| Back to Multiple platform build/check report for BioC 3.9 |
|
This page was generated on 2019-10-16 12:20:45 -0400 (Wed, 16 Oct 2019).
| Package 73/1741 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
| aroma.light 3.14.0 Henrik Bengtsson
| malbec2 | Linux (Ubuntu 18.04.2 LTS) / x86_64 | OK | OK | OK | |||||||
| tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ OK ] | OK | |||||||
| celaya2 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK |
| Package: aroma.light |
| Version: 3.14.0 |
| Command: C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:aroma.light.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings aroma.light_3.14.0.tar.gz |
| StartedAt: 2019-10-16 01:56:56 -0400 (Wed, 16 Oct 2019) |
| EndedAt: 2019-10-16 01:59:31 -0400 (Wed, 16 Oct 2019) |
| EllapsedTime: 155.1 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: aroma.light.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:aroma.light.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings aroma.light_3.14.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'C:/Users/biocbuild/bbs-3.9-bioc/meat/aroma.light.Rcheck'
* using R version 3.6.1 (2019-07-05)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'aroma.light/DESCRIPTION' ... OK
* this is package 'aroma.light' version '3.14.0'
* package encoding: latin1
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... NOTE
Found the following hidden files and directories:
inst/rsp/.rspPlugins
These were most likely included in error. See section 'Package
structure' in the 'Writing R Extensions' manual.
* checking for portable file names ... OK
* checking whether package 'aroma.light' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
Examples with CPU or elapsed time > 5s
user system elapsed
normalizeAffine 8.18 0.02 8.39
normalizeCurveFit 8.11 0.03 8.15
** running examples for arch 'x64' ... OK
Examples with CPU or elapsed time > 5s
user system elapsed
normalizeAffine 8.02 0.03 8.05
normalizeCurveFit 7.59 0.00 7.59
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
Running 'backtransformAffine.matrix.R'
Running 'backtransformPrincipalCurve.matrix.R'
Running 'callNaiveGenotypes.R'
Running 'distanceBetweenLines.R'
Running 'findPeaksAndValleys.R'
Running 'fitPrincipalCurve.matrix.R'
Running 'fitXYCurve.matrix.R'
Running 'iwpca.matrix.R'
Running 'likelihood.smooth.spline.R'
Running 'medianPolish.matrix.R'
Running 'normalizeAffine.matrix.R'
Running 'normalizeAverage.list.R'
Running 'normalizeAverage.matrix.R'
Running 'normalizeCurveFit.matrix.R'
Running 'normalizeDifferencesToAverage.R'
Running 'normalizeFragmentLength-ex1.R'
Running 'normalizeFragmentLength-ex2.R'
Running 'normalizeQuantileRank.list.R'
Running 'normalizeQuantileRank.matrix.R'
Running 'normalizeQuantileSpline.matrix.R'
Running 'normalizeTumorBoost,flavors.R'
Running 'normalizeTumorBoost.R'
Running 'robustSmoothSpline.R'
Running 'rowAverages.matrix.R'
Running 'sampleCorrelations.matrix.R'
Running 'sampleTuples.R'
Running 'wpca.matrix.R'
Running 'wpca2.matrix.R'
OK
** running tests for arch 'x64' ...
Running 'backtransformAffine.matrix.R'
Running 'backtransformPrincipalCurve.matrix.R'
Running 'callNaiveGenotypes.R'
Running 'distanceBetweenLines.R'
Running 'findPeaksAndValleys.R'
Running 'fitPrincipalCurve.matrix.R'
Running 'fitXYCurve.matrix.R'
Running 'iwpca.matrix.R'
Running 'likelihood.smooth.spline.R'
Running 'medianPolish.matrix.R'
Running 'normalizeAffine.matrix.R'
Running 'normalizeAverage.list.R'
Running 'normalizeAverage.matrix.R'
Running 'normalizeCurveFit.matrix.R'
Running 'normalizeDifferencesToAverage.R'
Running 'normalizeFragmentLength-ex1.R'
Running 'normalizeFragmentLength-ex2.R'
Running 'normalizeQuantileRank.list.R'
Running 'normalizeQuantileRank.matrix.R'
Running 'normalizeQuantileSpline.matrix.R'
Running 'normalizeTumorBoost,flavors.R'
Running 'normalizeTumorBoost.R'
Running 'robustSmoothSpline.R'
Running 'rowAverages.matrix.R'
Running 'sampleCorrelations.matrix.R'
Running 'sampleTuples.R'
Running 'wpca.matrix.R'
Running 'wpca2.matrix.R'
OK
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
'C:/Users/biocbuild/bbs-3.9-bioc/meat/aroma.light.Rcheck/00check.log'
for details.
