Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:05:28 -0400 (Wed, 13 Apr 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 886/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.0.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: HPiP |
Version: 1.0.0 |
Command: /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.14-bioc/R/library --no-vignettes --timings HPiP_1.0.0.tar.gz |
StartedAt: 2022-04-12 07:49:04 -0400 (Tue, 12 Apr 2022) |
EndedAt: 2022-04-12 07:53:25 -0400 (Tue, 12 Apr 2022) |
EllapsedTime: 261.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.14-bioc/R/library --no-vignettes --timings HPiP_1.0.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck’ * using R version 4.1.3 (2022-03-10) * using platform: x86_64-pc-linux-gnu (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.0.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 35.793 0.568 36.361 var_imp 34.596 0.760 35.357 FSmethod 31.435 0.740 32.176 pred_ensembel 14.780 0.416 11.299 enrichfindP 0.409 0.016 8.824 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.14-bioc/R/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 100.875444 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 104.549690 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.323700 final value 94.354396 converged Fitting Repeat 4 # weights: 103 initial value 100.794663 final value 94.354395 converged Fitting Repeat 5 # weights: 103 initial value 98.800979 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 109.669550 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 99.164509 iter 10 value 93.927920 iter 20 value 86.248441 iter 30 value 85.667380 iter 40 value 85.666698 final value 85.666693 converged Fitting Repeat 3 # weights: 305 initial value 106.963294 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 100.344565 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.886728 final value 93.205814 converged Fitting Repeat 1 # weights: 507 initial value 103.823749 final value 94.144481 converged Fitting Repeat 2 # weights: 507 initial value 106.823953 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 106.858853 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 110.638105 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 101.339581 final value 94.354396 converged Fitting Repeat 1 # weights: 103 initial value 105.014132 iter 10 value 93.890539 iter 20 value 84.408230 iter 30 value 83.095762 iter 40 value 82.903737 iter 50 value 82.735823 iter 60 value 82.497326 final value 82.494345 converged Fitting Repeat 2 # weights: 103 initial value 106.572234 iter 10 value 94.260480 iter 20 value 89.823094 iter 30 value 87.858810 iter 40 value 86.017059 iter 50 value 85.561571 iter 60 value 83.864026 iter 70 value 83.199472 iter 80 value 83.178862 iter 90 value 82.976811 iter 100 value 82.500816 final value 82.500816 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.727258 iter 10 value 94.486410 iter 20 value 89.129914 iter 30 value 86.746106 iter 40 value 86.454520 iter 50 value 86.198698 iter 60 value 83.228037 iter 70 value 83.025570 iter 80 value 83.022427 final value 83.022426 converged Fitting Repeat 4 # weights: 103 initial value 100.753080 iter 10 value 94.461812 iter 20 value 87.595849 iter 30 value 83.608804 iter 40 value 83.448771 iter 50 value 83.291739 iter 60 value 83.106467 iter 70 value 83.022444 final value 83.022421 converged Fitting Repeat 5 # weights: 103 initial value 98.573374 iter 10 value 94.486214 iter 20 value 93.802492 iter 30 value 93.580017 iter 40 value 92.688530 iter 50 value 88.885097 iter 60 value 86.967766 iter 70 value 84.890627 iter 80 value 84.479643 iter 90 value 84.413143 final value 84.413132 converged Fitting Repeat 1 # weights: 305 initial value 102.502237 iter 10 value 87.828916 iter 20 value 86.263104 iter 30 value 83.271020 iter 40 value 82.790522 iter 50 value 81.791625 iter 60 value 81.536489 iter 70 value 81.069956 iter 80 value 80.219274 iter 90 value 79.974747 iter 100 value 79.863967 final value 79.863967 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.267261 iter 10 value 94.493851 iter 20 value 92.705863 iter 30 value 85.242887 iter 40 value 82.671879 iter 50 value 82.059454 iter 60 value 81.439467 iter 70 value 80.127923 iter 80 value 79.872910 iter 90 value 79.802178 iter 100 value 79.499732 final value 79.499732 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 131.473780 iter 10 value 94.543601 iter 20 value 86.701114 iter 30 value 83.526962 iter 40 value 83.099917 iter 50 value 82.792759 iter 60 value 81.815304 iter 70 value 79.752075 iter 80 value 79.448186 iter 90 value 79.402702 iter 100 value 79.337333 final value 79.337333 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.575168 iter 10 value 94.410169 iter 20 value 90.400345 iter 30 value 88.598576 iter 40 value 86.040566 iter 50 value 83.579969 iter 60 value 82.388923 iter 70 value 81.559921 iter 80 value 81.284802 iter 90 value 81.263921 iter 100 value 81.228730 final value 81.228730 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.021834 iter 10 value 94.579496 iter 20 value 92.882121 iter 30 value 85.542340 iter 40 value 85.169308 iter 50 