Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEF[G]HIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-20 11:41 -0400 (Thu, 20 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" 4777
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" 4545
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4576
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4528
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4458
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 896/2313HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
goSorensen 1.9.0  (landing page)
Pablo Flores
Snapshot Date: 2025-03-19 13:40 -0400 (Wed, 19 Mar 2025)
git_url: https://git.bioconductor.org/packages/goSorensen
git_branch: devel
git_last_commit: a5e228c
git_last_commit_date: 2025-03-18 19:26:14 -0400 (Tue, 18 Mar 2025)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for goSorensen on palomino7

To the developers/maintainers of the goSorensen package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/goSorensen.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: goSorensen
Version: 1.9.0
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:goSorensen.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings goSorensen_1.9.0.tar.gz
StartedAt: 2025-03-20 01:58:35 -0400 (Thu, 20 Mar 2025)
EndedAt: 2025-03-20 02:07:35 -0400 (Thu, 20 Mar 2025)
EllapsedTime: 539.9 seconds
RetCode: 0
Status:   OK  
CheckDir: goSorensen.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:goSorensen.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings goSorensen_1.9.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/goSorensen.Rcheck'
* using R Under development (unstable) (2025-03-01 r87860 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.3.0
    GNU Fortran (GCC) 13.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'goSorensen/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'goSorensen' version '1.9.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'goSorensen' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                  user system elapsed
buildEnrichTable 72.39   4.46   76.91
enrichedIn       63.71   4.96   68.72
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'test_gosorensen_funcs.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: OK


Installation output

goSorensen.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL goSorensen
###
##############################################################################
##############################################################################


* installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library'
* installing *source* package 'goSorensen' ...
** this is package 'goSorensen' version '1.9.0'
** using staged installation
Warning in person1(given = given[[i]], family = family[[i]], middle = middle[[i]],  :
  Invalid ORCID iD: '0000-0002-4736-699'.
** R
** data
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (goSorensen)

Tests output

goSorensen.Rcheck/tests/test_gosorensen_funcs.Rout


R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(goSorensen)


Attaching package: 'goSorensen'

The following object is masked from 'package:utils':

    upgrade

> 
> # A contingency table of GO terms mutual enrichment
> # between gene lists "atlas" and "sanger":
> data("cont_atlas.sanger_BP4")
> cont_atlas.sanger_BP4
                 Enriched in sanger
Enriched in atlas TRUE FALSE
            TRUE   201   212
            FALSE   29  3465
> ?cont_atlas.sanger_BP4
> class(cont_atlas.sanger_BP4)
[1] "table"
> 
> # Sorensen-Dice dissimilarity on this contingency table:
> ?dSorensen
> dSorensen(cont_atlas.sanger_BP4)
[1] 0.3748056
> 
> # Standard error of this Sorensen-Dice dissimilarity estimate:
> ?seSorensen
> seSorensen(cont_atlas.sanger_BP4)
[1] 0.02240875
> 
> # Upper 95% confidence limit for the Sorensen-Dice dissimilarity:
> ?duppSorensen
> duppSorensen(cont_atlas.sanger_BP4)
[1] 0.4116647
> # This confidence limit is based on an assimptotic normal N(0,1)
> # approximation to the distribution of (dSampl - d) / se, where
> # dSampl stands for the sample dissimilarity, d for the true dissimilarity
> # and se for the sample dissimilarity standard error estimate.
> 
> # Upper confidence limit but using a Student's t instead of a N(0,1)
> # (just as an example, not recommended -no theoretical justification)
> df <- sum(cont_atlas.sanger_BP4[1:3]) - 2
> duppSorensen(cont_atlas.sanger_BP4, z.conf.level = qt(1 - 0.95, df))
[1] 0.4117425
> 
> # Upper confidence limit but using a bootstrap approximation
> # to the sampling distribution, instead of a N(0,1)
> set.seed(123)
> duppSorensen(cont_atlas.sanger_BP4, boot = TRUE)
[1] 0.4124639
attr(,"eff.nboot")
[1] 10000
> 
> # Some computations on diverse data structures:
> badConti <- as.table(matrix(c(501, 27, 36, 12, 43, 15, 0, 0, 0),
+                             nrow = 3, ncol = 3,
+                             dimnames = list(c("a1","a2","a3"),
+                                             c("b1", "b2","b3"))))
> tryCatch(nice2x2Table(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(badConti): Not a 2x2 table>
> 
> incompleteConti <- badConti[1,1:min(2,ncol(badConti)), drop = FALSE]
> incompleteConti
    b1  b2
a1 501  12
> tryCatch(nice2x2Table(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(incompleteConti): Not a 2x2 table>
> 
> contiAsVector <- c(32, 21, 81, 1439)
> nice2x2Table(contiAsVector)
[1] TRUE
> contiAsVector.mat <- matrix(contiAsVector, nrow = 2)
> contiAsVector.mat
     [,1] [,2]
[1,]   32   81
[2,]   21 1439
> contiAsVectorLen3 <- c(32, 21, 81)
> nice2x2Table(contiAsVectorLen3)
[1] TRUE
> 
> tryCatch(dSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> 
> # Apparently, the next order works fine, but returns a wrong value!
> dSorensen(badConti, check.table = FALSE)
[1] 0.05915493
> 
> tryCatch(dSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> dSorensen(contiAsVector)
[1] 0.6144578
> dSorensen(contiAsVector.mat)
[1] 0.6144578
> dSorensen(contiAsVectorLen3)
[1] 0.6144578
> dSorensen(contiAsVectorLen3, check.table = FALSE)
[1] 0.6144578
> dSorensen(c(0,0,0,45))
[1] NaN
> 
> tryCatch(seSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(seSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> seSorensen(contiAsVector)
[1] 0.04818012
> seSorensen(contiAsVector.mat)
[1] 0.04818012
> seSorensen(contiAsVectorLen3)
[1] 0.04818012
> seSorensen(contiAsVectorLen3, check.table = FALSE)
[1] 0.04818012
> tryCatch(seSorensen(contiAsVectorLen3, check.table = "not"), error = function(e) {return(e)})
<simpleError in seSorensen.numeric(contiAsVectorLen3, check.table = "not"): Argument 'check.table' must be logical>
> seSorensen(c(0,0,0,45))
[1] NaN
> 
> tryCatch(duppSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(duppSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> duppSorensen(contiAsVector)
[1] 0.6937071
> duppSorensen(contiAsVector.mat)
[1] 0.6937071
> set.seed(123)
> duppSorensen(contiAsVector, boot = TRUE)
[1] 0.6922658
attr(,"eff.nboot")
[1] 10000
> set.seed(123)
> duppSorensen(contiAsVector.mat, boot = TRUE)
[1] 0.6922658
attr(,"eff.nboot")
[1] 10000
> duppSorensen(contiAsVectorLen3)
[1] 0.6937071
> # Bootstrapping requires full contingency tables (4 values)
> set.seed(123)
> tryCatch(duppSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)})
<simpleError in duppSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies>
> duppSorensen(c(0,0,0,45))
[1] NaN
> 
> # Equivalence test, H0: d >= d0 vs  H1: d < d0 (d0 = 0.4444)
> ?equivTestSorensen
> equiv.atlas.sanger <- equivTestSorensen(cont_atlas.sanger_BP4)
> equiv.atlas.sanger