aroma.light.Rcheck/00install.out
##############################################################################
##############################################################################
###
### Running command:
###
### C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.9/bioc/src/contrib/aroma.light_3.14.0.tar.gz && rm -rf aroma.light.buildbin-libdir && mkdir aroma.light.buildbin-libdir && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=aroma.light.buildbin-libdir aroma.light_3.14.0.tar.gz && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL aroma.light_3.14.0.zip && rm aroma.light_3.14.0.tar.gz aroma.light_3.14.0.zip
###
##############################################################################
##############################################################################
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 405k 100 405k 0 0 5553k 0 --:--:-- --:--:-- --:--:-- 6047k
install for i386
* installing *source* package 'aroma.light' ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package 'aroma.light'
finding HTML links ... done
1._Calibration_and_Normalization html
Non-documented_objects html
aroma.light-package html
averageQuantile html
backtransformAffine html
backtransformPrincipalCurve html
calibrateMultiscan html
callNaiveGenotypes html
distanceBetweenLines html
findPeaksAndValleys html
fitIWPCA html
fitNaiveGenotypes html
fitPrincipalCurve html
fitXYCurve html
iwpca html
likelihood.smooth.spline html
medianPolish html
normalizeAffine html
normalizeAverage html
normalizeCurveFit html
normalizeDifferencesToAverage html
normalizeFragmentLength html
normalizeQuantileRank html
normalizeQuantileRank.matrix html
normalizeQuantileSpline html
normalizeTumorBoost html
pairedAlleleSpecificCopyNumbers html
plotDensity html
plotMvsA html
plotMvsAPairs html
plotMvsMPairs html
plotXYCurve html
print.SmoothSplineLikelihood html
robustSmoothSpline html
sampleCorrelations html
sampleTuples html
wpca html
** building package indices
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
install for x64
* installing *source* package 'aroma.light' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'aroma.light' as aroma.light_3.14.0.zip
* DONE (aroma.light)
* installing to library 'C:/Users/biocbuild/bbs-3.9-bioc/R/library'
package 'aroma.light' successfully unpacked and MD5 sums checked
|
aroma.light.Rcheck/tests_i386/backtransformAffine.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
>
> print(X)
[,1] [,2]
[1,] 1 5
[2,] 2 NA
[3,] 3 7
[4,] 4 8
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
[,1] [,2]
[1,] 0 0
[2,] 1 NA
[3,] 2 2
[4,] 3 3
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
[,1] [,2]
[1,] 1 10
[2,] 2 NA
[3,] 3 14
[4,] 4 16
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 0 4
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 3 7
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
[,1] [,2]
[1,] 0 2
[2,] 0 NA
[3,] 2 3
[4,] 2 3
>
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
[,1]
[1,] 2.8
[2,] 1.6
[3,] 5.2
[4,] 6.4
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
[4,] 4 8 12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
> proc.time()
user system elapsed
0.31 0.10 0.40
|
aroma.light.Rcheck/tests_x64/backtransformAffine.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
>
> print(X)
[,1] [,2]
[1,] 1 5
[2,] 2 NA
[3,] 3 7
[4,] 4 8
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
[,1] [,2]
[1,] 0 0
[2,] 1 NA
[3,] 2 2
[4,] 3 3
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
[,1] [,2]
[1,] 1 10
[2,] 2 NA
[3,] 3 14
[4,] 4 16
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 0 4
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 3 7
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
[,1] [,2]
[1,] 0 2
[2,] 0 NA
[3,] 2 3
[4,] 2 3
>
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
[,1]
[1,] 2.8
[2,] 1.6
[3,] 5.2
[4,] 6.4
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
[4,] 4 8 12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
> proc.time()
user system elapsed
0.50 0.06 0.54
|
|
aroma.light.Rcheck/tests_i386/backtransformPrincipalCurve.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'. The different measurements
> # have different systematic variation
> #
> # y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> # f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
>
> # Transforms
> a <- c(2, 15, 15, 3)
> b <- c(2, 3, 3, 4)
> c <- c(1, 2, 2, 1/2)
> K <- length(a)
>
> # The true signal
> N <- 1000
> x <- rexp(N)
>
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
>
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
>
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
> L <- ncol(fit$s)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
>
>
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
>
>
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
>
>
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+ YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
>
>
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
>
>
> # Extract signals from measurement #2 and backtransform according
> # its model fit. Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+ targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
>
>
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+ targetDimension=1)
> stopifnot(ncol(yN7) == 1)
>
> rho <- cor(yN7, yN6)
> print(rho)
[,1]
[1,] 0.9999891
> stopifnot(rho > 0.999)
>
> proc.time()
user system elapsed
1.09 0.10 1.18
|
aroma.light.Rcheck/tests_x64/backtransformPrincipalCurve.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'. The different measurements
> # have different systematic variation
> #
> # y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> # f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
>
> # Transforms
> a <- c(2, 15, 15, 3)
> b <- c(2, 3, 3, 4)
> c <- c(1, 2, 2, 1/2)
> K <- length(a)
>
> # The true signal
> N <- 1000
> x <- rexp(N)
>
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
>
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
>
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
> L <- ncol(fit$s)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
>
>
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
>
>
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
>
>
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+ YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
>
>
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
>
>
> # Extract signals from measurement #2 and backtransform according
> # its model fit. Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+ targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
>
>
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+ targetDimension=1)
> stopifnot(ncol(yN7) == 1)
>
> rho <- cor(yN7, yN6)
> print(rho)
[,1]
[1,] 0.9999934
> stopifnot(rho > 0.999)
>
> proc.time()
user system elapsed
1.18 0.07 1.26
|
|
aroma.light.Rcheck/tests_i386/callNaiveGenotypes.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.001780633 1.6879330126
2 valley 0.494667262 0.0006114636
3 peak 0.995322342 1.6812593074
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
Fitting naive genotype model...
Fitting naive genotype model from normal allele B fractions (BAFs)...
Flavor: density
Censoring BAFs...
Before:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.388233 0.002001 0.475223 0.501305 1.001292 1.381775
[1] 20000
After:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 0.002001 0.475223 1.001292 Inf
[1] 16795
Censoring BAFs...done
Copy number level #1 (C=1) of 1...
Identified extreme points in density of BAF:
type x density
1 peak 0.01472964 1.647761848
2 valley 0.49827444 0.004179272
3 peak 0.97838985 1.631831531
Local minimas ("valleys") in BAF:
type x density
2 valley 0.4982744 0.004179272
Copy number level #1 (C=1) of 1...done
Fitting naive genotype model from normal allele B fractions (BAFs)...done
[[1]]
[[1]]$flavor
[1] "density"
[[1]]$cn
[1] 1
[[1]]$nbrOfGenotypeGroups
[1] 2
[[1]]$tau
[1] 0.4982744
[[1]]$n
[1] 16795
[[1]]$fit
type x density
1 peak 0.01472964 1.647761848
2 valley 0.49827444 0.004179272
3 peak 0.97838985 1.631831531
[[1]]$fitValleys
type x density
2 valley 0.4982744 0.004179272
attr(,"class")
[1] "NaiveGenotypeModelFit" "list"
Fitting naive genotype model...done
Copy number level #1 (C=1) of 1...
Model fit:
$flavor
[1] "density"
$cn
[1] 1
$nbrOfGenotypeGroups
[1] 2
$tau
[1] 0.4982744
$n
[1] 16795
$fit
type x density
1 peak 0.01472964 1.647761848
2 valley 0.49827444 0.004179272
3 peak 0.97838985 1.631831531
$fitValleys
type x density
2 valley 0.4982744 0.004179272
Genotype threshholds [1]: 0.498274441633835
TCN=1 => BAF in {0,1}.