value 84.318225 iter 60 value 80.736788 iter 70 value 79.709746 iter 80 value 79.416869 iter 90 value 79.359752 iter 100 value 79.186715 final value 79.186715 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.193468 iter 10 value 94.271099 iter 20 value 85.554686 iter 30 value 82.202702 iter 40 value 81.713573 iter 50 value 79.802472 iter 60 value 79.152969 iter 70 value 78.733915 iter 80 value 78.458082 iter 90 value 78.194140 iter 100 value 78.054101 final value 78.054101 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.943801 iter 10 value 94.619334 iter 20 value 92.823953 iter 30 value 83.964607 iter 40 value 82.206094 iter 50 value 81.331730 iter 60 value 80.718123 iter 70 value 79.796032 iter 80 value 78.755256 iter 90 value 78.369115 iter 100 value 78.298822 final value 78.298822 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.098440 iter 10 value 95.106308 iter 20 value 94.745669 iter 30 value 92.307514 iter 40 value 83.856862 iter 50 value 83.237075 iter 60 value 83.060832 iter 70 value 81.340411 iter 80 value 81.055013 iter 90 value 80.151731 iter 100 value 79.848849 final value 79.848849 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.218908 iter 10 value 94.740251 iter 20 value 92.633874 iter 30 value 89.568306 iter 40 value 83.814826 iter 50 value 82.764133 iter 60 value 80.654791 iter 70 value 79.858429 iter 80 value 79.360193 iter 90 value 78.682855 iter 100 value 78.319002 final value 78.319002 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 131.795801 iter 10 value 95.916128 iter 20 value 85.589212 iter 30 value 83.402001 iter 40 value 82.679867 iter 50 value 81.008202 iter 60 value 79.734183 iter 70 value 79.682702 iter 80 value 78.727664 iter 90 value 78.414514 iter 100 value 78.237009 final value 78.237009 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 93.042711 iter 10 value 89.276173 iter 20 value 88.468486 iter 30 value 88.006137 iter 40 value 87.963761 final value 87.963757 converged Fitting Repeat 2 # weights: 103 initial value 104.128585 iter 10 value 94.485856 iter 20 value 94.484182 iter 30 value 92.434640 iter 40 value 90.883585 iter 50 value 90.882674 iter 50 value 90.882674 iter 50 value 90.882674 final value 90.882674 converged Fitting Repeat 3 # weights: 103 initial value 98.956572 final value 94.486141 converged Fitting Repeat 4 # weights: 103 initial value 96.441153 iter 10 value 94.485765 iter 20 value 94.420400 iter 30 value 84.634061 iter 40 value 84.402492 final value 84.387964 converged Fitting Repeat 5 # weights: 103 initial value 98.626953 iter 10 value 94.147009 iter 20 value 93.779012 iter 30 value 93.746706 iter 40 value 93.620183 iter 50 value 93.615587 iter 60 value 90.225428 iter 70 value 85.877746 iter 80 value 84.198046 iter 90 value 84.130836 iter 100 value 84.130165 final value 84.130165 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 96.580601 iter 10 value 94.489441 final value 94.484682 converged Fitting Repeat 2 # weights: 305 initial value 99.605517 iter 10 value 94.488669 iter 20 value 94.382171 final value 93.300498 converged Fitting Repeat 3 # weights: 305 initial value 121.561987 iter 10 value 85.419906 iter 20 value 85.180791 iter 30 value 85.170659 iter 40 value 85.015022 iter 50 value 85.014289 iter 60 value 85.002439 iter 70 value 84.375895 iter 80 value 83.974063 iter 90 value 83.970884 iter 100 value 83.968932 final value 83.968932 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.325866 iter 10 value 94.358677 iter 20 value 94.354943 iter 30 value 94.131447 iter 40 value 94.131049 iter 50 value 93.720434 final value 93.720353 converged Fitting Repeat 5 # weights: 305 initial value 104.577149 iter 10 value 94.489273 iter 20 value 92.326454 iter 30 value 84.679259 iter 40 value 84.632492 iter 50 value 84.632138 iter 60 value 84.632009 iter 70 value 84.540835 final value 84.388589 converged Fitting Repeat 1 # weights: 507 initial value 141.125234 iter 10 value 94.492805 iter 20 value 94.486103 iter 30 value 93.749727 final value 93.746268 converged Fitting Repeat 2 # weights: 507 initial value 105.643112 iter 10 value 94.492431 iter 20 value 94.413021 iter 30 value 90.421360 iter 40 value 82.825039 iter 50 value 82.637195 iter 60 value 82.335753 iter 70 value 82.168836 iter 80 value 81.675492 iter 90 value 80.584312 iter 100 value 80.529734 final value 80.529734 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.747275 iter 10 value 94.586024 iter 20 value 94.515930 iter 30 value 93.811517 iter 40 value 93.095838 iter 50 value 92.926187 iter 60 value 92.758769 iter 70 value 92.731459 iter 80 value 92.709437 iter 90 value 89.247300 iter 100 value 88.707539 final value 88.707539 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.080159 iter 10 value 91.149911 iter 20 value 89.555458 iter 30 value 87.277837 iter 40 value 81.768602 iter 50 value 81.374486 iter 60 value 81.001747 iter 70 value 80.810620 iter 80 value 80.806263 iter 90 value 80.798836 iter 100 value 80.796416 final value 80.796416 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.185999 iter 10 value 86.954257 iter 20 value 82.173132 iter 30 value 82.168518 iter 40 value 82.166742 iter 