pyspark.pandas.Series.std¶
- 
Series.std(axis: Union[int, str, None] = None, skipna: bool = True, ddof: int = 1, numeric_only: bool = None) → Union[int, float, bool, str, bytes, decimal.Decimal, datetime.date, datetime.datetime, None, Series]¶
- Return sample standard deviation. - New in version 3.3.0. - Parameters
- axis: {index (0), columns (1)}
- Axis for the function to be applied on. 
- skipna: bool, default True
- Exclude NA/null values when computing the result. - Changed in version 3.4.0: Supported including NA/null values. 
- ddof: int, default 1
- Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. - Changed in version 3.4.0: Supported including arbitary integers. 
- numeric_only: bool, default None
- Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. 
 
- Returns
- std: scalar for a Series, and a Series for a DataFrame.
 
 - Examples - >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) - On a DataFrame: - >>> df.std() a 1.0 b 0.1 dtype: float64 - >>> df.std(ddof=2) a 1.414214 b 0.141421 dtype: float64 - >>> df.std(axis=1) 0 0.636396 1 1.272792 2 1.909188 3 NaN dtype: float64 - >>> df.std(ddof=0) a 0.816497 b 0.081650 dtype: float64 - On a Series: - >>> df['a'].std() 1.0 - >>> df['a'].std(ddof=0) 0.816496580927726 - >>> df['a'].std(ddof=-1) 0.707106...