Call regions: A = (-Inf,0.498], B = (0.498,+Inf)
Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
0 1
10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.001817719 1.1731469
2 valley 0.248485856 0.1746931
3 peak 0.494752277 1.1926380
4 valley 0.745055853 0.1837706
5 peak 0.995359428 1.1656866
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
9613 9286 9626
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.003256006 2.605006e+00
2 valley 0.248948788 3.005327e-05
3 peak 0.498319821 2.613274e+00
4 valley 0.747690853 3.239284e-05
5 peak 0.997061886 2.608985e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
10000 10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.71 0.04 0.75
|
aroma.light.Rcheck/tests_x64/callNaiveGenotypes.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.003638507 1.6720105489
2 valley 0.499248553 0.0003923961
3 peak 0.993823431 1.6765829721
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
Fitting naive genotype model...
Fitting naive genotype model from normal allele B fractions (BAFs)...
Flavor: density
Censoring BAFs...
Before:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.391453 -0.001244 0.516343 0.499356 0.998811 1.352545
[1] 20000
After:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf -0.001244 0.516343 0.998811 Inf
[1] 16807
Censoring BAFs...done
Copy number level #1 (C=1) of 1...
Identified extreme points in density of BAF:
type x density
1 peak 0.01143615 1.624987719
2 valley 0.49833309 0.004264429
3 peak 0.97837233 1.636607636
Local minimas ("valleys") in BAF:
type x density
2 valley 0.4983331 0.004264429
Copy number level #1 (C=1) of 1...done
Fitting naive genotype model from normal allele B fractions (BAFs)...done
[[1]]
[[1]]$flavor
[1] "density"
[[1]]$cn
[1] 1
[[1]]$nbrOfGenotypeGroups
[1] 2
[[1]]$tau
[1] 0.4983331
[[1]]$n
[1] 16807
[[1]]$fit
type x density
1 peak 0.01143615 1.624987719
2 valley 0.49833309 0.004264429
3 peak 0.97837233 1.636607636
[[1]]$fitValleys
type x density
2 valley 0.4983331 0.004264429
attr(,"class")
[1] "NaiveGenotypeModelFit" "list"
Fitting naive genotype model...done
Copy number level #1 (C=1) of 1...
Model fit:
$flavor
[1] "density"
$cn
[1] 1
$nbrOfGenotypeGroups
[1] 2
$tau
[1] 0.4983331
$n
[1] 16807
$fit
type x density
1 peak 0.01143615 1.624987719
2 valley 0.49833309 0.004264429
3 peak 0.97837233 1.636607636
$fitValleys
type x density
2 valley 0.4983331 0.004264429
Genotype threshholds [1]: 0.498333089581162
TCN=1 => BAF in {0,1}.
Call regions: A = (-Inf,0.498], B = (0.498,+Inf)
Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
0 1
10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.004909237 1.1616355
2 valley 0.245080480 0.1902442
3 peak 0.495070198 1.1838120
4 valley 0.745059915 0.1908361
5 peak 0.995049633 1.1672421
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
9569 9324 9646
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.002208999 2.611818e+00
2 valley 0.246806417 3.036316e-05
3 peak 0.498619759 2.614973e+00
4 valley 0.747635175 3.099216e-05
5 peak 0.996650591 2.604409e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
10000 10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.81 0.07 0.87
|
|
aroma.light.Rcheck/tests_i386/distanceBetweenLines.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+
+ lines(xv, col="red")
+ lines(yv, col="blue")
+
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+
+
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+
+ for (theta in seq(30,140,length.out=3)) {
+ plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+ xlim=ylim, ylim=ylim, zlim=zlim)
+
+ # Highlight the offset coordinates for both lines
+ points3d(t(x$a), pch="+", col="red")
+ text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points3d(t(y$a), pch="+", col="blue")
+ text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ # Draw the lines
+ lines3d(xv, col="red")
+ lines3d(yv, col="blue")
+
+ # Draw the two points that are closest to each other
+ points3d(t(fit$xs), cex=2.0, col="red")
+ text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points3d(t(fit$yt), cex=1.5, col="blue")
+ text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+
+ # Draw the distance between the two points
+ lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+
+ print(fit)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.51 0.04 0.54
|
aroma.light.Rcheck/tests_x64/distanceBetweenLines.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+
+ lines(xv, col="red")
+ lines(yv, col="blue")
+
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+
+
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+
+ for (theta in seq(30,140,length.out=3)) {
+ plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+ xlim=ylim, ylim=ylim, zlim=zlim)
+
+ # Highlight the offset coordinates for both lines
+ points3d(t(x$a), pch="+", col="red")
+ text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points3d(t(y$a), pch="+", col="blue")
+ text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ # Draw the lines
+ lines3d(xv, col="red")
+ lines3d(yv, col="blue")
+
+ # Draw the two points that are closest to each other
+ points3d(t(fit$xs), cex=2.0, col="red")
+ text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points3d(t(fit$yt), cex=1.5, col="blue")
+ text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+
+ # Draw the distance between the two points
+ lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+
+ print(fit)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.46 0.04 0.50
|
|
aroma.light.Rcheck/tests_i386/findPeaksAndValleys.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -3.86267762 0.0003136305
2 valley -3.84678360 0.0003138220
3 peak -3.35406908 0.0015826569
4 valley -3.17923489 0.0012870000
5 peak 0.07903857 0.4067008142
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.03285122 0.12502203
2 valley 1.94745972 0.04334937
3 peak 3.99849605 0.12340752
4 valley 5.94344429 0.04214441
5 peak 7.95911792 0.12542638
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
>
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
type x density
1 peak -0.02244701 3.423488e-01
2 valley 1.98639135 1.167303e-06
3 peak 3.97362929 3.422356e-01
4 valley 5.98246765 1.205161e-06
5 peak 7.96970559 3.419999e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.43 0.10 0.51
|
aroma.light.Rcheck/tests_x64/findPeaksAndValleys.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.2073462 0.3954706
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.08535652 0.12327447
2 valley 1.95951698 0.04368914
3 peak 3.96913405 0.12469564
4 valley 5.97875112 0.04323810
5 peak 7.95311174 0.12561156
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
>
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
type x density
1 peak -0.01431271 3.429545e-01
2 valley 1.96860764 1.280662e-06
3 peak 3.97308148 3.422583e-01
4 valley 5.97755531 1.195565e-06
5 peak 7.98202914 3.428725e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.59 0.03 0.61
|
|
aroma.light.Rcheck/tests_i386/fitPrincipalCurve.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
>
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
Data size: 1000x3
Identifying missing values...