50 value 82.165432 iter 60 value 82.163683 iter 70 value 82.161737 iter 80 value 81.937935 iter 90 value 81.935681 iter 100 value 81.934925 final value 81.934925 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.418653 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 107.362574 iter 10 value 94.038536 iter 20 value 94.035099 iter 30 value 93.582421 final value 93.582418 converged Fitting Repeat 3 # weights: 103 initial value 95.859455 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.994600 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 100.276701 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 107.166916 final value 93.582418 converged Fitting Repeat 2 # weights: 305 initial value 94.387598 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 113.662194 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 117.360615 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 99.320076 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 114.236367 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 101.119875 final value 93.582418 converged Fitting Repeat 3 # weights: 507 initial value 99.790973 iter 10 value 93.178579 iter 10 value 93.178579 final value 93.178572 converged Fitting Repeat 4 # weights: 507 initial value 99.471502 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 113.070778 final value 93.582418 converged Fitting Repeat 1 # weights: 103 initial value 99.835798 iter 10 value 94.034539 iter 20 value 90.756084 iter 30 value 87.503235 iter 40 value 82.659402 iter 50 value 82.559463 iter 60 value 82.533037 iter 70 value 82.392552 iter 80 value 82.269390 iter 90 value 80.494278 iter 100 value 79.434651 final value 79.434651 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.532995 iter 10 value 85.967488 iter 20 value 85.624655 iter 30 value 85.538096 iter 40 value 83.148797 iter 50 value 82.285305 iter 60 value 81.950561 iter 70 value 81.829542 iter 80 value 79.662146 iter 90 value 78.832679 iter 100 value 78.668408 final value 78.668408 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.705429 iter 10 value 93.044766 iter 20 value 92.503386 iter 30 value 85.601524 iter 40 value 85.173695 iter 50 value 83.103110 iter 60 value 82.215940 iter 70 value 80.265733 iter 80 value 79.466443 iter 90 value 79.278947 iter 100 value 78.875627 final value 78.875627 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.616327 iter 10 value 93.823625 iter 20 value 83.833531 iter 30 value 83.142259 iter 40 value 82.643935 iter 50 value 82.408408 iter 60 value 82.285804 iter 70 value 82.244258 iter 80 value 80.141052 iter 90 value 79.393527 iter 100 value 78.909394 final value 78.909394 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.493481 iter 10 value 94.045243 iter 20 value 93.892107 iter 30 value 85.394755 iter 40 value 83.803926 iter 50 value 82.843879 iter 60 value 80.375464 iter 70 value 80.074563 iter 80 value 79.880270 iter 90 value 79.748297 iter 100 value 79.299095 final value 79.299095 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 113.908729 iter 10 value 93.242495 iter 20 value 92.423399 iter 30 value 92.309515 iter 40 value 89.064859 iter 50 value 86.837618 iter 60 value 86.318965 iter 70 value 85.177612 iter 80 value 84.736515 iter 90 value 81.695141 iter 100 value 80.214585 final value 80.214585 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.883192 iter 10 value 93.140186 iter 20 value 87.490379 iter 30 value 86.159018 iter 40 value 85.855495 iter 50 value 83.328723 iter 60 value 79.885144 iter 70 value 78.936738 iter 80 value 78.131645 iter 90 value 77.711082 iter 100 value 77.313799 final value 77.313799 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.626696 iter 10 value 94.013158 iter 20 value 83.462591 iter 30 value 82.493124 iter 40 value 80.408737 iter 50 value 79.963643 iter 60 value 79.140242 iter 70 value 78.750747 iter 80 value 78.587741 iter 90 value 78.558493 iter 100 value 78.530017 final value 78.530017 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.495007 iter 10 value 94.056206 iter 20 value 93.691238 iter 30 value 89.418840 iter 40 value 86.534060 iter 50 value 83.068847 iter 60 value 81.589069 iter 70 value 80.907629 iter 80 value 79.624597 iter 90 value 78.971609 iter 100 value 78.390644 final value 78.390644 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 148.133838 iter 10 value 93.945200 iter 20 value 86.769825 iter 30 value 83.166120 iter 40 value 82.491890 iter 50 value 80.581108 iter 60 value 80.170992 iter 70 value 80.043614 iter 80 value 79.973422 iter 90 value 79.693546 iter 100 value 78.301902 final value 78.301902 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.913745 iter 10 value 94.122145 iter 20 value 91.216479 iter 30 value 82.569148 iter 40 value 81.722004 iter 50 value 81.303886 iter 60 value 81.126898 iter 70 value 80.517935 iter 80 value 79.063930 iter 90 value 77.585296 iter 100 value 76.843985 final value 76.843985 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.633816 iter 10 value 93.842021 iter 20 value 87.417778 iter 30 value 84.320692 iter 40 value 80.793980 iter 50 value 77.851790 iter 60 value 77.688355 iter 70 value 