixture.model.test.singlemode.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + library(netresponse) + + # SINGLE MODE + + # Produce test data that has full covariance + # It is expected that + # pca.basis = FALSE splits Gaussian with full covariance into two modes + # pca.basis = TRUE should detect just a single mode + + Ns <- 200 + Nd <- 2 + k <- 1.5 + + D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1)) + + par(mfrow = c(2,2)) + for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D2, mixture.method = mm, pca.basis = pp) + plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:", pp)) + + } + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > proc.time() user system elapsed 2.42 0.20 2.61 |
netresponse.Rcheck/tests_x64/mixture.model.test.singlemode.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + library(netresponse) + + # SINGLE MODE + + # Produce test data that has full covariance + # It is expected that + # pca.basis = FALSE splits Gaussian with full covariance into two modes + # pca.basis = TRUE should detect just a single mode + + Ns <- 200 + Nd <- 2 + k <- 1.5 + + D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1)) + + par(mfrow = c(2,2)) + for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D2, mixture.method = mm, pca.basis = pp) + plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:", pp)) + + } + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > proc.time() user system elapsed 2.60 0.14 2.75 |
netresponse.Rcheck/tests_i386/timing.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Play with different options and check their effect on running times for bic and vdp > > skip <- TRUE > > if (!skip) { + + Ns <- 100 + Nd <- 2 + + set.seed(3488400) + + D <- cbind( + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ), + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ) + ) + + rownames(D) <- paste("R", 1:nrow(D), sep = "-") + colnames(D) <- paste("C", 1:ncol(D), sep = "-") + + ts <- c() + for (mm in c("bic", "vdp")) { + + + # NOTE: no PCA basis needed with mixture.method = "bic" + tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5, + mixture.method = mm, information.criterion = "BIC", + merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE)) + + print(paste(mm, ":", round(tt[["elapsed"]], 3))) + ts[[mm]] <- tt[["elapsed"]] + } + + print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3))) + + } > > # -> VDP is much faster when sample sizes increase > # 1000 samples -> 25-fold speedup with VDP > > > > proc.time() user system elapsed 0.15 0.03 0.17 |
netresponse.Rcheck/tests_x64/timing.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Play with different options and check their effect on running times for bic and vdp > > skip <- TRUE > > if (!skip) { + + Ns <- 100 + Nd <- 2 + + set.seed(3488400) + + D <- cbind( + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ), + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ) + ) + + rownames(D) <- paste("R", 1:nrow(D), sep = "-") + colnames(D) <- paste("C", 1:ncol(D), sep = "-") + + ts <- c() + for (mm in c("bic", "vdp")) { + + + # NOTE: no PCA basis needed with mixture.method = "bic" + tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5, + mixture.method = mm, information.criterion = "BIC", + merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE)) + + print(paste(mm, ":", round(tt[["elapsed"]], 3))) + ts[[mm]] <- tt[["elapsed"]] + } + + print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3))) + + } > > # -> VDP is much faster when sample sizes increase > # 1000 samples -> 25-fold speedup with VDP > > > > proc.time() user system elapsed 0.12 0.06 0.17 |
netresponse.Rcheck/tests_i386/toydata2.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > Ns <- 300 > Nd <- 2 > > # Isotropic cloud > D1 <- matrix(rnorm(Ns*Nd), ncol = Nd) > > # Single diagonal mode > D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1)) > > # Two isotropic modes > D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd)) > D <- cbind(D1, D2, D3) > > colnames(D) <- paste("Feature-", 1:ncol(D), sep = "") > rownames(D) <- paste("Sample-", 1:nrow(D), sep = "") > > > proc.time() user system elapsed 0.17 0.00 0.15 |
netresponse.Rcheck/tests_x64/toydata2.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > Ns <- 300 > Nd <- 2 > > # Isotropic cloud > D1 <- matrix(rnorm(Ns*Nd), ncol = Nd) > > # Single diagonal mode > D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1)) > > # Two isotropic modes > D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd)) > D <- cbind(D1, D2, D3) > > colnames(D) <- paste("Feature-", 1:ncol(D), sep = "") > rownames(D) <- paste("Sample-", 1:nrow(D), sep = "") > > > proc.time() user system elapsed 0.18 0.01 0.18 |
