VectorIndexerModel¶
- 
class pyspark.ml.feature.VectorIndexerModel(java_model: Optional[JavaObject] = None)[source]¶
- Model fitted by - VectorIndexer.- Transform categorical features to use 0-based indices instead of their original values.
- Categorical features are mapped to indices. 
- Continuous features (columns) are left unchanged. 
 
 - This also appends metadata to the output column, marking features as Numeric (continuous), Nominal (categorical), or Binary (either continuous or categorical). Non-ML metadata is not carried over from the input to the output column. - This maintains vector sparsity. - New in version 1.4.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of handleInvalid or its default value. - Gets the value of inputCol or its default value. - Gets the value of maxCategories or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setInputCol(value)- Sets the value of - inputCol.- setOutputCol(value)- Sets the value of - outputCol.- transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Feature value index. - Number of features, i.e., length of Vectors which this transforms. - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
getHandleInvalid() → str¶
- Gets the value of handleInvalid or its default value. 
 - 
getInputCol() → str¶
- Gets the value of inputCol or its default value. 
 - 
getMaxCategories() → int¶
- Gets the value of maxCategories or its default value. - New in version 1.4.0. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getOutputCol() → str¶
- Gets the value of outputCol or its default value. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setInputCol(value: str) → pyspark.ml.feature.VectorIndexerModel[source]¶
- Sets the value of - inputCol.- New in version 3.0.0. 
 - 
setOutputCol(value: str) → pyspark.ml.feature.VectorIndexerModel[source]¶
- Sets the value of - outputCol.- New in version 3.0.0. 
 - 
transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
categoryMaps¶
- Feature value index. Keys are categorical feature indices (column indices). Values are maps from original features values to 0-based category indices. If a feature is not in this map, it is treated as continuous. - New in version 1.4.0. 
 - 
handleInvalid: pyspark.ml.param.Param[str] = Param(parent='undefined', name='handleInvalid', doc="How to handle invalid data (unseen labels or NULL values). Options are 'skip' (filter out rows with invalid data), 'error' (throw an error), or 'keep' (put invalid data in a special additional bucket, at index of the number of categories of the feature).")¶
 - 
inputCol= Param(parent='undefined', name='inputCol', doc='input column name.')¶
 - 
maxCategories: pyspark.ml.param.Param[int] = Param(parent='undefined', name='maxCategories', doc='Threshold for the number of values a categorical feature can take (>= 2). If a feature is found to have > maxCategories values, then it is declared continuous.')¶
 - 
numFeatures¶
- Number of features, i.e., length of Vectors which this transforms. - New in version 1.4.0. 
 - 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.