77.608904 iter 80 value 77.371871 iter 90 value 77.288059 iter 100 value 77.208912 final value 77.208912 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.548564 iter 10 value 93.883583 iter 20 value 92.515518 iter 30 value 92.372955 iter 40 value 89.179394 iter 50 value 85.096080 iter 60 value 82.049145 iter 70 value 80.926440 iter 80 value 79.522788 iter 90 value 78.873775 iter 100 value 78.208124 final value 78.208124 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.904200 iter 10 value 93.808811 iter 20 value 91.964384 iter 30 value 90.555007 iter 40 value 85.304114 iter 50 value 84.223492 iter 60 value 82.413077 iter 70 value 81.572987 iter 80 value 80.550950 iter 90 value 80.153938 iter 100 value 79.210305 final value 79.210305 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.635019 iter 10 value 94.020768 iter 20 value 92.636926 iter 30 value 90.406267 iter 40 value 82.939005 iter 50 value 81.868726 iter 60 value 80.434843 iter 70 value 78.130722 iter 80 value 77.550426 iter 90 value 77.174096 iter 100 value 76.887734 final value 76.887734 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.248307 final value 94.054597 converged Fitting Repeat 2 # weights: 103 initial value 100.437051 final value 94.054532 converged Fitting Repeat 3 # weights: 103 initial value 95.462232 final value 93.583989 converged Fitting Repeat 4 # weights: 103 initial value 100.114578 final value 94.054794 converged Fitting Repeat 5 # weights: 103 initial value 95.799913 final value 94.054513 converged Fitting Repeat 1 # weights: 305 initial value 97.024724 iter 10 value 89.628033 iter 20 value 89.626795 iter 30 value 89.622065 iter 40 value 89.433510 iter 50 value 88.319014 iter 60 value 85.881979 iter 70 value 81.326872 iter 80 value 79.337182 iter 90 value 79.137551 iter 100 value 79.130782 final value 79.130782 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.515864 iter 10 value 94.057656 iter 20 value 94.053291 iter 30 value 88.388430 iter 40 value 81.144193 iter 50 value 80.918733 iter 60 value 80.770122 final value 80.767754 converged Fitting Repeat 3 # weights: 305 initial value 97.363014 iter 10 value 93.587629 iter 20 value 93.129537 iter 30 value 92.239083 iter 40 value 92.238629 iter 50 value 92.208162 iter 60 value 92.150641 iter 70 value 92.149821 iter 80 value 92.147277 final value 92.147251 converged Fitting Repeat 4 # weights: 305 initial value 101.582842 iter 10 value 94.057505 iter 20 value 93.858599 iter 30 value 93.241560 iter 40 value 93.226625 iter 50 value 93.194406 final value 93.179139 converged Fitting Repeat 5 # weights: 305 initial value 103.061509 iter 10 value 94.058234 iter 20 value 93.455575 iter 30 value 85.105054 iter 40 value 84.730772 iter 50 value 84.730202 iter 60 value 84.354474 iter 70 value 84.334264 iter 80 value 83.619734 iter 90 value 78.470006 iter 100 value 78.384677 final value 78.384677 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.145863 iter 10 value 92.260995 iter 20 value 90.660169 iter 30 value 90.580773 iter 40 value 90.289362 iter 50 value 90.288214 final value 90.287585 converged Fitting Repeat 2 # weights: 507 initial value 102.989117 iter 10 value 90.562716 iter 20 value 78.845140 iter 30 value 78.273100 iter 40 value 78.133774 iter 50 value 78.131890 iter 60 value 77.927105 iter 70 value 77.921252 iter 80 value 77.780663 iter 90 value 77.579743 iter 100 value 77.574998 final value 77.574998 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.019043 iter 10 value 94.061228 iter 20 value 94.051153 iter 30 value 91.928788 iter 40 value 84.634261 iter 50 value 84.467227 iter 60 value 84.466996 iter 70 value 84.465865 iter 80 value 84.167176 iter 90 value 82.926591 iter 100 value 80.244345 final value 80.244345 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.246748 iter 10 value 91.020000 iter 20 value 89.441361 iter 30 value 89.411760 final value 89.407961 converged Fitting Repeat 5 # weights: 507 initial value 96.162357 iter 10 value 94.054993 iter 20 value 93.860581 iter 30 value 86.717083 iter 40 value 80.180290 iter 50 value 80.155649 iter 60 value 80.134152 iter 70 value 80.125415 iter 80 value 80.099076 iter 90 value 79.569446 iter 100 value 77.405738 final value 77.405738 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.551362 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.877413 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.136869 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.687132 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.972772 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.067235 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 102.718147 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 97.725793 final value 94.443182 converged Fitting Repeat 4 # weights: 305 initial value 96.682194 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.407633 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 116.325606 final value 94.476190 converged Fitting Repeat 2 # weights: 507 initial value 98.768244 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 97.803344 iter 10 value 94.304608 iter 10 value 94.304608 iter 10 value 94.304608 