Back to Build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2026-01-29 11:58 -0500 (Thu, 29 Jan 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4886
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2033/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.20.1  (landing page)
Joshua David Campbell
Snapshot Date: 2026-01-26 13:45 -0500 (Mon, 26 Jan 2026)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_22
git_last_commit: 3249a1d3
git_last_commit_date: 2026-01-22 12:16:03 -0500 (Thu, 22 Jan 2026)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.20.1
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.1.tar.gz
StartedAt: 2026-01-27 04:15:58 -0500 (Tue, 27 Jan 2026)
EndedAt: 2026-01-27 04:32:48 -0500 (Tue, 27 Jan 2026)
EllapsedTime: 1009.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.2 (2025-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.20.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 44.137  0.468  44.606
plotDoubletFinderResults 38.622  0.217  38.920
runDoubletFinder         37.299  0.154  37.456
runSeuratSCTransform     29.576  0.271  29.848
plotScDblFinderResults   28.926  0.695  29.658
runScDblFinder           17.826  0.442  18.232
plotBatchCorrCompare     13.561  0.171  13.919
importExampleData        10.050  0.402  10.918
plotDecontXResults        8.640  0.092   8.732
runUMAP                   8.114  0.107   8.300
runDecontX                7.766  0.058   7.825
plotScdsHybridResults     7.493  0.073   7.646
plotCxdsResults           7.494  0.067   7.638
plotUMAP                  7.009  0.071   7.156
plotDEGViolin             6.668  0.140   6.803
plotEmptyDropsResults     6.611  0.020   6.631
plotEmptyDropsScatter     6.525  0.011   6.536
runEmptyDrops             6.250  0.013   6.263
detectCellOutlier         6.065  0.166   6.233
plotBcdsResults           6.001  0.037   6.119
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.20.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.144   0.033   0.166 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 46 | SKIP 0 | PASS 223 ]

[ FAIL 0 | WARN 46 | SKIP 0 | PASS 223 ]
> 
> proc.time()
   user  system elapsed 
321.673   5.851 327.917 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.002
SEG0.0030.0010.003
calcEffectSizes0.1880.0010.189
combineSCE0.7330.0000.734
computeZScore0.2330.0100.243
convertSCEToSeurat4.3760.0944.471
convertSeuratToSCE0.3310.0130.345
dedupRowNames0.0540.0030.056
detectCellOutlier6.0650.1666.233
diffAbundanceFET0.0510.0000.052
discreteColorPalette0.0060.0000.005
distinctColors0.0020.0000.002
downSampleCells0.4860.0460.532
downSampleDepth0.3980.0030.402
expData-ANY-character-method0.1160.0000.116
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1520.0000.152
expData-set0.1440.0010.145
expData0.1190.0000.119
expDataNames-ANY-method0.1080.0010.108
expDataNames0.1110.0040.114
expDeleteDataTag0.0310.0010.032
expSetDataTag0.0220.0020.024
expTaggedData0.0220.0010.023
exportSCE0.0210.0000.021
exportSCEtoAnnData0.0910.0050.097
exportSCEtoFlatFile0.0890.0080.097
featureIndex0.0300.0040.035
generateSimulatedData0.0630.0040.067
getBiomarker0.0540.0010.054
getDEGTopTable0.6330.0410.674
getDiffAbundanceResults0.0450.0010.046
getEnrichRResult0.6050.0472.996
getFindMarkerTopTable1.5050.0791.584
getMSigDBTable0.0020.0010.003
getPathwayResultNames0.0210.0010.023
getSampleSummaryStatsTable0.1950.0030.198
getSoupX000
getTSCANResults0.9670.0090.976
getTopHVG0.8150.0090.824
importAnnData0.0010.0000.002
importBUStools0.1420.0010.144
importCellRanger0.7340.0140.748
importCellRangerV2Sample0.1340.0020.136
importCellRangerV3Sample0.2650.0050.271
importDropEst1.4450.0161.462
importExampleData10.050 0.40210.918
importGeneSetsFromCollection1.8220.0201.842
importGeneSetsFromGMT0.0640.0010.065
importGeneSetsFromList0.1220.0020.124
importGeneSetsFromMSigDB44.137 0.46844.606
importMitoGeneSet0.0490.0030.052
importOptimus0.0010.0000.002
importSEQC0.1400.0170.157
importSTARsolo0.1420.0200.162
iterateSimulations0.1710.0290.200
listSampleSummaryStatsTables0.2510.0270.278
mergeSCEColData0.3960.0130.410
mouseBrainSubsetSCE0.0370.0000.037
msigdb_table0.0010.0010.001
plotBarcodeRankDropsResults0.8550.0080.863
plotBarcodeRankScatter0.8360.0140.851
plotBatchCorrCompare13.561 0.17113.919
plotBatchVariance0.4630.0250.488
plotBcdsResults6.0010.0376.119
plotBubble0.7750.0010.776
plotClusterAbundance1.3140.0001.314