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  cont_atlas.sanger_BP4
(d - d0) / se = -3.1077, p-value = 0.0009429
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.4116647
sample estimates:
Sorensen dissimilarity 
             0.3748056 
attr(,"se")
standard error 
    0.02240875 

> getTable(equiv.atlas.sanger)
                 Enriched in sanger
Enriched in atlas TRUE FALSE
            TRUE   201   212
            FALSE   29  3465
> getPvalue(equiv.atlas.sanger)
     p-value 
0.0009428632 
> 
> tryCatch(equivTestSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(equivTestSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> equivTestSorensen(contiAsVector)

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  contiAsVector
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity 
             0.6144578 
attr(,"se")
standard error 
    0.04818012 

> equivTestSorensen(contiAsVector.mat)

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  contiAsVector.mat
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity 
             0.6144578 
attr(,"se")
standard error 
    0.04818012 

> set.seed(123)
> equivTestSorensen(contiAsVector.mat, boot = TRUE)

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  contiAsVector.mat
(d - d0) / se = 3.5287, p-value = 0.9996
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6922658
sample estimates:
Sorensen dissimilarity 
             0.6144578 
attr(,"se")
standard error 
    0.04818012 

> equivTestSorensen(contiAsVectorLen3)

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  contiAsVectorLen3
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity 
             0.6144578 
attr(,"se")
standard error 
    0.04818012 

> 
> tryCatch(equivTestSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)})
<simpleError in equivTestSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies>
> 
> equivTestSorensen(c(0,0,0,45))

	No test performed due non finite (d - d0) / se statistic

data:  c(0, 0, 0, 45)
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                   NaN 
attr(,"se")
standard error 
           NaN 

> 
> # Sorensen-Dice computations from scratch, directly from gene lists
> data(allOncoGeneLists)
> ?allOncoGeneLists
> 
> library(org.Hs.eg.db)
Loading required package: AnnotationDbi
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

Loading required package: IRanges
Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname


Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

    windows

> humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")
> # First, the mutual GO node enrichment tables are built, then computations
> # proceed from these contingency tables.
> # Building the contingency tables is a slow process (many enrichment tests)
> normTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
+                               listNames = c("atlas", "sanger"),
+                               onto = "BP", GOLevel = 5,
+                               geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")

> normTest

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -8.5125, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3482836
sample estimates:
Sorensen dissimilarity 
             0.3252525 
attr(,"se")
standard error 
    0.01400193 

> 
> # To perform a bootstrap test from scratch would be even slower:
> # set.seed(123)
> # bootTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> #                               listNames = c("atlas", "sanger"),
> #                               boot = TRUE,
> #                               onto = "BP", GOLevel = 5,
> #                               geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # bootTest
> 
> # It is much faster to upgrade 'normTest' to be a bootstrap test:
> set.seed(123)
> bootTest <- upgrade(normTest, boot = TRUE)
> bootTest

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -8.5125, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3484472
sample estimates:
Sorensen dissimilarity 
             0.3252525 
attr(,"se")
standard error 
    0.01400193 