final value 94.304608 converged Fitting Repeat 4 # weights: 507 initial value 99.517179 iter 10 value 94.457469 final value 94.457409 converged Fitting Repeat 5 # weights: 507 initial value 95.685286 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 97.855328 iter 10 value 92.410553 iter 20 value 86.233185 iter 30 value 85.917070 iter 40 value 85.767926 iter 50 value 85.354496 iter 60 value 84.846167 iter 70 value 84.679215 iter 80 value 84.551975 iter 90 value 84.504874 final value 84.504493 converged Fitting Repeat 2 # weights: 103 initial value 102.324434 iter 10 value 93.912552 iter 20 value 86.010611 iter 30 value 85.714343 iter 40 value 85.474251 iter 50 value 85.117161 iter 60 value 84.771868 iter 70 value 84.678971 iter 80 value 84.667067 iter 90 value 84.542477 iter 100 value 84.504493 final value 84.504493 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.155940 iter 10 value 94.487710 iter 20 value 86.704579 iter 30 value 85.863733 iter 40 value 85.576464 iter 50 value 85.162262 iter 60 value 84.714873 iter 70 value 84.665796 iter 80 value 84.527627 final value 84.504493 converged Fitting Repeat 4 # weights: 103 initial value 96.867752 iter 10 value 89.826276 iter 20 value 85.522827 iter 30 value 84.732127 iter 40 value 83.965030 iter 50 value 83.558626 iter 60 value 83.195137 iter 70 value 83.157947 final value 83.157299 converged Fitting Repeat 5 # weights: 103 initial value 109.041114 iter 10 value 92.375611 iter 20 value 87.782808 iter 30 value 86.274753 iter 40 value 86.255430 iter 50 value 85.982689 iter 60 value 85.887893 final value 85.887890 converged Fitting Repeat 1 # weights: 305 initial value 116.313567 iter 10 value 94.318542 iter 20 value 86.940891 iter 30 value 86.020961 iter 40 value 85.572325 iter 50 value 84.438552 iter 60 value 83.267267 iter 70 value 82.828662 iter 80 value 82.532770 iter 90 value 82.464751 iter 100 value 82.405587 final value 82.405587 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.031766 iter 10 value 94.537351 iter 20 value 91.272294 iter 30 value 85.989707 iter 40 value 85.515210 iter 50 value 84.315479 iter 60 value 82.849254 iter 70 value 82.561545 iter 80 value 82.283202 iter 90 value 82.201552 iter 100 value 82.098277 final value 82.098277 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 131.987270 iter 10 value 94.501003 iter 20 value 89.517038 iter 30 value 86.743546 iter 40 value 84.648939 iter 50 value 83.340896 iter 60 value 83.099509 iter 70 value 83.009603 iter 80 value 82.828901 iter 90 value 82.613609 iter 100 value 82.474183 final value 82.474183 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.115821 iter 10 value 94.950045 iter 20 value 94.196289 iter 30 value 86.943956 iter 40 value 86.481945 iter 50 value 84.482416 iter 60 value 83.889433 iter 70 value 83.458889 iter 80 value 82.934449 iter 90 value 82.212110 iter 100 value 82.163659 final value 82.163659 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.084281 iter 10 value 94.481232 iter 20 value 93.926283 iter 30 value 92.402483 iter 40 value 91.600645 iter 50 value 87.752051 iter 60 value 87.444219 iter 70 value 86.890959 iter 80 value 86.767100 iter 90 value 86.151108 iter 100 value 85.846538 final value 85.846538 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.451018 iter 10 value 94.494189 iter 20 value 93.092028 iter 30 value 87.124762 iter 40 value 85.234986 iter 50 value 84.336646 iter 60 value 82.665854 iter 70 value 82.388325 iter 80 value 82.157381 iter 90 value 82.053684 iter 100 value 82.048191 final value 82.048191 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 129.489856 iter 10 value 95.322625 iter 20 value 91.445997 iter 30 value 86.435703 iter 40 value 85.602648 iter 50 value 85.372104 iter 60 value 85.276471 iter 70 value 84.815401 iter 80 value 84.062548 iter 90 value 82.466710 iter 100 value 82.199772 final value 82.199772 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.372137 iter 10 value 91.400135 iter 20 value 86.488558 iter 30 value 86.074889 iter 40 value 85.440933 iter 50 value 83.684666 iter 60 value 82.866725 iter 70 value 82.412836 iter 80 value 82.052495 iter 90 value 81.845329 iter 100 value 81.764124 final value 81.764124 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.825309 iter 10 value 94.464515 iter 20 value 86.623505 iter 30 value 85.626101 iter 40 value 85.220128 iter 50 value 84.978138 iter 60 value 84.847741 iter 70 value 84.701702 iter 80 value 84.084673 iter 90 value 83.523267 iter 100 value 83.353210 final value 83.353210 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.932233 iter 10 value 94.547122 iter 20 value 92.373459 iter 30 value 91.107146 iter 40 value 89.665111 iter 50 value 88.897807 iter 60 value 86.250427 iter 70 value 83.142237 iter 80 value 82.493759 iter 90 value 82.439851 iter 100 value 82.086750 final value 82.086750 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.726049 final value 94.485929 converged Fitting Repeat 2 # weights: 103 initial value 94.996892 final value 94.485877 converged Fitting Repeat 3 # weights: 103 initial value 97.638337 final value 94.485844 converged Fitting Repeat 4 # weights: 103 initial