Identifying missing values...done
Data size after removing non-finite data points: 1000x3
Calling principal_curve()...
Starting curve---distance^2: 2032124
Iteration 1---distance^2: 394.8302
Iteration 2---distance^2: 393.3458
Iteration 3---distance^2: 393.3205
Converged: TRUE
Number of iterations: 3
Processing time/iteration: 0.2s (0.1s/iteration)
Calling principal_curve()...done
Fitting principal curve...done
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
>
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
>
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+ yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
>
>
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
>
>
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+ ylab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+ abline(h=a[cc], lty=3)
+ mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+ cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+ points(x, y[,cc])
+ points(x, yN[,cc], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
>
>
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+ ylab <- substitute(y[c], env=list(c=rr))
+ for (cc in 1:2) {
+ if (cc == rr) {
+ plot.new()
+ next
+ }
+ xlab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+ abline(a=0, b=1, lty=2)
+ points(y[,c(cc,rr)])
+ points(yN[,c(cc,rr)], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
>
> proc.time()
user system elapsed
0.93 0.06 0.98
|
aroma.light.Rcheck/tests_x64/fitPrincipalCurve.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
>
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
Data size: 1000x3
Identifying missing values...
Identifying missing values...done
Data size after removing non-finite data points: 1000x3
Calling principal_curve()...
Starting curve---distance^2: 1708677
Iteration 1---distance^2: 337.439
Iteration 2---distance^2: 337.0041
Iteration 3---distance^2: 337.0084
Converged: TRUE
Number of iterations: 3
Processing time/iteration: 0.2s (0.1s/iteration)
Calling principal_curve()...done
Fitting principal curve...done
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
>
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
>
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+ yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
>
>
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
>
>
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+ ylab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+ abline(h=a[cc], lty=3)
+ mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+ cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+ points(x, y[,cc])
+ points(x, yN[,cc], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
>
>
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+ ylab <- substitute(y[c], env=list(c=rr))
+ for (cc in 1:2) {
+ if (cc == rr) {
+ plot.new()
+ next
+ }
+ xlab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+ abline(a=0, b=1, lty=2)
+ points(y[,c(cc,rr)])
+ points(yN[,c(cc,rr)], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
>
> proc.time()
user system elapsed
1.06 0.09 1.15
|
|
aroma.light.Rcheck/tests_i386/fitXYCurve.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
>
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
>
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
>
> lines(fit, col="red", lwd=2)
>
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
>
> proc.time()
user system elapsed
0.57 0.10 0.67
|
aroma.light.Rcheck/tests_x64/fitXYCurve.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
>
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
>
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
>
> lines(fit, col="red", lwd=2)
>
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
>
> proc.time()
user system elapsed
0.54 0.03 0.56
|
|
aroma.light.Rcheck/tests_i386/iwpca.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+ # Plot the data
+ persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+ # Fit a line using IWPCA through data
+ fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ for (kk in seq_along(theta)) {
+ # Set pane to draw in
+ par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+ # Set the viewpoint of the pane
+ options(persp.matrix=persp[[kk]])
+
+ # Get the first principal component
+ points3d(t(ymid), col=col[ii])
+ lines3d(t(yline), col=col[ii])
+
+ # Highlight the last one
+ if (ii == length(maxIter))
+ lines3d(t(yline), col="red", lwd=3)
+ }
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.48 0.04 0.51
|
aroma.light.Rcheck/tests_x64/iwpca.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+ # Plot the data
+ persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+ # Fit a line using IWPCA through data
+ fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ for (kk in seq_along(theta)) {
+ # Set pane to draw in
+ par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+ # Set the viewpoint of the pane
+ options(persp.matrix=persp[[kk]])
+
+ # Get the first principal component
+ points3d(t(ymid), col=col[ii])
+ lines3d(t(yline), col=col[ii])
+
+ # Highlight the last one
+ if (ii == length(maxIter))
+ lines3d(t(yline), col="red", lwd=3)
+ }
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.54 0.06 0.59
|
|
aroma.light.Rcheck/tests_i386/likelihood.smooth.spline.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
>
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
>
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
>
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
>
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
>
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
>
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -297063.2
Log base: 2.718282
Weighted residuals sum of square: 297063.3
Penalty: -0.1196028
Smoothing parameter lambda: 0.0009257147
Roughness score: 129.2005
>
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1] # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
>
> cat("\nLog likelihood of the *spline* data set:\n")
Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -296915.9
Log base: 2.718282
Weighted residuals sum of square: 296916.1
Penalty: -0.1196463
Smoothing parameter lambda: 0.0009261969
Roughness score: 129.1802
>
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")
Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -297060.8
Log base: 2.718282
Weighted residuals sum of square: 297061
Penalty: -0.1196462
Smoothing parameter lambda: 0.0009261969
Roughness score: 129.1801
>
>
>
>
>
>
> proc.time()
user system elapsed
0.37 0.03 0.39
|
aroma.light.Rcheck/tests_x64/likelihood.smooth.spline.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
>
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
>
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
>
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
>
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
>
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
>
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -291757.4
Log base: 2.718282
Weighted residuals sum of square: 291757.5
Penalty: -0.1169683
Smoothing parameter lambda: 0.0009257147
Roughness score: 126.3546
>
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1] # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
>
> cat("\nLog likelihood of the *spline* data set:\n")
Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -291004.1
Log base: 2.718282
Weighted residuals sum of square: 291004.2
Penalty: -0.1168534