> # To know the number of planned bootstrap replicates:
> getNboot(bootTest)
[1] 10000
> # To know the number of valid bootstrap replicates:
> getEffNboot(bootTest)
[1] 10000
> 
> # There are similar methods for dSorensen, seSorensen, duppSorensen, etc. to
> # compute directly from a pair of gene lists.
> # They are quite slow for the same reason as before (many enrichment tests).
> # dSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> #           listNames = c("atlas", "sanger"),
> #           onto = "BP", GOLevel = 5,
> #           geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # seSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> #            listNames = c("atlas", "sanger"),
> #            onto = "BP", GOLevel = 5,
> #            geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> #              listNames = c("atlas", "sanger"),
> #              onto = "BP", GOLevel = 5,
> #              geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # set.seed(123)
> # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> #              boot = TRUE,
> #              listNames = c("atlas", "sanger"),
> #              onto = "BP", GOLevel = 5,
> #              geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # etc.
> 
> # To build the contingency table first and then compute from it, may be a more flexible
> # and saving time strategy, in general:
> ?buildEnrichTable
> tab <- buildEnrichTable(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
+                         listNames = c("atlas", "sanger"),
+                         onto = "BP", GOLevel = 5,
+                         geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> 
> tab
                 Enriched in sanger
Enriched in atlas TRUE FALSE
            TRUE   501   429
            FALSE   54  8085
> 
> # (Here, an obvious faster possibility would be to recover the enrichment contingency
> # table from the previous normal test result:)
> tab <- getTable(normTest)
> tab
                 Enriched in sanger
Enriched in atlas TRUE FALSE
            TRUE   501   429
            FALSE   54  8085
> 
> tst <- equivTestSorensen(tab)
> tst

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -8.5125, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3482836
sample estimates:
Sorensen dissimilarity 
             0.3252525 
attr(,"se")
standard error 
    0.01400193 

> set.seed(123)
> bootTst <- equivTestSorensen(tab, boot = TRUE)
> bootTst

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -8.5125, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3484472
sample estimates:
Sorensen dissimilarity 
             0.3252525 
attr(,"se")
standard error 
    0.01400193 

> 
> dSorensen(tab)
[1] 0.3252525
> seSorensen(tab)
[1] 0.01400193
> # or:
> getDissimilarity(tst)
Sorensen dissimilarity 
             0.3252525 
attr(,"se")
standard error 
    0.01400193 
> 
> duppSorensen(tab)
[1] 0.3482836
> getUpper(tst)
   dUpper 
0.3482836 
> 
> set.seed(123)
> duppSorensen(tab, boot = TRUE)
[1] 0.3484472
attr(,"eff.nboot")
[1] 10000
> getUpper(bootTst)
   dUpper 
0.3484472 
> 
> # To perform from scratch all pairwise tests (or other Sorensen-Dice computations)
> # is even much slower. For example, all pairwise...
> # Dissimilarities:
> # # allPairDiss <- dSorensen(allOncoGeneLists,
> # #                          onto = "BP", GOLevel = 5,
> # #                          geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # # allPairDiss
> #
> # # Still time consuming but potentially faster: compute in parallel (more precisely,
> # # build all enrichment tables in parallel):
> # allPairDiss <- dSorensen(allOncoGeneLists,
> #                          onto = "BP", GOLevel = 4,
> #                          geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
> #                          parallel = TRUE)
> # allPairDiss
> # # Not always parallelization results in speed-up, take into account the trade-off between
> # # parallelization initialization and possible gain in speed. For a few gene lists (like
> # # in this example, 7 lists, a negative speed-up will be the most common scenario)
> 
> # Standard errors:
> # seSorensen(allOncoGeneLists,
> #            onto = "BP", GOLevel = 5,
> #            geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # Upper confidence interval limits:
> # duppSorensen(allOncoGeneLists,
> #              onto = "BP", GOLevel = 5,
> #              geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # All pairwise asymptotic normal tests:
> # allTests <- equivTestSorensen(allOncoGeneLists,
> #                               onto = "BP", GOLevel = 5,
> #                               geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # getPvalue(allTests, simplify = FALSE)
> # getPvalue(allTests)
> # p.adjust(getPvalue(allTests), method = "holm")
> # To perform all pairwise bootstrap tests from scratch is (slightly)
> # even more time consuming:
> # set.seed(123)
> # allBootTests <- equivTestSorensen(allOncoGeneLists,
> #                                   boot = TRUE,
> #                                   onto = "BP", GOLevel = 5,
> #                                   geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # Not all bootstrap replicates may conduct to finite statistics:
> # getNboot(allBootTests)
> 
> # Given the normal tests (object 'allTests'), it is much faster to upgrade
> # it to have the bootstrap tests:
> # set.seed(123)
> # allBootTests <- upgrade(allTests, boot = TRUE)
> # getPvalue(allBootTests, simplify = FALSE)
> 
> # Again, the faster and more flexible possibility may be:
> # 1) First, build all pairwise enrichment contingency tables (slow first step):
> # allTabsBP.4 <- buildEnrichTable(allOncoGeneLists,
> #                                 onto = "BP", GOLevel = 5,
> #                                 geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # allTabsBP.4
> 
> # Better, directly use the dataset available at this package, goSorensen:
> data("cont_all_BP4")
> cont_all_BP4
$cangenes
$cangenes$atlas
                    Enriched in atlas
Enriched in cangenes TRUE FALSE
               TRUE     0     0
               FALSE  413  3494
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4


$cis
$cis$atlas
               Enriched in atlas
Enriched in cis TRUE FALSE
          TRUE    75     6
          FALSE  338  3488

$cis$cangenes
               Enriched in cangenes
Enriched in cis TRUE FALSE
          TRUE     0    81
          FALSE    0  3826
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4


$miscellaneous
$miscellaneous$atlas
                         Enriched in atlas
Enriched in miscellaneous TRUE FALSE
                    TRUE   191    26
                    FALSE  222  3468

$miscellaneous$cangenes
                         Enriched in cangenes
Enriched in miscellaneous TRUE FALSE
                    TRUE     0   217
                    FALSE    0  3690
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4

$miscellaneous$cis
                         Enriched in cis
Enriched in miscellaneous TRUE FALSE
                    TRUE    67   150
                    FALSE   14  3676


$sanger
$sanger$atlas
                  Enriched in atlas
Enriched in sanger TRUE FALSE
             TRUE   201    29
             FALSE  212  3465

