pyspark.sql.streaming.DataStreamReader.parquet¶
- 
DataStreamReader.parquet(path: str, mergeSchema: Optional[bool] = None, pathGlobFilter: Union[bool, str, None] = None, recursiveFileLookup: Union[bool, str, None] = None, datetimeRebaseMode: Union[bool, str, None] = None, int96RebaseMode: Union[bool, str, None] = None) → DataFrame[source]¶
- Loads a Parquet file stream, returning the result as a - DataFrame.- New in version 2.0.0. - Changed in version 3.5.0: Supports Spark Connect. - Parameters
- pathstr
- the path in any Hadoop supported file system 
 
- Other Parameters
- Extra options
- For the extra options, refer to Data Source Option. in the version you use. 
 
 - Examples - Load a data stream from a temporary Parquet file. - >>> import tempfile >>> import time >>> with tempfile.TemporaryDirectory() as d: ... # Write a temporary Parquet file to read it. ... spark.range(10).write.mode("overwrite").format("parquet").save(d) ... ... # Start a streaming query to read the Parquet file. ... q = spark.readStream.schema( ... "id LONG").parquet(d).writeStream.format("console").start() ... time.sleep(3) ... q.stop()