Smoothing parameter lambda: 0.0009261969
Roughness score: 126.1648
>
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")
Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -291764.7
Log base: 2.718282
Weighted residuals sum of square: 291764.8
Penalty: -0.1168537
Smoothing parameter lambda: 0.0009261969
Roughness score: 126.1651
>
>
>
>
>
>
> proc.time()
user system elapsed
0.60 0.09 0.70
|
|
aroma.light.Rcheck/tests_i386/medianPolish.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Deaths from sport parachuting; from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
>
> print(deaths)
1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200++ 15 9 10
NA 0 2 0
>
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)
Median Polish Results (Dataset: "deaths")
Overall: 8
Row Effects:
1-24 25-74 75-199 200++ NA
6 -1 0 2 -8
Column Effects:
1973 1974 1975
0 -1 0
Residuals:
1973 1974 1975
1-24 0 2 0
25-74 0 -2 0
75-199 0 -5 2
200++ 5 0 0
NA 0 3 0
>
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
>
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
>
> proc.time()
user system elapsed
0.40 0.03 0.42
|
aroma.light.Rcheck/tests_x64/medianPolish.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Deaths from sport parachuting; from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
>
> print(deaths)
1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200++ 15 9 10
NA 0 2 0
>
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)
Median Polish Results (Dataset: "deaths")
Overall: 8
Row Effects:
1-24 25-74 75-199 200++ NA
6 -1 0 2 -8
Column Effects:
1973 1974 1975
0 -1 0
Residuals:
1973 1974 1975
1-24 0 2 0
25-74 0 -2 0
75-199 0 -5 2
200++ 5 0 0
NA 0 3 0
>
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
>
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
>
> proc.time()
user system elapsed
0.40 0.06 0.45
|
|
aroma.light.Rcheck/tests_i386/normalizeAffine.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> rgC <- rg
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg, channel=channel)
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC, channel=channel)
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
>
> plotMvsA(rgCA)
> title(main="Average calibrated")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
>
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
>
>
>
> proc.time()
user system elapsed
3.43 0.04 3.46
|
aroma.light.Rcheck/tests_x64/normalizeAffine.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> rgC <- rg
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg, channel=channel)
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC, channel=channel)
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
>
> plotMvsA(rgCA)
> title(main="Average calibrated")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
>
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
>
>
>
> proc.time()
user system elapsed
2.95 0.09 3.03
|
|
aroma.light.Rcheck/tests_i386/normalizeAverage.list.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.57 0.04 0.60
|
aroma.light.Rcheck/tests_x64/normalizeAverage.list.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.68 0.03 0.70
|
|
aroma.light.Rcheck/tests_i386/normalizeAverage.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.54 0.01 0.53
|
aroma.light.Rcheck/tests_x64/normalizeAverage.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.45 0.06 0.50
|
|
aroma.light.Rcheck/tests_i386/normalizeCurveFit.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> rgC <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg[,sidx])
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC[,sidx])
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
>
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
>
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
>
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
>
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
>
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
>
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
>
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
>
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+ col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+ col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> proc.time()
user system elapsed
7.68 0.12 7.79
|
aroma.light.Rcheck/tests_x64/normalizeCurveFit.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> rgC <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg[,sidx])
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC[,sidx])
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
>
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
>
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
>
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
>
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
>
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
>
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
>
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
>
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+ col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+ col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> proc.time()
user system elapsed
8.90 0.17 9.06
|
|
aroma.light.Rcheck/tests_i386/normalizeDifferencesToAverage.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
>
> yy <- list(
+ A = rnorm(ns["A"], mean=0, sd=0.5),
+ B = rnorm(ns["B"], mean=5, sd=0.4),
+ C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+ n <- length(y)
+ y[1:(n/2)] <- y[1:(n/2)] + 2
+ y[1:(n/4)] <- y[1:(n/4)] - 4
+ y
+ })
>
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
>
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
>
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
>
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
>
> proc.time()
user system elapsed
0.68 0.01 0.68
|
aroma.light.Rcheck/tests_x64/normalizeDifferencesToAverage.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
>
> yy <- list(
+ A = rnorm(ns["A"], mean=0, sd=0.5),
+ B = rnorm(ns["B"], mean=5, sd=0.4),
+ C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+ n <- length(y)
+ y[1:(n/2)] <- y[1:(n/2)] + 2
+ y[1:(n/4)] <- y[1:(n/4)] - 4
+ y
+ })
>
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
>
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
>
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
>
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
>
> proc.time()
user system elapsed
0.57 0.06 0.62
|
|
aroma.light.Rcheck/tests_i386/normalizeFragmentLength-ex1.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
>
> # Number of loci
> J <- 1000
>
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
>
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
>
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- function(fl) {
+ mu <- rep(maxY, length(fl))
+ ok <- !is.na(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+ eps <- rnorm(J, mean=0, sd=1)
+ y[,kk] <- mu(fl) + eps
+ }
>
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+ normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
>
> # The correction factors
> rho <- y-yN
> print(summary(rho))
V1 V2 V3 V4
Min. :6.235 Min. :2.961 Min. :6.241 Min. :7.337
1st Qu.:6.564 1st Qu.:3.744 1st Qu.:6.739 1st Qu.:7.745
Median :7.013 Median :4.593 Median :7.225 Median :8.138
Mean :7.133 Mean :4.793 Mean :7.302 Mean :8.163
3rd Qu.:7.664 3rd Qu.:5.777 3rd Qu.:7.833 3rd Qu.:8.578
Max. :8.433 Max. :7.293 Max. :8.634 Max. :9.062
V5 V6 V7 V8
Min. :7.359 Min. :7.810 Min. :5.406 Min. :2.316