value 110.410357 final value 94.485871 converged Fitting Repeat 5 # weights: 103 initial value 96.755599 final value 94.485641 converged Fitting Repeat 1 # weights: 305 initial value 95.289937 iter 10 value 94.488880 iter 20 value 94.028282 iter 30 value 87.821216 iter 40 value 87.738449 iter 50 value 87.283885 iter 60 value 85.198068 iter 70 value 85.057009 iter 80 value 85.053051 iter 90 value 85.052428 iter 100 value 84.891828 final value 84.891828 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.689457 iter 10 value 94.489271 iter 20 value 87.607472 final value 86.940863 converged Fitting Repeat 3 # weights: 305 initial value 130.226603 iter 10 value 94.487836 iter 20 value 94.466862 iter 30 value 85.352254 iter 40 value 84.993763 iter 50 value 84.991645 iter 60 value 84.910302 iter 70 value 84.861013 iter 80 value 83.805409 iter 90 value 83.585419 iter 100 value 83.583341 final value 83.583341 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.468029 iter 10 value 94.471660 iter 20 value 94.329030 iter 30 value 87.539975 iter 40 value 87.538775 iter 50 value 87.524540 iter 60 value 87.081670 iter 70 value 87.070712 final value 87.070675 converged Fitting Repeat 5 # weights: 305 initial value 102.605863 iter 10 value 94.484852 iter 20 value 94.362889 iter 30 value 91.173851 iter 40 value 91.172500 iter 50 value 90.421070 iter 60 value 85.372030 iter 70 value 83.558019 iter 80 value 83.468357 iter 90 value 83.467095 iter 100 value 83.466358 final value 83.466358 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.543709 iter 10 value 91.699416 iter 20 value 90.746524 iter 30 value 87.977727 iter 40 value 85.004923 iter 50 value 84.755591 iter 60 value 84.734663 iter 70 value 84.412453 iter 80 value 84.128653 iter 90 value 84.126213 iter 100 value 84.055413 final value 84.055413 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.870995 iter 10 value 94.492152 iter 20 value 94.476716 iter 30 value 94.473060 iter 40 value 94.461719 iter 50 value 90.851757 iter 60 value 85.680812 iter 70 value 85.095473 iter 80 value 84.977720 iter 90 value 84.860913 iter 100 value 84.806644 final value 84.806644 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.668922 iter 10 value 94.274345 iter 20 value 94.260936 iter 30 value 94.255071 iter 40 value 94.254500 iter 50 value 94.253702 iter 50 value 94.253701 final value 94.253701 converged Fitting Repeat 4 # weights: 507 initial value 99.917104 iter 10 value 94.492320 iter 20 value 94.484399 iter 30 value 93.719880 iter 40 value 91.426638 iter 50 value 91.357944 iter 60 value 86.579030 iter 70 value 85.706059 iter 80 value 85.085226 iter 90 value 85.053288 iter 100 value 84.995750 final value 84.995750 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.864735 iter 10 value 94.492312 iter 20 value 94.289838 iter 30 value 89.617550 iter 40 value 87.703702 iter 50 value 87.195060 iter 60 value 87.131025 iter 70 value 87.128781 iter 80 value 87.127958 iter 90 value 87.127409 iter 100 value 87.117661 final value 87.117661 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.846626 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.728391 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.596589 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.464835 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.704167 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.767060 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 102.785706 final value 94.484210 converged Fitting Repeat 3 # weights: 305 initial value 97.324571 final value 94.114232 converged Fitting Repeat 4 # weights: 305 initial value 109.925194 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 116.765904 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 98.673454 final value 94.114232 converged Fitting Repeat 2 # weights: 507 initial value 112.551726 iter 10 value 94.473131 final value 94.473118 converged Fitting Repeat 3 # weights: 507 initial value 112.643717 final value 94.473118 converged Fitting Repeat 4 # weights: 507 initial value 99.341095 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 109.995870 iter 10 value 94.473775 iter 20 value 94.473130 final value 94.473119 converged Fitting Repeat 1 # weights: 103 initial value 107.174224 iter 10 value 94.523300 iter 20 value 94.488596 iter 30 value 94.438957 iter 40 value 84.979583 iter 50 value 84.059097 iter 60 value 83.215766 iter 70 value 82.585261 iter 80 value 82.517749 iter 90 value 82.507040 iter 90 value 82.507040 iter 90 value 82.507040 final value 82.507040 converged Fitting Repeat 2 # weights: 103 initial value 99.750186 iter 10 value 94.286401 iter 20 value 94.122077 iter 30 value 92.637217 iter 40 value 86.857754 iter 50 value 83.224690 iter 60 value 82.893909 iter 70 value 82.689877 iter 80 value 82.003320 iter 90 value 81.478882 iter 100 value 81.401544 final value 81.401544 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.135932 iter 10 value 94.414691 iter 20 value 91.961642 iter 30 value 88.291607 iter 40 value 84.582420 iter 50 value 83.525233 iter 60 value 83.382210 final value 83.376742 converged Fitting Repeat 4 # weights: 103 initial value 