Chapter 5 Grun human pancreas (CEL-seq2)

5.1 Introduction

This workflow performs an analysis of the Grun et al. (2016) CEL-seq2 dataset consisting of human pancreas cells from various donors.

5.2 Data loading

library(scRNAseq)
sce.grun <- GrunPancreasData()

We convert to Ensembl identifiers, and we remove duplicated genes or genes without Ensembl IDs.

library(org.Hs.eg.db)
gene.ids <- mapIds(org.Hs.eg.db, keys=rowData(sce.grun)$symbol,
    keytype="SYMBOL", column="ENSEMBL")

keep <- !is.na(gene.ids) & !duplicated(gene.ids)
sce.grun <- sce.grun[keep,]
rownames(sce.grun) <- gene.ids[keep]

5.3 Quality control

unfiltered <- sce.grun

This dataset lacks mitochondrial genes so we will do without them for quality control. We compute the median and MAD while blocking on the donor; for donors where the assumption of a majority of high-quality cells seems to be violated (Figure 5.1), we compute an appropriate threshold using the other donors as specified in the subset= argument.

library(scater)
stats <- perCellQCMetrics(sce.grun)

qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent",
    batch=sce.grun$donor,
    subset=sce.grun$donor %in% c("D17", "D7", "D2"))

sce.grun <- sce.grun[,!qc$discard]
colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard

gridExtra::grid.arrange(
    plotColData(unfiltered, x="donor", y="sum", colour_by="discard") +
        scale_y_log10() + ggtitle("Total count"),
    plotColData(unfiltered, x="donor", y="detected", colour_by="discard") +
        scale_y_log10() + ggtitle("Detected features"),
    plotColData(unfiltered, x="donor", y="altexps_ERCC_percent",
        colour_by="discard") + ggtitle("ERCC percent"),
    ncol=2
)
Distribution of each QC metric across cells from each donor of the Grun pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

Figure 5.1: Distribution of each QC metric across cells from each donor of the Grun pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

colSums(as.matrix(qc), na.rm=TRUE)
##              low_lib_size            low_n_features high_altexps_ERCC_percent 
##                       452                       510                       606 
##                   discard 
##                       665

5.4 Normalization

library(scran)
set.seed(1000) # for irlba. 
clusters <- quickCluster(sce.grun)
sce.grun <- computeSumFactors(sce.grun, clusters=clusters)
sce.grun <- logNormCounts(sce.grun)
summary(sizeFactors(sce.grun))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.094   0.507   0.794   1.000   1.235  10.953
plot(librarySizeFactors(sce.grun), sizeFactors(sce.grun), pch=16,
    xlab="Library size factors", ylab="Deconvolution factors", log="xy")
Relationship between the library size factors and the deconvolution size factors in the Grun pancreas dataset.

Figure 5.2: Relationship between the library size factors and the deconvolution size factors in the Grun pancreas dataset.

5.5 Variance modelling

We block on a combined plate and donor factor.

block <- paste0(sce.grun$sample, "_", sce.grun$donor)
dec.grun <- modelGeneVarWithSpikes(sce.grun, spikes="ERCC", block=block)
top.grun <- getTopHVGs(dec.grun, prop=0.1)

We examine the number of cells in each level of the blocking factor.

table(block)
## block
##                  CD13+ sorted cells_D17       CD24+ CD44+ live sorted cells_D17 
##                                      86                                      87 
##                  CD63+ sorted cells_D10                TGFBR3+ sorted cells_D17 
##                                      40                                      90 
## exocrine fraction, live sorted cells_D2 exocrine fraction, live sorted cells_D3 
##                                      82                                       7 
##        live sorted cells, library 1_D10        live sorted cells, library 1_D17 
##                                      33                                      88 
##         live sorted cells, library 1_D3         live sorted cells, library 1_D7 
##                                      25                                      85 
##        live sorted cells, library 2_D10        live sorted cells, library 2_D17 
##                                      35                                      83 
##         live sorted cells, library 2_D3         live sorted cells, library 2_D7 
##                                      27                                      84 
##         live sorted cells, library 3_D3         live sorted cells, library 3_D7 
##                                      16                                      83 
##         live sorted cells, library 4_D3         live sorted cells, library 4_D7 
##                                      29                                      83
par(mfrow=c(6,3))
blocked.stats <- dec.grun$per.block
for (i in colnames(blocked.stats)) {
    current <- blocked.stats[[i]]
    plot(current$mean, current$total, main=i, pch=16, cex=0.5,
        xlab="Mean of log-expression", ylab="Variance of log-expression")
    curfit <- metadata(current)
    points(curfit$mean, curfit$var, col="red", pch=16)
    curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)
}
Per-gene variance as a function of the mean for the log-expression values in the Grun pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-in transcripts (red) separately for each donor.