1st Qu.:7.720 1st Qu.:8.000 1st Qu.:5.891 1st Qu.:3.109
Median :8.051 Median :8.293 Median :6.430 Median :4.048
Mean :8.085 Mean :8.366 Mean :6.548 Mean :4.292
3rd Qu.:8.429 3rd Qu.:8.694 3rd Qu.:7.164 3rd Qu.:5.411
Max. :8.966 Max. :9.212 Max. :8.103 Max. :7.058
V9
Min. :1.921
1st Qu.:2.883
Median :3.907
Mean :4.107
3rd Qu.:5.267
Max. :6.986
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
V1 V2 V3 V4
Min. :7.013 Min. :4.593 Min. :7.225 Min. :8.138
1st Qu.:7.013 1st Qu.:4.593 1st Qu.:7.225 1st Qu.:8.138
Median :7.013 Median :4.593 Median :7.225 Median :8.138
Mean :7.013 Mean :4.593 Mean :7.225 Mean :8.138
3rd Qu.:7.013 3rd Qu.:4.593 3rd Qu.:7.225 3rd Qu.:8.138
Max. :7.013 Max. :4.593 Max. :7.225 Max. :8.138
V5 V6 V7 V8 V9
Min. :8.051 Min. :8.293 Min. :6.43 Min. :4.048 Min. :3.907
1st Qu.:8.051 1st Qu.:8.293 1st Qu.:6.43 1st Qu.:4.048 1st Qu.:3.907
Median :8.051 Median :8.293 Median :6.43 Median :4.048 Median :3.907
Mean :8.051 Mean :8.293 Mean :6.43 Mean :4.048 Mean :3.907
3rd Qu.:8.051 3rd Qu.:8.293 3rd Qu.:6.43 3rd Qu.:4.048 3rd Qu.:3.907
Max. :8.051 Max. :8.293 Max. :6.43 Max. :4.048 Max. :3.907
>
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+ plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
>
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+ plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
>
> proc.time()
user system elapsed
0.90 0.07 0.95
|
aroma.light.Rcheck/tests_x64/normalizeFragmentLength-ex1.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
>
> # Number of loci
> J <- 1000
>
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
>
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
>
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- function(fl) {
+ mu <- rep(maxY, length(fl))
+ ok <- !is.na(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+ eps <- rnorm(J, mean=0, sd=1)
+ y[,kk] <- mu(fl) + eps
+ }
>
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+ normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
>
> # The correction factors
> rho <- y-yN
> print(summary(rho))
V1 V2 V3 V4
Min. :7.565 Min. :7.290 Min. :7.594 Min. :6.832
1st Qu.:7.784 1st Qu.:7.627 1st Qu.:7.821 1st Qu.:7.120
Median :8.079 Median :7.972 Median :8.106 Median :7.495
Mean :8.150 Mean :8.067 Mean :8.228 Mean :7.640
3rd Qu.:8.500 3rd Qu.:8.477 3rd Qu.:8.602 3rd Qu.:8.105
Max. :8.944 Max. :9.167 Max. :9.267 Max. :8.959
V5 V6 V7 V8
Min. :7.378 Min. :6.676 Min. :7.743 Min. :6.380
1st Qu.:7.616 1st Qu.:7.038 1st Qu.:7.964 1st Qu.:6.809
Median :7.922 Median :7.448 Median :8.194 Median :7.297
Mean :8.023 Mean :7.547 Mean :8.308 Mean :7.394
3rd Qu.:8.403 3rd Qu.:8.012 3rd Qu.:8.627 3rd Qu.:7.940
Max. :8.992 Max. :8.799 Max. :9.213 Max. :8.760
V9
Min. :4.244
1st Qu.:4.832
Median :5.490
Mean :5.658
3rd Qu.:6.439
Max. :7.613
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
V1 V2 V3 V4
Min. :8.079 Min. :7.972 Min. :8.106 Min. :7.495
1st Qu.:8.079 1st Qu.:7.972 1st Qu.:8.106 1st Qu.:7.495
Median :8.079 Median :7.972 Median :8.106 Median :7.495
Mean :8.079 Mean :7.972 Mean :8.106 Mean :7.495
3rd Qu.:8.079 3rd Qu.:7.972 3rd Qu.:8.106 3rd Qu.:7.495
Max. :8.079 Max. :7.972 Max. :8.106 Max. :7.495
V5 V6 V7 V8 V9
Min. :7.922 Min. :7.448 Min. :8.194 Min. :7.297 Min. :5.49
1st Qu.:7.922 1st Qu.:7.448 1st Qu.:8.194 1st Qu.:7.297 1st Qu.:5.49
Median :7.922 Median :7.448 Median :8.194 Median :7.297 Median :5.49
Mean :7.922 Mean :7.448 Mean :8.194 Mean :7.297 Mean :5.49
3rd Qu.:7.922 3rd Qu.:7.448 3rd Qu.:8.194 3rd Qu.:7.297 3rd Qu.:5.49
Max. :7.922 Max. :7.448 Max. :8.194 Max. :7.297 Max. :5.49
>
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+ plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
>
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+ plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
>
> proc.time()
user system elapsed
0.79 0.06 0.84
|
|
aroma.light.Rcheck/tests_i386/normalizeFragmentLength-ex2.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
>
> # Number samples
> I <- 5
>
> # Number of loci
> J <- 3000
>
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
>
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
>
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
>
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3; # Less Sty in 1st sample
> rho[3] <- 3/2; # More Sty in 3rd sample
>
>
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+ # Common effect for both enzymes
+ mu <- function(fl) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- rep(maxLog2Theta, length(fl))
+ ok <- is.finite(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+
+ # Calculate the effect for each data point
+ for (ee in 1:2) {
+ z[,ee,ii] <- mu(fl[,ee])
+ }
+
+ # Update the Sty/Nsp mixing proportions
+ ee <- 2
+ z[,ee,ii] <- rho[ii]*z[,ee,ii]
+
+ # Add random errors
+ for (ee in 1:2) {
+ eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+ z[,ee,ii] <- z[,ee,ii] + eps
+ }
+ }
>
>
> hasFl <- is.finite(fl)
>
> unitSets <- list(
+ nsp = which( hasFl[,1] & !hasFl[,2]),
+ sty = which(!hasFl[,1] & hasFl[,2]),
+ both = which( hasFl[,1] & hasFl[,2]),
+ none = which(!hasFl[,1] & !hasFl[,2])
+ )
>
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
>
> # Single-enzyme units
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ theta[uu,] <- 2^z[uu,ee,]
+ }
>
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
>
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
>
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+ class(fit) <- "lowess"
+ targetFcns[[ee]] <- function(fl, ...) {
+ predict(fit, newdata=fl)
+ }
+ }
>
>
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
>
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+ lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+ fragmentLengths=fl, onMissing="median",
+ subsetToFit=subsetToFit, .returnFit=TRUE)
+ fits[[ii]] <- attr(lthetaNi, "modelFit")
+ thetaN[,ii] <- 2^lthetaNi
+ }
>
>
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
>
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The raw data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+ }
+
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+
+ for (ee in 1:2) {
+ # The true effects
+ uu <- unitSets[[ee]]
+ lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+
+ # The estimated effects
+ fit <- fits[[ii]][[ee]]$fit
+ lines(fit, col="orange", lwd=3)
+
+ muT <- targetFcns[[ee]](fl[uu,ee])
+ lines(fl[uu,ee], muT, col="cyan", lwd=1)
+ }
+ }
>
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
>
> # Plot normalized data
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], M[uu,ii], col=ee+1)
+ }
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], M[uu,ii], col=3+1)
+ }
>
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+ data <- list()
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ data[[ee]] <- M[uu,ii]
+ }
+ uu <- unitSets$both
+ if (length(uu) > 0)
+ data[[3]] <- M[uu,ii]
+
+ uu <- unitSets$none
+ if (length(uu) > 0)
+ data[[4]] <- M[uu,ii]
+
+ cols <- seq_along(data)+1
+ plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+
+ abline(v=0, lty=2)
+ }
>
>
> proc.time()
user system elapsed
1.00 0.14 1.12
|
aroma.light.Rcheck/tests_x64/normalizeFragmentLength-ex2.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
>
> # Number samples
> I <- 5
>
> # Number of loci
> J <- 3000
>
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
>
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
>
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