115.443801 iter 10 value 94.414768 iter 20 value 91.536592 iter 30 value 83.787845 iter 40 value 82.980962 iter 50 value 82.862036 iter 60 value 81.956073 iter 70 value 81.488678 final value 81.484066 converged Fitting Repeat 5 # weights: 103 initial value 99.068949 iter 10 value 94.501795 iter 20 value 93.020427 iter 30 value 89.491135 iter 40 value 88.765677 iter 50 value 83.519518 iter 60 value 83.229295 iter 70 value 82.764656 iter 80 value 81.828804 iter 90 value 81.352471 iter 100 value 80.845914 final value 80.845914 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.691664 iter 10 value 94.496928 iter 20 value 94.291373 iter 30 value 92.011185 iter 40 value 91.337565 iter 50 value 91.050327 iter 60 value 90.876098 iter 70 value 90.831252 iter 80 value 85.031218 iter 90 value 83.681506 iter 100 value 82.433196 final value 82.433196 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 134.590505 iter 10 value 94.487195 iter 20 value 90.891555 iter 30 value 86.266107 iter 40 value 84.308742 iter 50 value 82.771160 iter 60 value 81.401838 iter 70 value 80.502138 iter 80 value 79.739009 iter 90 value 79.675370 iter 100 value 79.573497 final value 79.573497 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 121.321189 iter 10 value 94.481089 iter 20 value 86.437683 iter 30 value 83.967509 iter 40 value 82.375306 iter 50 value 81.899867 iter 60 value 80.707048 iter 70 value 80.438179 iter 80 value 80.347587 iter 90 value 80.161737 iter 100 value 79.750189 final value 79.750189 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.422120 iter 10 value 94.478450 iter 20 value 87.251162 iter 30 value 85.443473 iter 40 value 84.792450 iter 50 value 84.271346 iter 60 value 82.999523 iter 70 value 82.519131 iter 80 value 82.258597 iter 90 value 82.137214 iter 100 value 81.321756 final value 81.321756 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.672872 iter 10 value 88.084755 iter 20 value 83.538106 iter 30 value 82.962084 iter 40 value 82.881426 iter 50 value 82.674093 iter 60 value 81.692227 iter 70 value 81.283386 iter 80 value 80.452497 iter 90 value 79.715927 iter 100 value 79.427752 final value 79.427752 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.903849 iter 10 value 98.422635 iter 20 value 92.708038 iter 30 value 91.725659 iter 40 value 90.981876 iter 50 value 90.516296 iter 60 value 83.313149 iter 70 value 82.076227 iter 80 value 80.801258 iter 90 value 80.645746 iter 100 value 80.417035 final value 80.417035 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.775071 iter 10 value 95.202846 iter 20 value 94.499990 iter 30 value 92.306907 iter 40 value 83.254535 iter 50 value 82.611251 iter 60 value 82.139894 iter 70 value 81.635236 iter 80 value 81.352524 iter 90 value 80.926584 iter 100 value 80.101636 final value 80.101636 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.937910 iter 10 value 94.599802 iter 20 value 91.314985 iter 30 value 88.964728 iter 40 value 86.448273 iter 50 value 85.831078 iter 60 value 85.739013 iter 70 value 83.040983 iter 80 value 82.642309 iter 90 value 82.583855 iter 100 value 82.549054 final value 82.549054 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.773061 iter 10 value 92.770578 iter 20 value 85.743745 iter 30 value 85.357949 iter 40 value 83.614771 iter 50 value 81.698860 iter 60 value 81.478128 iter 70 value 81.279288 iter 80 value 80.831427 iter 90 value 79.948604 iter 100 value 79.394237 final value 79.394237 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.203648 iter 10 value 94.393869 iter 20 value 91.992034 iter 30 value 85.796882 iter 40 value 83.932385 iter 50 value 83.117666 iter 60 value 82.592791 iter 70 value 81.077539 iter 80 value 79.588119 iter 90 value 79.287542 iter 100 value 79.156792 final value 79.156792 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.650019 iter 10 value 93.346112 iter 20 value 92.990111 iter 30 value 91.796853 iter 40 value 91.791471 iter 50 value 91.436342 final value 91.089332 converged Fitting Repeat 2 # weights: 103 initial value 98.875876 final value 94.485928 converged Fitting Repeat 3 # weights: 103 initial value 95.589482 final value 94.485726 converged Fitting Repeat 4 # weights: 103 initial value 95.959754 final value 94.485795 converged Fitting Repeat 5 # weights: 103 initial value 95.579160 final value 94.485896 converged Fitting Repeat 1 # weights: 305 initial value 106.927027 iter 10 value 94.447254 iter 20 value 91.825588 iter 30 value 91.694517 iter 40 value 91.277763 iter 50 value 91.257387 iter 60 value 91.255695 iter 70 value 90.590318 iter 80 value 90.502951 iter 90 value 90.486083 final value 90.486078 converged Fitting Repeat 2 # weights: 305 initial value 94.731322 iter 10 value 94.487238 iter 20 value 94.484234 iter 30 value 93.087546 iter 40 value 88.193976 iter 50 value 84.353874 final value 84.231333 converged Fitting Repeat 3 # weights: 305 initial value 99.830642 iter 10 value 94.490599 iter 20 value 94.472820 iter 30 value 84.866557 iter 40 value 84.837517 iter 50 value 84.832208 iter 60 value 83.099596 iter 70 value 80.368650 iter 80 value 80.009056 iter 90 value 79.352340 iter 100 value 79.352166 final