$sanger$cangenes
                  Enriched in cangenes
Enriched in sanger TRUE FALSE
             TRUE     0   230
             FALSE    0  3677
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4

$sanger$cis
                  Enriched in cis
Enriched in sanger TRUE FALSE
             TRUE    64   166
             FALSE   17  3660

$sanger$miscellaneous
                  Enriched in miscellaneous
Enriched in sanger TRUE FALSE
             TRUE   155    75
             FALSE   62  3615


$Vogelstein
$Vogelstein$atlas
                      Enriched in atlas
Enriched in Vogelstein TRUE FALSE
                 TRUE   217    35
                 FALSE  196  3459

$Vogelstein$cangenes
                      Enriched in cangenes
Enriched in Vogelstein TRUE FALSE
                 TRUE     0   252
                 FALSE    0  3655
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4

$Vogelstein$cis
                      Enriched in cis
Enriched in Vogelstein TRUE FALSE
                 TRUE    63   189
                 FALSE   18  3637

$Vogelstein$miscellaneous
                      Enriched in miscellaneous
Enriched in Vogelstein TRUE FALSE
                 TRUE   155    97
                 FALSE   62  3593

$Vogelstein$sanger
                      Enriched in sanger
Enriched in Vogelstein TRUE FALSE
                 TRUE   213    39
                 FALSE   17  3638


$waldman
$waldman$atlas
                   Enriched in atlas
Enriched in waldman TRUE FALSE
              TRUE   255    41
              FALSE  158  3453

$waldman$cangenes
                   Enriched in cangenes
Enriched in waldman TRUE FALSE
              TRUE     0   296
              FALSE    0  3611
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4

$waldman$cis
                   Enriched in cis
Enriched in waldman TRUE FALSE
              TRUE    72   224
              FALSE    9  3602

$waldman$miscellaneous
                   Enriched in miscellaneous
Enriched in waldman TRUE FALSE
              TRUE   198    98
              FALSE   19  3592

$waldman$sanger
                   Enriched in sanger
Enriched in waldman TRUE FALSE
              TRUE   177   119
              FALSE   53  3558

$waldman$Vogelstein
                   Enriched in Vogelstein
Enriched in waldman TRUE FALSE
              TRUE   193   103
              FALSE   59  3552


attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
attr(,"class")
[1] "tableList" "list"     
attr(,"enriched")
           atlas cangenes   cis miscellaneous sanger Vogelstein waldman
GO:0001649  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0030278  TRUE    FALSE FALSE          TRUE  FALSE       TRUE    TRUE
GO:0030279 FALSE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0030282  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0036075  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045778 FALSE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0048755  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0060688  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0061138  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0002263  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0030168  TRUE    FALSE FALSE          TRUE   TRUE      FALSE    TRUE
GO:0042118 FALSE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0050866  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0050867  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0061900  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0072537  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0001780  TRUE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0002260  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0001818  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0002367  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0002534  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0010573  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0032602  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0032609 FALSE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0032612  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0032613  TRUE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0032615  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0032623  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0032633 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0032635  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0071604  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0071706  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0002562  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0002566 FALSE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0016445  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0002433  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0002443  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0002697  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0002698  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0002699  TRUE    FALSE  TRUE         FALSE   TRUE       TRUE    TRUE
GO:0043299  TRUE    FALSE  TRUE         FALSE   TRUE       TRUE    TRUE
GO:0002218  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0034101  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0002377  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0002700  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0002701  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0002702  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0002200  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0048534  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0002685  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:1903706  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0002686 FALSE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0002695  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0050777  TRUE    FALSE  TRUE          TRUE   TRUE      FALSE    TRUE
GO:0050858  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1903707  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0002687  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0002696  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:1903708  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0001893  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0007281  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0007530 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0007548  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0009994 FALSE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0033327 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0035234  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0045136  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0045137  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0046697  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0048608  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0060008 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0060009 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0060512  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0060525  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0060736  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0060740  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0060742  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0003012  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0000768  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0001666  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0002931  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0006970  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0006979  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0009408  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0033555 FALSE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0034405  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0035902 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0035966  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0042594  TRUE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0055093  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0002437 FALSE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0006959 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0042092  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0031023 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0032886  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0045786  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0045787  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0051321  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0007162  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0031589  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0033627 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0045785  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0030010  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0032878 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0061245  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0061339  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0009755  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0009756  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0023019 FALSE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0038034  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0008366  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0007389  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0007566  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0009791  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0046660  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0046661  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0048736  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0003002  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0009798  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0009799 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0009880  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0007611  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0032922  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0042752  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0010463  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0014009  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0033002  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0033687  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0035988  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0048144  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0050673  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0051450  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0061323  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0061351  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0070661  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0072089  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0072111  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0009895  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0072526  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1901136  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0006809  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0016051  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0032964 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0042446  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0009612  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0009649 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0032102  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0042330  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0071496  TRUE    FALSE  TRUE         FALSE  FALSE       TRUE    TRUE
GO:0002347  TRUE    FALSE  TRUE         FALSE   TRUE      FALSE   FALSE
GO:0002833  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0071216  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:1990840  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0009266  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0009314  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0051602  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0070482  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0071214  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0001763  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0003151  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0003179  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0003206  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0007440  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0010171 FALSE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0021575 FALSE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0021587 FALSE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0031069  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0035107  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0048532  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0048853 FALSE    FALSE FALSE          TRUE  FALSE       TRUE    TRUE
GO:0060323  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0060325 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0060411  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0060560  TRUE    FALSE FALSE          TRUE  FALSE       TRUE    TRUE
GO:0060561  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0061383  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0071697  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0072028  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0097094 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0010713  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045833  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045912  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0062014  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0120163 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0032352  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045834  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045913  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0062013  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0120162  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:1904407  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0001558  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0030307 FALSE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0030308  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0048588  TRUE    FALSE FALSE          TRUE  FALSE       TRUE    TRUE
GO:0006887  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0045056  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0046718  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0019083  TRUE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0043923 FALSE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0010712 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0032350  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0034248  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0060263  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0062012  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0080164  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0120161  TRUE    FALSE  TRUE         FALSE   TRUE       TRUE   FALSE
GO:0035019  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0097150  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:1902455  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1902459  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:2000036  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0071695  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0007051  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0007059  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0007062 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0007098  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0008608  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0010948  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0044786  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0045023  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0051304  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0051653  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0090068  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:1903046  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0022405  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0046883  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0046887  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0032970  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0001759  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0031295  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0099590 FALSE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0007584  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0031669  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0032107  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0051282  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1905952  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0006403  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0040014 FALSE    FALSE FALSE          TRUE  FALSE       TRUE   FALSE
GO:0046620  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0046622  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0060419  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0098868 FALSE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0045926  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0045927  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0048638  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0040013  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0050920  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0050922 FALSE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:2000146  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0050921  TRUE    FALSE  TRUE         FALSE  FALSE      FALSE    TRUE
GO:0001101  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0006935  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0009410  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0009636 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0010038  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0035094  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0046677  TRUE    FALSE  TRUE         FALSE   TRUE       TRUE   FALSE
GO:0046683  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:1902074  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0022404  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0042633  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0022602  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0044849 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0005976 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0043502 FALSE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0050435  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0043697  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0006091  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0006413  TRUE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0042180  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0072593  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0090398  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0090399  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0006099 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0005996  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0051702  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0007565  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0043368  TRUE    FALSE  TRUE         FALSE   TRUE       TRUE   FALSE
GO:0045061 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0002274  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0002366  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0048640  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0048639  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:1905954  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:2000243  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0051051  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:1900047  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1905953  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:2000242  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0032388  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0034764  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045739  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0051781  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:1903532  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:1903829  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:1905898  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045738  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0051283  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1903531 FALSE    FALSE  TRUE         FALSE  FALSE      FALSE    TRUE
GO:0060759  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0090287  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:1900076  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0070572  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:1903036  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:1903846  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0031348  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0060761  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0090288 FALSE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:1903035  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0001832 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0035264  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0035265  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0042246  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0055017  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0022412  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0030728  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0042698  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0060135  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0001704  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0001756  TRUE    FALSE  TRUE         FALSE   TRUE       TRUE    TRUE
GO:0001825  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0002467 FALSE    FALSE  TRUE         FALSE   TRUE       TRUE    TRUE
GO:0003188 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0003272  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0006949  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0030220  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0035148  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0048645  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0060343  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0060788  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0060900  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0001974  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0034103  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0034104  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0046849  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0001541  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0001824  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0001942  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0002088  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0003157 FALSE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0003170  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0003205  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0003279  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0016358  TRUE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0021510  TRUE    FALSE FALSE          TRUE   TRUE       TRUE   FALSE
GO:0021516 FALSE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0021517  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0021536  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0021537  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0021543  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0021549  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0021670 FALSE    FALSE  TRUE         FALSE  FALSE      FALSE   FALSE
GO:0021675  TRUE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0021766  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0021772  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0021794 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0021987  TRUE    FALSE FALSE          TRUE  FALSE       TRUE    TRUE
GO:0021988  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0022037  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0030900  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0030901  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0030902  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0031018  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0031099  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0032835  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0036302  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0048286 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0048839  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0048857  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0060021  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0060324  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0060430  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0060711  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0060749  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0061029  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0061377  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0072006  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:1902742  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:1904888  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0001708  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0001709  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE   FALSE
GO:0010623  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0045165  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0048469  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0001659  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE   FALSE
GO:0001894  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0048872  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0060249  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0097009  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0140962 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0033500  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:1900046  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:2000241  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0010453  TRUE    FALSE  TRUE         FALSE  FALSE      FALSE   FALSE
GO:0040034  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045682  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0048634 FALSE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0070570  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0090183 FALSE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:1901861 FALSE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:1904748  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0031641  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0034762  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0051302  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0060353  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1900117  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0007596  TRUE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0050819  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0002523  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0030595  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0071674  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0097529  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0032370  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0043270  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0045807  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0051047  TRUE    FALSE FALSE         FALSE  FALSE       TRUE    TRUE
GO:0051222  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0051048  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0048635 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0051961  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0061037 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0070168 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:1901343  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:1901862 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0045684  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0045830 FALSE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0048636 FALSE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0051798  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0051962  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0090184 FALSE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0110110  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:1901863 FALSE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:1904018  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:1904179 FALSE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:1905332  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0051656  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0051651  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0010632  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0042634 FALSE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0010718  TRUE    FALSE FALSE          TRUE  FALSE       TRUE    TRUE
GO:0045618  TRUE    FALSE FALSE         FALSE  FALSE       TRUE   FALSE
GO:0045933  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:2000833  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0010633  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0014741  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0008356  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0017145  TRUE    FALSE FALSE         FALSE   TRUE       TRUE   FALSE
GO:0051446 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0050000  TRUE    FALSE FALSE         FALSE   TRUE      FALSE   FALSE
GO:0051647  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1990849  TRUE    FALSE FALSE         FALSE   TRUE       TRUE    TRUE
GO:0051208  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0009615  TRUE    FALSE FALSE          TRUE  FALSE      FALSE   FALSE
GO:0009620  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0104004  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0034219 FALSE    FALSE FALSE          TRUE   TRUE       TRUE   FALSE
GO:0051642  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0007204  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0008360  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0010522  TRUE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0031647  TRUE    FALSE FALSE          TRUE   TRUE       TRUE   FALSE
GO:0043114  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0050803  TRUE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0050878  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0090559  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0099072  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0099149 FALSE    FALSE FALSE          TRUE   TRUE      FALSE   FALSE
GO:0010469  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0051090  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0051098  TRUE    FALSE FALSE          TRUE   TRUE       TRUE    TRUE
GO:0019362  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0006206  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0090132  TRUE    FALSE  TRUE          TRUE  FALSE      FALSE    TRUE
GO:0006921  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:1900119  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0019827  TRUE    FALSE  TRUE          TRUE   TRUE       TRUE    TRUE
GO:0001502 FALSE    FALSE FALSE          TRUE  FALSE      FALSE    TRUE
GO:0140353  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0030193  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0030195  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0042359  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
GO:0000212 FALSE    FALSE FALSE          TRUE   TRUE      FALSE   FALSE
GO:0044771 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0045132 FALSE    FALSE FALSE          TRUE   TRUE      FALSE   FALSE
GO:0061982  TRUE    FALSE FALSE          TRUE   TRUE      FALSE    TRUE
GO:0140013  TRUE    FALSE FALSE          TRUE   TRUE      FALSE    TRUE
GO:0106106  TRUE    FALSE  TRUE         FALSE   TRUE       TRUE   FALSE
GO:1901993 FALSE    FALSE FALSE         FALSE  FALSE      FALSE    TRUE
GO:0046209  TRUE    FALSE FALSE         FALSE  FALSE      FALSE   FALSE
attr(,"enriched")attr(,"nTerms")
[1] 3907
> class(cont_all_BP4)
[1] "tableList" "list"     
> # 2) Then perform all required computatios from these enrichment contingency tables...
> # All pairwise tests:
> allTests <- equivTestSorensen(cont_all_BP4)
> allTests
$cangenes
$cangenes$atlas