netresponse.Rcheck/tests_i386/validate.netresponse.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + # 2. netresponse test + # test later with varying parameters + + # Load the package + library(netresponse) + #load("../data/toydata.rda") + fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)}; + + data(toydata) + + D <- toydata$emat + netw <- toydata$netw + + # The toy data is random data with 10 features (genes). + # The features + rf <- c(4, 5, 6) + #form a subnetwork with coherent responses + # with means + r1 <- c(0, 3, 0) + r2 <- c(-5, 0, 2) + r3 <- c(5, -3, -3) + mu.real <- rbind(r1, r2, r3) + # real weights + w.real <- c(70, 70, 60)/200 + # and unit variances + rv <- 1 + + # Fit the model + #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2) + #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4) + + res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + print("OK") + + # Subnets (each is a list of nodes) + subnets <- get.subnets(res) + + # the correct subnet is retrieved in subnet number 2: + #> subnet[[2]] + #[1] "feat4" "feat5" "feat6" + + # how about responses + # Retrieve model for the subnetwork with lowest cost function value + # means, standard devations and weights for the components + if (!is.null(subnets)) { + m <- get.model.parameters(res, subnet.id = "Subnet-2") + + # order retrieved and real response means by the first feature + # (to ensure responses are listed in the same order) + # and compare deviation from correct solution + ord.obs <- order(m$mu[,1]) + ord.real <- order(mu.real[,1]) + + print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,])))) + + # all real variances are 1, compare to observed ones + print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv))) + + # weights deviate somewhat, this is likely due to relatively small sample size + #print("Maximum deviation from real weights: ") + #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real]) + + print("estimated and real mean matrices") + print(m$mu[ord.obs,]) + print(mu.real[ord.real,]) + + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 8 2 / 8 3 / 8 4 / 8 5 / 8 6 / 8 7 / 8 8 / 8 Compute cost for each variable Computing model for node 1 / 10 Computing model for node 2 / 10 Computing model for node 3 / 10 Computing model for node 4 / 10 Computing model for node 5 / 10 Computing model for node 6 / 10 Computing model for node 7 / 10 Computing model for node 8 / 10 Computing model for node 9 / 10 Computing model for node 10 / 10 independent models done Computing delta values for edge 1 / 29 Computing delta values for edge 2 / 29 Computing delta values for edge 3 / 29 Computing delta values for edge 4 / 29 Computing delta values for edge 5 / 29 Computing delta values for edge 6 / 29 Computing delta values for edge 7 / 29 Computing delta values for edge 8 / 29 Computing delta values for edge 9 / 29 Computing delta values for edge 10 / 29 Computing delta values for edge 11 / 29 Computing delta values for edge 12 / 29 Computing delta values for edge 13 / 29 Computing delta values for edge 14 / 29 Computing delta values for edge 15 / 29 Computing delta values for edge 16 / 29 Computing delta values for edge 17 / 29 Computing delta values for edge 18 / 29 Computing delta values for edge 19 / 29 Computing delta values for edge 20 / 29 Computing delta values for edge 21 / 29 Computing delta values for edge 22 / 29 Computing delta values for edge 23 / 29 Computing delta values for edge 24 / 29 Computing delta values for edge 25 / 29 Computing delta values for edge 26 / 29 Computing delta values for edge 27 / 29 Computing delta values for edge 28 / 29 Computing delta values for edge 29 / 29 Combining groups, 10 group(s) left... Combining groups, 9 group(s) left... Combining groups, 8 group(s) left... Combining groups, 7 group(s) left... Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... [1] "OK" [1] "Correlation between real and observed responses: 0.999117848017521" [1] "Maximum deviation from real variances: 0.0391530538149302" [1] "estimated and real mean matrices" [,1] [,2] [,3] [1,] -4.9334982 -0.1575946 2.1613225 [2,] -0.1299285 3.0047767 -0.1841669 [3,] 5.0738471 -2.9334877 -3.2217492 [,1] [,2] [,3] r2 -5 0 2 r1 0 3 0 r3 5 -3 -3 > > proc.time() user system elapsed 42.56 0.20 42.76 |