Figure 1.4: Per-gene variance as a function of the mean for the log-expression values in the Grun pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-in transcripts (red) separately for each donor.

5.6 Data integration

library(batchelor)
set.seed(1001010)
merged.grun <- fastMNN(sce.grun, subset.row=top.grun, batch=sce.grun$donor)
metadata(merged.grun)$merge.info$lost.var
##           D10      D17       D2      D3      D7
## [1,] 0.029789 0.031754 0.000000 0.00000 0.00000
## [2,] 0.008008 0.012371 0.039101 0.00000 0.00000
## [3,] 0.004108 0.005397 0.008157 0.05204 0.00000
## [4,] 0.013393 0.016061 0.016364 0.01510 0.05522

5.7 Dimensionality reduction

set.seed(100111)
merged.grun <- runTSNE(merged.grun, dimred="corrected")

5.8 Clustering

snn.gr <- buildSNNGraph(merged.grun, use.dimred="corrected")
colLabels(merged.grun) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
table(Cluster=colLabels(merged.grun), Donor=merged.grun$batch)
##        Donor
## Cluster D10 D17  D2  D3  D7
##      1   32  71  33  80  29
##      2   11 119   0   0  55
##      3    2   7   3   3   6
##      4    3  43   0   0  11
##      5    5  14   0   0  10
##      6    4   4   2   4   2
##      7   11  69  29   3  69
##      8   16  37  12  10  46
##      9   14  31   3   2  66
##      10   1   9   0   0   7
##      11   4  13   0   0   1
##      12   5  17   0   2  33
gridExtra::grid.arrange(
    plotTSNE(merged.grun, colour_by="label"),
    plotTSNE(merged.grun, colour_by="batch"),
    ncol=2
)
Obligatory $t$-SNE plots of the Grun pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

Figure 5.3: Obligatory \(t\)-SNE plots of the Grun pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

Session Info

R version 4.3.0 RC (2023-04-13 r84269)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.2 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] batchelor_1.16.0            scran_1.28.0               
 [3] scater_1.28.0               ggplot2_3.4.2              
 [5] scuttle_1.10.0              org.Hs.eg.db_3.17.0        
 [7] AnnotationDbi_1.62.0        scRNAseq_2.13.0            
 [9] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.0
[11] Biobase_2.60.0              GenomicRanges_1.52.0       
[13] GenomeInfoDb_1.36.0         IRanges_2.34.0             
[15] S4Vectors_0.38.0            BiocGenerics_0.46.0        
[17] MatrixGenerics_1.12.0       matrixStats_0.63.0         
[19] BiocStyle_2.28.0            rebook_1.10.0              