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 



$cis
$cis$atlas

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = 9.3376, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.7407313
sample estimates:
Sorensen dissimilarity 
             0.6963563 
attr(,"se")
standard error 
    0.02697813 


$cis$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 



$miscellaneous
$miscellaneous$atlas

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -2.208, p-value = 0.01362
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.4314904
sample estimates:
Sorensen dissimilarity 
             0.3936508 
attr(,"se")
standard error 
    0.02300482 


$miscellaneous$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$miscellaneous$cis

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = 2.9448, p-value = 0.9984
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6094825
sample estimates:
Sorensen dissimilarity 
             0.5503356 
attr(,"se")
standard error 
    0.03595877 



$sanger
$sanger$atlas

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -3.1077, p-value = 0.0009429
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.4116647
sample estimates:
Sorensen dissimilarity 
             0.3748056 
attr(,"se")
standard error 
    0.02240875 


$sanger$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$sanger$cis

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = 4.0855, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6463915
sample estimates:
Sorensen dissimilarity 
             0.5884244 
attr(,"se")
standard error 
    0.03524148 


$sanger$miscellaneous

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -5.5254, p-value = 1.643e-08
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3475558
sample estimates:
Sorensen dissimilarity 
             0.3064877 
attr(,"se")
standard error 
    0.02496764 



$Vogelstein
$Vogelstein$atlas

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -4.5244, p-value = 3.028e-06
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3826602
sample estimates:
Sorensen dissimilarity 
             0.3473684 
attr(,"se")
standard error 
     0.0214559 


$Vogelstein$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$Vogelstein$cis

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = 5.2254, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6773931
sample estimates:
Sorensen dissimilarity 
             0.6216216 
attr(,"se")
standard error 
    0.03390663 


$Vogelstein$miscellaneous

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -4.1614, p-value = 1.582e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3806901
sample estimates:
Sorensen dissimilarity 
             0.3390192 
attr(,"se")
standard error 
    0.02533414 


$Vogelstein$sanger

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -21.248, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.1415942
sample estimates:
Sorensen dissimilarity 
             0.1161826 
attr(,"se")
standard error 
    0.01544915 



$waldman
$waldman$atlas

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -8.5662, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3121232
sample estimates:
Sorensen dissimilarity 
              0.280677 
attr(,"se")
standard error 
    0.01911793 


$waldman$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$waldman$cis

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = 5.4447, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6704794
sample estimates:
Sorensen dissimilarity 
             0.6180371 
attr(,"se")
standard error 
    0.03188266 


$waldman$miscellaneous

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -10.523, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.2618917
sample estimates:
Sorensen dissimilarity 
             0.2280702 
attr(,"se")
standard error 
    0.02056206 


$waldman$sanger

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -4.9774, p-value = 3.222e-07
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3658088
sample estimates:
Sorensen dissimilarity 
             0.3269962 
attr(,"se")
standard error 
    0.02359637 


$waldman$Vogelstein

	Normal asymptotic test for 2x2 contingency tables based on the
	Sorensen-Dice dissimilarity

data:  tab
(d - d0) / se = -6.6979, p-value = 1.057e-11
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3321681
sample estimates:
Sorensen dissimilarity 
             0.2956204 
attr(,"se")
standard error 
    0.02221937 



attr(,"class")
[1] "equivSDhtestList" "list"            
> class(allTests)
[1] "equivSDhtestList" "list"            
> set.seed(123)
> allBootTests <- equivTestSorensen(cont_all_BP4, boot = TRUE)
> allBootTests
$cangenes
$cangenes$atlas