netresponse.Rcheck/tests_x64/validate.netresponse.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + # 2. netresponse test + # test later with varying parameters + + # Load the package + library(netresponse) + #load("../data/toydata.rda") + fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)}; + + data(toydata) + + D <- toydata$emat + netw <- toydata$netw + + # The toy data is random data with 10 features (genes). + # The features + rf <- c(4, 5, 6) + #form a subnetwork with coherent responses + # with means + r1 <- c(0, 3, 0) + r2 <- c(-5, 0, 2) + r3 <- c(5, -3, -3) + mu.real <- rbind(r1, r2, r3) + # real weights + w.real <- c(70, 70, 60)/200 + # and unit variances + rv <- 1 + + # Fit the model + #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2) + #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4) + + res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + print("OK") + + # Subnets (each is a list of nodes) + subnets <- get.subnets(res) + + # the correct subnet is retrieved in subnet number 2: + #> subnet[[2]] + #[1] "feat4" "feat5" "feat6" + + # how about responses + # Retrieve model for the subnetwork with lowest cost function value + # means, standard devations and weights for the components + if (!is.null(subnets)) { + m <- get.model.parameters(res, subnet.id = "Subnet-2") + + # order retrieved and real response means by the first feature + # (to ensure responses are listed in the same order) + # and compare deviation from correct solution + ord.obs <- order(m$mu[,1]) + ord.real <- order(mu.real[,1]) + + print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,])))) + + # all real variances are 1, compare to observed ones + print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv))) + + # weights deviate somewhat, this is likely due to relatively small sample size + #print("Maximum deviation from real weights: ") + #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real]) + + print("estimated and real mean matrices") + print(m$mu[ord.obs,]) + print(mu.real[ord.real,]) + + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 8 2 / 8 3 / 8 4 / 8 5 / 8 6 / 8 7 / 8 8 / 8 Compute cost for each variable Computing model for node 1 / 10 Computing model for node 2 / 10 Computing model for node 3 / 10 Computing model for node 4 / 10 Computing model for node 5 / 10 Computing model for node 6 / 10 Computing model for node 7 / 10 Computing model for node 8 / 10 Computing model for node 9 / 10 Computing model for node 10 / 10 independent models done Computing delta values for edge 1 / 29 Computing delta values for edge 2 / 29 Computing delta values for edge 3 / 29 Computing delta values for edge 4 / 29 Computing delta values for edge 5 / 29 Computing delta values for edge 6 / 29 Computing delta values for edge 7 / 29 Computing delta values for edge 8 / 29 Computing delta values for edge 9 / 29 Computing delta values for edge 10 / 29 Computing delta values for edge 11 / 29 Computing delta values for edge 12 / 29 Computing delta values for edge 13 / 29 Computing delta values for edge 14 / 29 Computing delta values for edge 15 / 29 Computing delta values for edge 16 / 29 Computing delta values for edge 17 / 29 Computing delta values for edge 18 / 29 Computing delta values for edge 19 / 29 Computing delta values for edge 20 / 29 Computing delta values for edge 21 / 29 Computing delta values for edge 22 / 29 Computing delta values for edge 23 / 29 Computing delta values for edge 24 / 29 Computing delta values for edge 25 / 29 Computing delta values for edge 26 / 29 Computing delta values for edge 27 / 29 Computing delta values for edge 28 / 29 Computing delta values for edge 29 / 29 Combining groups, 10 group(s) left... Combining groups, 9 group(s) left... Combining groups, 8 group(s) left... Combining groups, 7 group(s) left... Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... [1] "OK" [1] "Correlation between real and observed responses: 0.999117848017521" [1] "Maximum deviation from real variances: 0.0391530538149302" [1] "estimated and real mean matrices" [,1] [,2] [,3] [1,] -4.9334982 -0.1575946 2.1613225 [2,] -0.1299285 3.0047767 -0.1841669 [3,] 5.0738471 -2.9334877 -3.2217492 [,1] [,2] [,3] r2 -5 0 2 r1 0 3 0 r3 5 -3 -3 > > proc.time() user system elapsed 40.48 0.10 40.59 |
netresponse.Rcheck/tests_i386/validate.pca.basis.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + # Visualization + + library(netresponse) + + #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)} + + source("toydata2.R") + + # -------------------------------------------------------------------- + + set.seed(4243) + mixture.method <- "bic" + + # -------------------------------------------------------------------- + + res <- detect.responses(D, verbose = TRUE, max.responses = 10, + mixture.method = mixture.method, information.criterion = "BIC", + merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE) + + # -------------------------------------------------------------------- + + k <- 1 + + # Incorrect VDP: two modes detected + # Correct BIC: single mode detected + subnet.id <- names(get.subnets(res))[[k]] + + # Correct: single mode detected (VDP & BIC) + subnet.id.pca <- names(get.subnets(res.pca))[[k]] + + # -------------------------------------------------------------------------------------------------- + + vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM")) + vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM") + vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM") + vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM") + + # With original data: VDP overlearns; BIC works; with full covariance data + # With PCA basis: modes detected ok with both VDP and BIC. + + # ------------------------------------------------------------------------ + + # TODO + # pca.plot(res, subnet.id) + # plot_subnet(res, subnet.id) + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... Warning messages: 1: In check.network(network, datamatrix, verbose = verbose) : No network provided in function call: assuming fully connected nodes. 2: In check.network(network, datamatrix, verbose = verbose) : No network provided in function call: assuming fully connected nodes. > > proc.time() user system elapsed 28.64 0.28 28.90 |
netresponse.Rcheck/tests_x64/validate.pca.basis.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + # Visualization + + library(netresponse) + + #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)} + + source("toydata2.R") + + # -------------------------------------------------------------------- + + set.seed(4243) + mixture.method <- "bic" + + # -------------------------------------------------------------------- + + res <- detect.responses(D, verbose = TRUE, max.responses = 10, + mixture.method = mixture.method, information.criterion = "BIC", + merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE) + + # -------------------------------------------------------------------- + + k <- 1 + + # Incorrect VDP: two modes detected + # Correct BIC: single mode detected + subnet.id <- names(get.subnets(res))[[k]] + + # Correct: single mode detected (VDP & BIC) + subnet.id.pca <- names(get.subnets(res.pca))[[k]] + + # -------------------------------------------------------------------------------------------------- + + vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM")) + vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM") + vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM") + vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM") + + # With original data: VDP overlearns; BIC works; with full covariance data + # With PCA basis: modes detected ok with both VDP and BIC. + + # ------------------------------------------------------------------------ + + # TODO + # pca.plot(res, subnet.id) + # plot_subnet(res, subnet.id) + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... Warning messages: 1: In check.network(network, datamatrix, verbose = verbose) : No network provided in function call: assuming fully connected nodes. 2: In check.network(network, datamatrix, verbose = verbose) : No network provided in function call: assuming fully connected nodes. > > proc.time() user system elapsed 23.64 0.25 23.89 |
netresponse.Rcheck/tests_i386/vdpmixture.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("˜/Rpackages/netresponse/netresponse/R/internals.R") > #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > > ######### Generate DATA ############################################# > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > # Fit nonparametric Gaussian mixture model > out <- vdp.mixt(D) > # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$posterior$centroids[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$posterior$centroids[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$posterior$sds[ord.out,] > sds.in <- component.sds[ord.in,] > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > > > proc.time() user system elapsed 2.31 0.07 2.37 |
netresponse.Rcheck/tests_x64/vdpmixture.Rout R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.3 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("˜/Rpackages/netresponse/netresponse/R/internals.R") > #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > > ######### Generate DATA ############################################# > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > # Fit nonparametric Gaussian mixture model > out <- vdp.mixt(D) > # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$posterior$centroids[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$posterior$centroids[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$posterior$sds[ord.out,] > sds.in <- component.sds[ord.in,] > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > > > proc.time() user system elapsed 2.14 0.21 2.34 |
netresponse.Rcheck/examples_i386/netresponse-Ex.timings
|
netresponse.Rcheck/examples_x64/netresponse-Ex.timings
|