>
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3; # Less Sty in 1st sample
> rho[3] <- 3/2; # More Sty in 3rd sample
>
>
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+ # Common effect for both enzymes
+ mu <- function(fl) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- rep(maxLog2Theta, length(fl))
+ ok <- is.finite(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+
+ # Calculate the effect for each data point
+ for (ee in 1:2) {
+ z[,ee,ii] <- mu(fl[,ee])
+ }
+
+ # Update the Sty/Nsp mixing proportions
+ ee <- 2
+ z[,ee,ii] <- rho[ii]*z[,ee,ii]
+
+ # Add random errors
+ for (ee in 1:2) {
+ eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+ z[,ee,ii] <- z[,ee,ii] + eps
+ }
+ }
>
>
> hasFl <- is.finite(fl)
>
> unitSets <- list(
+ nsp = which( hasFl[,1] & !hasFl[,2]),
+ sty = which(!hasFl[,1] & hasFl[,2]),
+ both = which( hasFl[,1] & hasFl[,2]),
+ none = which(!hasFl[,1] & !hasFl[,2])
+ )
>
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
>
> # Single-enzyme units
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ theta[uu,] <- 2^z[uu,ee,]
+ }
>
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
>
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
>
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+ class(fit) <- "lowess"
+ targetFcns[[ee]] <- function(fl, ...) {
+ predict(fit, newdata=fl)
+ }
+ }
>
>
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
>
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+ lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+ fragmentLengths=fl, onMissing="median",
+ subsetToFit=subsetToFit, .returnFit=TRUE)
+ fits[[ii]] <- attr(lthetaNi, "modelFit")
+ thetaN[,ii] <- 2^lthetaNi
+ }
>
>
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
>
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The raw data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+ }
+
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+
+ for (ee in 1:2) {
+ # The true effects
+ uu <- unitSets[[ee]]
+ lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+
+ # The estimated effects
+ fit <- fits[[ii]][[ee]]$fit
+ lines(fit, col="orange", lwd=3)
+
+ muT <- targetFcns[[ee]](fl[uu,ee])
+ lines(fl[uu,ee], muT, col="cyan", lwd=1)
+ }
+ }
>
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
>
> # Plot normalized data
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], M[uu,ii], col=ee+1)
+ }
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], M[uu,ii], col=3+1)
+ }
>
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+ data <- list()
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ data[[ee]] <- M[uu,ii]
+ }
+ uu <- unitSets$both
+ if (length(uu) > 0)
+ data[[3]] <- M[uu,ii]
+
+ uu <- unitSets$none
+ if (length(uu) > 0)
+ data[[4]] <- M[uu,ii]
+
+ cols <- seq_along(data)+1
+ plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+
+ abline(v=0, lty=2)
+ }
>
>
> proc.time()
user system elapsed
1.09 0.07 1.15
|
|
aroma.light.Rcheck/tests_i386/normalizeQuantileRank.list.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.59 0.09 0.67
|
aroma.light.Rcheck/tests_x64/normalizeQuantileRank.list.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.62 0.06 0.67
|
|
aroma.light.Rcheck/tests_i386/normalizeQuantileRank.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.53 0.01 0.53
|
aroma.light.Rcheck/tests_x64/normalizeQuantileRank.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.54 0.09 0.62
|
|
aroma.light.Rcheck/tests_i386/normalizeQuantileSpline.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
>
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
>
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
1.35 0.07 1.40
|
aroma.light.Rcheck/tests_x64/normalizeQuantileSpline.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
>
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
>
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
1.18 0.10 1.28
|
|
aroma.light.Rcheck/tests_i386/normalizeTumorBoost.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.22.0 (2018-04-21) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.9.0 successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
>
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
>
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
>
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
>
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
>
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
>
> proc.time()
user system elapsed
0.46 0.14 0.59
|
aroma.light.Rcheck/tests_x64/normalizeTumorBoost.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.22.0 (2018-04-21) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.9.0 successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
>
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
>
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
>
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
>
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
>
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
>
> proc.time()
user system elapsed
0.56 0.10 0.65
|
|
aroma.light.Rcheck/tests_i386/normalizeTumorBoost,flavors.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.22.0 (2018-04-21) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.9.0 successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
>
> # Drop loci with missing values
> data <- na.omit(data)
>
> attachLocally(data)
> pos <- position/1e6
>
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
>
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
>
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
>
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+ betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+
+ # Assert that no non-finite values are introduced
+ stopifnot(all(is.finite(betaTN)))
+
+ # Assert that nothing is flipped
+ stopifnot(all(betaTN[isAA] < 1/2))
+ stopifnot(all(betaTN[isBB] > 1/2))
+
+ betaTNs[[flavor]] <- betaTN
+ }
>
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+ betaTN <- betaTNs[[flavor]]
+ ylab <- sprintf("betaTN[%s]", flavor)
+ plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
>
> proc.time()
user system elapsed
0.57 0.07 0.64
|
aroma.light.Rcheck/tests_x64/normalizeTumorBoost,flavors.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.22.0 (2018-04-21) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.9.0 successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
>
> # Drop loci with missing values
> data <- na.omit(data)
>
> attachLocally(data)
> pos <- position/1e6
>
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
>
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
>
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
>
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+ betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+
+ # Assert that no non-finite values are introduced
+ stopifnot(all(is.finite(betaTN)))
+
+ # Assert that nothing is flipped
+ stopifnot(all(betaTN[isAA] < 1/2))
+ stopifnot(all(betaTN[isBB] > 1/2))
+
+ betaTNs[[flavor]] <- betaTN
+ }
>
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+ betaTN <- betaTNs[[flavor]]
+ ylab <- sprintf("betaTN[%s]", flavor)
+ plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
>
> proc.time()
user system elapsed
0.51 0.06 0.56
|
|
aroma.light.Rcheck/tests_i386/robustSmoothSpline.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars) & robust smoothing splines")
>
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