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 



$cis
$cis$atlas

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = 9.3376, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.7400086
sample estimates:
Sorensen dissimilarity 
             0.6963563 
attr(,"se")
standard error 
    0.02697813 


$cis$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 



$miscellaneous
$miscellaneous$atlas

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -2.208, p-value = 0.0164
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.000000 0.431994
sample estimates:
Sorensen dissimilarity 
             0.3936508 
attr(,"se")
standard error 
    0.02300482 


$miscellaneous$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$miscellaneous$cis

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = 2.9448, p-value = 0.9974
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6097785
sample estimates:
Sorensen dissimilarity 
             0.5503356 
attr(,"se")
standard error 
    0.03595877 



$sanger
$sanger$atlas

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -3.1077, p-value = 0.0017
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.000000 0.412172
sample estimates:
Sorensen dissimilarity 
             0.3748056 
attr(,"se")
standard error 
    0.02240875 


$sanger$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$sanger$cis

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = 4.0855, p-value = 0.9999
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6467971
sample estimates:
Sorensen dissimilarity 
             0.5884244 
attr(,"se")
standard error 
    0.03524148 


$sanger$miscellaneous

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -5.5254, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3498904
sample estimates:
Sorensen dissimilarity 
             0.3064877 
attr(,"se")
standard error 
    0.02496764 



$Vogelstein
$Vogelstein$atlas

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -4.5244, p-value = 2e-04
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3828507
sample estimates:
Sorensen dissimilarity 
             0.3473684 
attr(,"se")
standard error 
     0.0214559 


$Vogelstein$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$Vogelstein$cis

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = 5.2254, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6775108
sample estimates:
Sorensen dissimilarity 
             0.6216216 
attr(,"se")
standard error 
    0.03390663 


$Vogelstein$miscellaneous

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -4.1614, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3818835
sample estimates:
Sorensen dissimilarity 
             0.3390192 
attr(,"se")
standard error 
    0.02533414 


$Vogelstein$sanger

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -21.248, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.1438618
sample estimates:
Sorensen dissimilarity 
             0.1161826 
attr(,"se")
standard error 
    0.01544915 



$waldman
$waldman$atlas

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -8.5662, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.000000 0.313061
sample estimates:
Sorensen dissimilarity 
              0.280677 
attr(,"se")
standard error 
    0.01911793 


$waldman$cangenes

	No test performed due not finite (d - d0) / se statistic

data:  tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
   0 NaN
sample estimates:
Sorensen dissimilarity 
                     1 
attr(,"se")
standard error 
             0 


$waldman$cis

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = 5.4447, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.6710143
sample estimates:
Sorensen dissimilarity 
             0.6180371 
attr(,"se")
standard error 
    0.03188266 


$waldman$miscellaneous

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -10.523, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.2638861
sample estimates:
Sorensen dissimilarity 
             0.2280702 
attr(,"se")
standard error 
    0.02056206 


$waldman$sanger

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -4.9774, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.0000000 0.3668027
sample estimates:
Sorensen dissimilarity 
             0.3269962 
attr(,"se")
standard error 
    0.02359637 


$waldman$Vogelstein

	Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
	dissimilarity (10000 bootstrap replicates)

data:  tab
(d - d0) / se = -6.6979, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
 0.000000 0.334067
sample estimates:
Sorensen dissimilarity 
             0.2956204 
attr(,"se")
standard error 
    0.02221937 