loaded via a namespace (and not attached):
  [1] jsonlite_1.8.4                CodeDepends_0.6.5            
  [3] magrittr_2.0.3                ggbeeswarm_0.7.1             
  [5] GenomicFeatures_1.52.0        farver_2.1.1                 
  [7] rmarkdown_2.21                BiocIO_1.10.0                
  [9] zlibbioc_1.46.0               vctrs_0.6.2                  
 [11] memoise_2.0.1                 Rsamtools_2.16.0             
 [13] DelayedMatrixStats_1.22.0     RCurl_1.98-1.12              
 [15] htmltools_0.5.5               progress_1.2.2               
 [17] AnnotationHub_3.8.0           curl_5.0.0                   
 [19] BiocNeighbors_1.18.0          sass_0.4.5                   
 [21] bslib_0.4.2                   cachem_1.0.7                 
 [23] ResidualMatrix_1.10.0         GenomicAlignments_1.36.0     
 [25] igraph_1.4.2                  mime_0.12                    
 [27] lifecycle_1.0.3               pkgconfig_2.0.3              
 [29] rsvd_1.0.5                    Matrix_1.5-4                 
 [31] R6_2.5.1                      fastmap_1.1.1                
 [33] GenomeInfoDbData_1.2.10       shiny_1.7.4                  
 [35] digest_0.6.31                 colorspace_2.1-0             
 [37] dqrng_0.3.0                   irlba_2.3.5.1                
 [39] ExperimentHub_2.8.0           RSQLite_2.3.1                
 [41] beachmat_2.16.0               labeling_0.4.2               
 [43] filelock_1.0.2                fansi_1.0.4                  
 [45] httr_1.4.5                    compiler_4.3.0               
 [47] bit64_4.0.5                   withr_2.5.0                  
 [49] BiocParallel_1.34.0           viridis_0.6.2                
 [51] DBI_1.1.3                     highr_0.10                   
 [53] biomaRt_2.56.0                rappdirs_0.3.3               
 [55] DelayedArray_0.26.0           bluster_1.10.0               
 [57] rjson_0.2.21                  tools_4.3.0                  
 [59] vipor_0.4.5                   beeswarm_0.4.0               
 [61] interactiveDisplayBase_1.38.0 httpuv_1.6.9                 
 [63] glue_1.6.2                    restfulr_0.0.15              
 [65] promises_1.2.0.1              grid_4.3.0                   
 [67] Rtsne_0.16                    cluster_2.1.4                
 [69] generics_0.1.3                gtable_0.3.3                 
 [71] ensembldb_2.24.0              hms_1.1.3                    
 [73] metapod_1.8.0                 BiocSingular_1.16.0          
 [75] ScaledMatrix_1.8.0            xml2_1.3.3                   
 [77] utf8_1.2.3                    XVector_0.40.0               
 [79] ggrepel_0.9.3                 BiocVersion_3.17.1           
 [81] pillar_1.9.0                  stringr_1.5.0                
 [83] limma_3.56.0                  later_1.3.0                  
 [85] dplyr_1.1.2                   BiocFileCache_2.8.0          
 [87] lattice_0.21-8                rtracklayer_1.60.0           
 [89] bit_4.0.5                     tidyselect_1.2.0             
 [91] locfit_1.5-9.7                Biostrings_2.68.0            
 [93] knitr_1.42                    gridExtra_2.3                
 [95] bookdown_0.33                 ProtGenerics_1.32.0          
 [97] edgeR_3.42.0                  xfun_0.39                    
 [99] statmod_1.5.0                 stringi_1.7.12               
[101] lazyeval_0.2.2                yaml_2.3.7                   
[103] evaluate_0.20                 codetools_0.2-19             
[105] tibble_3.2.1                  BiocManager_1.30.20          
[107] graph_1.78.0                  cli_3.6.1                    
[109] xtable_1.8-4                  munsell_0.5.0                
[111] jquerylib_0.1.4               Rcpp_1.0.10                  
[113] dir.expiry_1.8.0              dbplyr_2.3.2                 
[115] png_0.1-8                     XML_3.99-0.14                
[117] parallel_4.3.0                ellipsis_0.3.2               
[119] blob_1.2.4                    prettyunits_1.1.1            
[121] AnnotationFilter_1.24.0       sparseMatrixStats_1.12.0     
[123] bitops_1.0-7                  viridisLite_0.4.1            
[125] scales_1.2.1                  purrr_1.0.1                  
[127] crayon_1.5.2                  rlang_1.1.0                  
[129] cowplot_1.1.1                 KEGGREST_1.40.0              

References

Grun, D., M. J. Muraro, J. C. Boisset, K. Wiebrands, A. Lyubimova, G. Dharmadhikari, M. van den Born, et al. 2016. β€œDe Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.” Cell Stem Cell 19 (2): 266–77.