MultilabelClassificationEvaluator¶
- 
class pyspark.ml.evaluation.MultilabelClassificationEvaluator(*, predictionCol: str = 'prediction', labelCol: str = 'label', metricName: MultilabelClassificationEvaluatorMetricType = 'f1Measure', metricLabel: float = 0.0)[source]¶
- Evaluator for Multilabel Classification, which expects two input columns: prediction and label. - New in version 3.0.0. - Notes - Experimental - Examples - >>> scoreAndLabels = [([0.0, 1.0], [0.0, 2.0]), ([0.0, 2.0], [0.0, 1.0]), ... ([], [0.0]), ([2.0], [2.0]), ([2.0, 0.0], [2.0, 0.0]), ... ([0.0, 1.0, 2.0], [0.0, 1.0]), ([1.0], [1.0, 2.0])] >>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label"]) ... >>> evaluator = MultilabelClassificationEvaluator() >>> evaluator.setPredictionCol("prediction") MultilabelClassificationEvaluator... >>> evaluator.evaluate(dataset) 0.63... >>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"}) 0.54... >>> mlce_path = temp_path + "/mlce" >>> evaluator.save(mlce_path) >>> evaluator2 = MultilabelClassificationEvaluator.load(mlce_path) >>> str(evaluator2.getPredictionCol()) 'prediction' - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - evaluate(dataset[, params])- Evaluates the output with optional parameters. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of labelCol or its default value. - Gets the value of metricLabel or its default value. - Gets the value of metricName or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - Indicates whether the metric returned by - evaluate()should be maximized (True, default) or minimized (False).- isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setLabelCol(value)- Sets the value of - labelCol.- setMetricLabel(value)- Sets the value of - metricLabel.- setMetricName(value)- Sets the value of - metricName.- setParams(self, \*[, predictionCol, …])- Sets params for multilabel classification evaluator. - setPredictionCol(value)- Sets the value of - predictionCol.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
evaluate(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → float¶
- Evaluates the output with optional parameters. - New in version 1.4.0. - Parameters
- datasetpyspark.sql.DataFrame
- a dataset that contains labels/observations and predictions 
- paramsdict, optional
- an optional param map that overrides embedded params 
 
- dataset
- Returns
- float
- metric 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
getLabelCol() → str¶
- Gets the value of labelCol or its default value. 
 - 
getMetricLabel() → float[source]¶
- Gets the value of metricLabel or its default value. - New in version 3.0.0. 
 - 
getMetricName() → MultilabelClassificationEvaluatorMetricType[source]¶
- Gets the value of metricName or its default value. - New in version 3.0.0. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getPredictionCol() → str¶
- Gets the value of predictionCol or its default value. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isLargerBetter() → bool¶
- Indicates whether the metric returned by - evaluate()should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.- New in version 1.5.0. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setLabelCol(value: str) → pyspark.ml.evaluation.MultilabelClassificationEvaluator[source]¶
- Sets the value of - labelCol.- New in version 3.0.0. 
 - 
setMetricLabel(value: float) → pyspark.ml.evaluation.MultilabelClassificationEvaluator[source]¶
- Sets the value of - metricLabel.- New in version 3.0.0. 
 - 
setMetricName(value: MultilabelClassificationEvaluatorMetricType) → MultilabelClassificationEvaluator[source]¶
- Sets the value of - metricName.- New in version 3.0.0. 
 - 
setParams(self, \*, predictionCol="prediction", labelCol="label", metricName="f1Measure", metricLabel=0.0)[source]¶
- Sets params for multilabel classification evaluator. - New in version 3.0.0. 
 - 
setPredictionCol(value: str) → pyspark.ml.evaluation.MultilabelClassificationEvaluator[source]¶
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
metricLabel: pyspark.ml.param.Param[float] = Param(parent='undefined', name='metricLabel', doc='The class whose metric will be computed in precisionByLabel|recallByLabel|f1MeasureByLabel. Must be >= 0. The default value is 0.')¶
 - 
metricName: pyspark.ml.param.Param[MultilabelClassificationEvaluatorMetricType] = Param(parent='undefined', name='metricName', doc='metric name in evaluation (subsetAccuracy|accuracy|hammingLoss|precision|recall|f1Measure|precisionByLabel|recallByLabel|f1MeasureByLabel|microPrecision|microRecall|microF1Measure)')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
 
-