attr(,"class")
[1] "equivSDhtestList" "list"            
> class(allBootTests)
[1] "equivSDhtestList" "list"            
> getPvalue(allBootTests, simplify = FALSE)
                   atlas cangenes       cis miscellaneous     sanger Vogelstein
atlas         0.00000000      NaN 1.0000000    0.01639836 0.00169983 0.00019998
cangenes             NaN        0       NaN           NaN        NaN        NaN
cis           1.00000000      NaN 0.0000000    0.99740026 0.99990001 1.00000000
miscellaneous 0.01639836      NaN 0.9974003    0.00000000 0.00009999 0.00009999
sanger        0.00169983      NaN 0.9999000    0.00009999 0.00000000 0.00009999
Vogelstein    0.00019998      NaN 1.0000000    0.00009999 0.00009999 0.00000000
waldman       0.00009999      NaN 1.0000000    0.00009999 0.00009999 0.00009999
                waldman
atlas         9.999e-05
cangenes            NaN
cis           1.000e+00
miscellaneous 9.999e-05
sanger        9.999e-05
Vogelstein    9.999e-05
waldman       0.000e+00
> getEffNboot(allBootTests)
          cangenes.atlas                cis.atlas             cis.cangenes 
                     NaN                    10000                      NaN 
     miscellaneous.atlas   miscellaneous.cangenes        miscellaneous.cis 
                   10000                      NaN                    10000 
            sanger.atlas          sanger.cangenes               sanger.cis 
                   10000                      NaN                    10000 
    sanger.miscellaneous         Vogelstein.atlas      Vogelstein.cangenes 
                   10000                    10000                      NaN 
          Vogelstein.cis Vogelstein.miscellaneous        Vogelstein.sanger 
                   10000                    10000                    10000 
           waldman.atlas         waldman.cangenes              waldman.cis 
                   10000                      NaN                    10000 
   waldman.miscellaneous           waldman.sanger       waldman.Vogelstein 
                   10000                    10000                    10000 
> 
> # To adjust for testing multiplicity:
> p.adjust(getPvalue(allBootTests), method = "holm")
          cangenes.atlas.p-value                cis.atlas.p-value 
                             NaN                       1.00000000 
            cis.cangenes.p-value      miscellaneous.atlas.p-value 
                             NaN                       0.09839016 
  miscellaneous.cangenes.p-value        miscellaneous.cis.p-value 
                             NaN                       1.00000000 
            sanger.atlas.p-value          sanger.cangenes.p-value 
                      0.01189881                              NaN 
              sanger.cis.p-value     sanger.miscellaneous.p-value 
                      1.00000000                       0.00149985 
        Vogelstein.atlas.p-value      Vogelstein.cangenes.p-value 
                      0.00159984                              NaN 
          Vogelstein.cis.p-value Vogelstein.miscellaneous.p-value 
                      1.00000000                       0.00149985 
       Vogelstein.sanger.p-value            waldman.atlas.p-value 
                      0.00149985                       0.00149985 
        waldman.cangenes.p-value              waldman.cis.p-value 
                             NaN                       1.00000000 
   waldman.miscellaneous.p-value           waldman.sanger.p-value 
                      0.00149985                       0.00149985 
      waldman.Vogelstein.p-value 
                      0.00149985 
> 
> # If only partial statistics are desired:
> dSorensen(cont_all_BP4)
                  atlas cangenes       cis miscellaneous    sanger Vogelstein
atlas         0.0000000        1 0.6963563     0.3936508 0.3748056  0.3473684
cangenes      1.0000000        0 1.0000000     1.0000000 1.0000000  1.0000000
cis           0.6963563        1 0.0000000     0.5503356 0.5884244  0.6216216
miscellaneous 0.3936508        1 0.5503356     0.0000000 0.3064877  0.3390192
sanger        0.3748056        1 0.5884244     0.3064877 0.0000000  0.1161826
Vogelstein    0.3473684        1 0.6216216     0.3390192 0.1161826  0.0000000
waldman       0.2806770        1 0.6180371     0.2280702 0.3269962  0.2956204
                waldman
atlas         0.2806770
cangenes      1.0000000
cis           0.6180371
miscellaneous 0.2280702
sanger        0.3269962
Vogelstein    0.2956204
waldman       0.0000000
> duppSorensen(cont_all_BP4)
                  atlas cangenes       cis miscellaneous    sanger Vogelstein
atlas         0.0000000      NaN 0.7407313     0.4314904 0.4116647  0.3826602
cangenes            NaN        0       NaN           NaN       NaN        NaN
cis           0.7407313      NaN 0.0000000     0.6094825 0.6463915  0.6773931
miscellaneous 0.4314904      NaN 0.6094825     0.0000000 0.3475558  0.3806901
sanger        0.4116647      NaN 0.6463915     0.3475558 0.0000000  0.1415942
Vogelstein    0.3826602      NaN 0.6773931     0.3806901 0.1415942  0.0000000
waldman       0.3121232      NaN 0.6704794     0.2618917 0.3658088  0.3321681
                waldman
atlas         0.3121232
cangenes            NaN
cis           0.6704794
miscellaneous 0.2618917
sanger        0.3658088
Vogelstein    0.3321681
waldman       0.0000000
> seSorensen(cont_all_BP4)
                   atlas cangenes        cis miscellaneous     sanger
atlas         0.00000000        0 0.02697813    0.02300482 0.02240875
cangenes      0.00000000        0 0.00000000    0.00000000 0.00000000
cis           0.02697813        0 0.00000000    0.03595877 0.03524148
miscellaneous 0.02300482        0 0.03595877    0.00000000 0.02496764
sanger        0.02240875        0 0.03524148    0.02496764 0.00000000
Vogelstein    0.02145590        0 0.03390663    0.02533414 0.01544915
waldman       0.01911793        0 0.03188266    0.02056206 0.02359637
              Vogelstein    waldman
atlas         0.02145590 0.01911793
cangenes      0.00000000 0.00000000
cis           0.03390663 0.03188266
miscellaneous 0.02533414 0.02056206
sanger        0.01544915 0.02359637
Vogelstein    0.00000000 0.02221937
waldman       0.02221937 0.00000000
> 
> 
> # Tipically, in a real study it would be interesting to scan tests
> # along some ontologies and levels inside these ontologies:
> # (which obviously will be a quite slow process)
> # gc()
> # set.seed(123)
> # allBootTests_BP_MF_lev4to8 <- allEquivTestSorensen(allOncoGeneLists,
> #                                                    boot = TRUE,
> #                                                    geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
> #                                                    ontos = c("BP", "MF"), GOLevels = 4:8)
> # getPvalue(allBootTests_BP_MF_lev4to8)
> # getEffNboot(allBootTests_BP_MF_lev4to8)
> 
> proc.time()
   user  system elapsed 
 217.92   23.37  242.15 

Example timings

goSorensen.Rcheck/goSorensen-Ex.timings

nameusersystemelapsed
allBuildEnrichTable000
allEquivTestSorensen0.340.030.38
allHclustThreshold0.070.020.10
allSorenThreshold0.070.000.06
buildEnrichTable72.39 4.4676.91
dSorensen0.090.041.00
duppSorensen0.170.070.25
enrichedIn63.71 4.9668.72
equivTestSorensen0.510.040.56
getDissimilarity0.360.080.47
getEffNboot1.380.031.41
getNboot1.540.111.65
getPvalue0.320.170.49
getSE0.310.100.40
getTable0.280.230.52
getUpper0.340.140.48
hclustThreshold0.300.050.35
nice2x2Table0.000.020.01
seSorensen000
sorenThreshold0.270.040.31
upgrade1.180.161.35