plotCxdsResults7.4940.0677.638
plotDEGHeatmap1.9800.0061.986
plotDEGRegression4.2670.0324.291
plotDEGViolin6.6680.1406.803
plotDEGVolcano0.9460.0050.951
plotDecontXResults8.6400.0928.732
plotDimRed0.290.000.29
plotDoubletFinderResults38.622 0.21738.920
plotEmptyDropsResults6.6110.0206.631
plotEmptyDropsScatter6.5250.0116.536
plotFindMarkerHeatmap3.6840.0183.702
plotMASTThresholdGenes1.2450.0081.253
plotPCA0.3670.0040.372
plotPathway0.6980.0020.700
plotRunPerCellQCResults3.0120.0453.057
plotSCEBarAssayData0.3140.0030.317
plotSCEBarColData0.2230.0000.223
plotSCEBatchFeatureMean0.3840.0030.387
plotSCEDensity0.3120.0010.313
plotSCEDensityAssayData0.3260.0000.326
plotSCEDensityColData0.2940.0030.297
plotSCEDimReduceColData0.7520.0010.753
plotSCEDimReduceFeatures0.4340.0020.435
plotSCEHeatmap0.4190.0000.420
plotSCEScatter0.3470.0020.349
plotSCEViolin0.4070.0200.426
plotSCEViolinAssayData0.3750.0130.388
plotSCEViolinColData0.3770.0070.383
plotScDblFinderResults28.926 0.69529.658
plotScanpyDotPlot0.0220.0010.022
plotScanpyEmbedding0.0220.0000.021
plotScanpyHVG0.0200.0020.021
plotScanpyHeatmap0.0210.0000.021
plotScanpyMarkerGenes0.0210.0000.021
plotScanpyMarkerGenesDotPlot0.0210.0000.022
plotScanpyMarkerGenesHeatmap0.0200.0030.022
plotScanpyMarkerGenesMatrixPlot0.0200.0000.021
plotScanpyMarkerGenesViolin0.0210.0000.021
plotScanpyMatrixPlot0.0200.0010.021
plotScanpyPCA0.0200.0010.020
plotScanpyPCAGeneRanking0.0200.0020.022
plotScanpyPCAVariance0.0200.0000.021
plotScanpyViolin0.0200.0010.021
plotScdsHybridResults7.4930.0737.646
plotScrubletResults0.0220.0000.023
plotSeuratElbow0.0210.0000.022
plotSeuratHVG0.0210.0000.022
plotSeuratJackStraw0.0210.0000.022
plotSeuratReduction0.0210.0000.021
plotSoupXResults000
plotTSCANClusterDEG4.8230.0104.834
plotTSCANClusterPseudo1.4250.0031.429
plotTSCANDimReduceFeatures1.3580.0041.362
plotTSCANPseudotimeGenes1.6230.0001.623
plotTSCANPseudotimeHeatmap1.3770.0051.383
plotTSCANResults1.1570.0031.161
plotTSNE0.3580.0000.359
plotTopHVG0.6370.0040.641
plotUMAP7.0090.0717.156
readSingleCellMatrix0.0040.0000.005
reportCellQC0.0780.0000.078
reportDropletQC0.0220.0000.022
reportQCTool0.0790.0000.079
retrieveSCEIndex0.0270.0010.029
runBBKNN000
runBarcodeRankDrops0.2260.0000.225
runBcds0.0760.0010.078
runCellQC0.0780.0000.079
runClusterSummaryMetrics0.370.000.37
runComBatSeq0.4340.0020.435
runCxds0.3530.0010.354
runCxdsBcdsHybrid0.0790.0010.080
runDEAnalysis0.3770.0010.378
runDecontX7.7660.0587.825
runDimReduce0.2780.0000.278
runDoubletFinder37.299 0.15437.456
runDropletQC0.0220.0000.022
runEmptyDrops6.2500.0136.263
runEnrichR0.5550.0472.751
runFastMNN1.6570.0261.682
runFeatureSelection0.2060.0020.208
runFindMarker1.3680.0161.385
runGSVA0.8300.0090.839
runHarmony0.0390.0010.040
runKMeans0.1740.0060.180
runLimmaBC0.0810.0010.082
runMNNCorrect0.3920.0120.404
runModelGeneVar0.3060.0120.318
runNormalization2.5170.1312.647
runPerCellQC0.3190.0010.320
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder17.826 0.44218.232
runScanpyFindClusters0.0210.0020.023
runScanpyFindHVG0.0220.0010.022
runScanpyFindMarkers0.0230.0000.022
runScanpyNormalizeData0.0950.0000.095
runScanpyPCA0.0220.0000.023
runScanpyScaleData0.0200.0020.022
runScanpyTSNE0.0210.0010.022
runScanpyUMAP0.0230.0010.023
runScranSNN0.2830.0130.295
runScrublet0.0230.0000.023
runSeuratFindClusters0.0230.0000.022
runSeuratFindHVG0.4640.0020.467
runSeuratHeatmap0.0230.0000.023
runSeuratICA0.0210.0010.023
runSeuratJackStraw0.0220.0000.023
runSeuratNormalizeData0.0220.0000.022
runSeuratPCA0.0220.0000.022
runSeuratSCTransform29.576 0.27129.848
runSeuratScaleData0.0230.0010.024
runSeuratUMAP0.0230.0010.024
runSingleR0.0380.0010.039
runSoupX000
runTSCAN0.6840.0040.688
runTSCANClusterDEAnalysis0.7920.0030.795
runTSCANDEG0.8090.0130.821
runTSNE0.7300.0110.741
runUMAP8.1140.1078.300
runVAM0.2960.0020.298
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.1530.0000.153
scaterCPM0.1380.0020.141
scaterPCA0.4370.0010.438
scaterlogNormCounts0.2280.0080.235
sce0.0220.0000.021
sctkListGeneSetCollections0.080.000.08
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0010.0000.000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0850.0000.084
setSCTKDisplayRow0.4160.0000.416
singleCellTK000
subDiffEx0.3220.0000.323
subsetSCECols0.0780.0010.078
subsetSCERows0.2620.0010.262
summarizeSCE0.0680.0010.068
trimCounts0.1980.0060.204