>
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
Warning message:
In stats.smooth.spline(g$x, g$yin, w = w, ..., tol = tol) :
smoothing parameter value too large
setting df = 1 __use with care!__
> lines(cars.rspl, col = "red")
>
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
>
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
>
> # Fit a smoothing spline using Tukey's biweight norm
> cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric")
> lines(cars.rspl, col = "purple")
>
> legend(5,120, c(
+ paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+ paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)),
+ paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)),
+ "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+ ),
+ col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2),
+ bg='bisque')
>
> proc.time()
user system elapsed
0.57 0.09 0.64
|
aroma.light.Rcheck/tests_x64/robustSmoothSpline.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars) & robust smoothing splines")
>
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
>
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
> lines(cars.rspl, col = "red")
>
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
>
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
>
> # Fit a smoothing spline using Tukey's biweight norm
> cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric")
> lines(cars.rspl, col = "purple")
>
> legend(5,120, c(
+ paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+ paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)),
+ paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)),
+ "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+ ),
+ col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2),
+ bg='bisque')
>
> proc.time()
user system elapsed
0.54 0.07 0.61
|
|
aroma.light.Rcheck/tests_i386/rowAverages.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
>
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
>
> proc.time()
user system elapsed
0.28 0.07 0.34
|
aroma.light.Rcheck/tests_x64/rowAverages.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
>
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
>
> proc.time()
user system elapsed
0.39 0.04 0.42
|
|
aroma.light.Rcheck/tests_i386/sampleCorrelations.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
>
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.898682 -0.237875 -0.001917 0.001192 0.244644 0.913919
>
>
> proc.time()
user system elapsed
0.50 0.12 0.60
|
aroma.light.Rcheck/tests_x64/sampleCorrelations.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
>
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.902128 -0.242049 -0.005499 -0.002590 0.230460 0.880553
>
>
> proc.time()
user system elapsed
0.57 0.10 0.67
|
|
aroma.light.Rcheck/tests_i386/sampleTuples.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
[,1] [,2]
[1,] 5 6
[2,] 6 4
[3,] 7 9
[4,] 6 4
[5,] 6 5
>
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
[,1] [,2] [,3]
[1,] 7 3 2
[2,] 6 2 7
[3,] 1 2 6
[4,] 4 9 3
[5,] 1 9 8
>
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
[,1] [,2] [,3] [,4]
[1,] 1 1 3 1
[2,] 3 1 1 2
[3,] 1 2 3 1
[4,] 3 3 2 1
[5,] 3 3 1 3
>
> proc.time()
user system elapsed
0.42 0.06 0.46
|
aroma.light.Rcheck/tests_x64/sampleTuples.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
[,1] [,2]
[1,] 5 8
[2,] 2 8
[3,] 2 6
[4,] 7 4
[5,] 7 9
>
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
[,1] [,2] [,3]
[1,] 6 9 3
[2,] 3 8 5
[3,] 8 5 3
[4,] 4 6 2
[5,] 6 1 3
>
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
[,1] [,2] [,3] [,4]
[1,] 1 2 2 2
[2,] 2 1 2 1
[3,] 2 1 1 2
[4,] 1 2 2 1
[5,] 2 2 3 3
>
> proc.time()
user system elapsed
0.26 0.07 0.32
|
|
aroma.light.Rcheck/tests_i386/wpca.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+ # Plot the data
+ plot3d(y, theta=theta[kk], phi=phi[kk])
+
+ # First, same weights for all observations
+ w <- rep(1, length=nrow(y))
+
+ for (ww in 1:W) {
+ # Fit a line using IWPCA through data
+ fit <- wpca(y, w=w, swapDirections=TRUE)
+
+ # Get the first principal component
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ points3d(t(ymid), col=col)
+ lines3d(t(yline), col=col)
+
+ # Down-weight outliers only, because here we know which they are.
+ w[idx] <- w[idx]/2
+ }
+
+ # Highlight the last one
+ lines3d(t(yline), col="red", lwd=3)
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.37 0.07 0.45
|
aroma.light.Rcheck/tests_x64/wpca.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+ # Plot the data
+ plot3d(y, theta=theta[kk], phi=phi[kk])
+
+ # First, same weights for all observations
+ w <- rep(1, length=nrow(y))
+
+ for (ww in 1:W) {
+ # Fit a line using IWPCA through data
+ fit <- wpca(y, w=w, swapDirections=TRUE)
+
+ # Get the first principal component
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ points3d(t(ymid), col=col)
+ lines3d(t(yline), col=col)
+
+ # Down-weight outliers only, because here we know which they are.
+ w[idx] <- w[idx]/2
+ }
+
+ # Highlight the last one
+ lines3d(t(yline), col="red", lwd=3)
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.39 0.01 0.40
|
|
aroma.light.Rcheck/tests_i386/wpca2.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
>
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
>
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
>
>
> # Linear regression y ~ x
> fit <- lm(y ~ x)
> abline(fit, lty=1, col=1)
>
> # Linear regression y ~ x through without intercept
> fit <- lm(y ~ x - 1)
> abline(fit, lty=2, col=1)
>
>
> # Linear regression x ~ y
> fit <- lm(x ~ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
>
> # Linear regression x ~ y through without intercept
> fit <- lm(x ~ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
>
>
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
>
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
>
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
>
> legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
+ "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+ lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
>
> palette(opalette)
> par(opar)
>
> proc.time()
user system elapsed
0.37 0.03 0.39
|
aroma.light.Rcheck/tests_x64/wpca2.matrix.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.14.0 (2018-09-04) successfully loaded. See ?aroma.light for help.
>
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
>
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
>
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
>
>
> # Linear regression y ~ x
> fit <- lm(y ~ x)
> abline(fit, lty=1, col=1)
>
> # Linear regression y ~ x through without intercept
> fit <- lm(y ~ x - 1)
> abline(fit, lty=2, col=1)
>
>
> # Linear regression x ~ y
> fit <- lm(x ~ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
>
> # Linear regression x ~ y through without intercept
> fit <- lm(x ~ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
>
>
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
>
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
>
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
>
> legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
+ "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+ lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
>
> palette(opalette)
> par(opar)
>
> proc.time()
user system elapsed
0.50 0.07 0.56
|
|
aroma.light.Rcheck/examples_i386/aroma.light-Ex.timings
|
aroma.light.Rcheck/examples_x64/aroma.light-Ex.timings
|