value 79.352166 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.622676 iter 10 value 94.488975 iter 20 value 94.283470 iter 30 value 90.973771 iter 40 value 84.286969 iter 50 value 84.232010 iter 60 value 82.276053 iter 70 value 82.181673 final value 82.173972 converged Fitting Repeat 5 # weights: 305 initial value 105.894531 iter 10 value 94.477892 iter 20 value 94.470224 iter 30 value 93.663776 iter 40 value 93.377616 iter 50 value 91.810487 iter 60 value 91.266661 iter 70 value 91.262455 iter 80 value 91.259099 iter 90 value 91.248460 iter 100 value 91.062706 final value 91.062706 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 97.032021 iter 10 value 94.461042 iter 20 value 94.451778 final value 94.450953 converged Fitting Repeat 2 # weights: 507 initial value 100.545732 iter 10 value 94.440912 iter 20 value 94.433729 iter 30 value 93.128797 iter 40 value 87.474365 iter 50 value 83.214154 iter 60 value 82.577548 iter 70 value 81.961691 iter 80 value 81.947820 iter 90 value 81.947176 final value 81.946993 converged Fitting Repeat 3 # weights: 507 initial value 111.974152 iter 10 value 94.491778 iter 20 value 94.343850 iter 30 value 91.146251 iter 40 value 84.504067 iter 50 value 84.052674 iter 60 value 83.943492 iter 70 value 83.941496 iter 80 value 83.806512 iter 90 value 81.130529 iter 100 value 79.483024 final value 79.483024 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.997717 iter 10 value 94.042214 iter 20 value 94.039562 iter 30 value 94.032595 iter 40 value 94.032230 iter 50 value 94.031734 final value 94.031296 converged Fitting Repeat 5 # weights: 507 initial value 103.668619 iter 10 value 94.492415 iter 20 value 94.448048 iter 30 value 90.794034 iter 40 value 84.873312 iter 50 value 83.462997 iter 60 value 82.552864 iter 70 value 81.385289 iter 80 value 79.731209 iter 90 value 79.228889 iter 100 value 79.201536 final value 79.201536 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.420312 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.808597 final value 93.836066 converged Fitting Repeat 3 # weights: 103 initial value 102.237205 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.244167 iter 10 value 93.861027 final value 93.860355 converged Fitting Repeat 5 # weights: 103 initial value 103.890467 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 113.918588 iter 10 value 93.836073 final value 93.836066 converged Fitting Repeat 2 # weights: 305 initial value 110.226185 final value 94.052874 converged Fitting Repeat 3 # weights: 305 initial value 103.094533 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 96.978746 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 100.348874 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.877681 final value 93.836066 converged Fitting Repeat 2 # weights: 507 initial value 102.552274 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 99.934649 iter 10 value 88.237116 iter 20 value 85.969460 iter 30 value 85.873446 iter 40 value 85.852396 final value 85.852310 converged Fitting Repeat 4 # weights: 507 initial value 100.905644 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 97.336614 final value 93.836066 converged Fitting Repeat 1 # weights: 103 initial value 98.232147 iter 10 value 92.951014 iter 20 value 86.020932 iter 30 value 85.242654 iter 40 value 84.585555 iter 50 value 84.344626 iter 60 value 84.151231 iter 70 value 84.079852 iter 80 value 84.061258 iter 80 value 84.061258 iter 80 value 84.061258 final value 84.061258 converged Fitting Repeat 2 # weights: 103 initial value 100.947458 iter 10 value 94.043293 iter 20 value 90.501590 iter 30 value 86.487814 iter 40 value 85.096993 iter 50 value 84.671298 iter 60 value 84.593325 iter 70 value 84.507621 iter 80 value 84.446100 iter 90 value 84.441427 final value 84.441399 converged Fitting Repeat 3 # weights: 103 initial value 97.419076 iter 10 value 94.056797 iter 20 value 93.894240 iter 30 value 93.891300 iter 40 value 93.646433 iter 50 value 91.234593 iter 60 value 90.101196 iter 70 value 87.919361 iter 80 value 85.636813 iter 90 value 84.886702 iter 100 value 84.483326 final value 84.483326 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.375795 iter 10 value 94.052509 iter 20 value 88.216205 iter 30 value 85.508021 iter 40 value 85.289401 iter 50 value 85.026507 iter 60 value 84.520116 iter 70 value 84.442103 final value 84.441400 converged Fitting Repeat 5 # weights: 103 initial value 97.691445 iter 10 value 94.055156 iter 20 value 90.946611 iter 30 value 85.948047 iter 40 value 84.099218 iter 50 value 83.903987 iter 60 value 83.844486 iter 70 value 83.706221 iter 80 value 83.690197 final value 83.680567 converged Fitting Repeat 1 # weights: 305 initial value 102.907820 iter 10 value 94.306130 iter 20 value 89.227004 iter 30 value 84.149445 iter 40 value 83.065592 iter 50 value 82.059571 iter 60 value 81.901524 iter 70 value 81.803176 iter 80 value 81.771231 iter 90 value 81.758189 iter 100 value 81.747556 final value 81.747556 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.327922 iter 10 value 94.290691 iter 20 value 88.658017 iter 30 value 87.832285 iter 40 value 86.447911 iter 50 value 85.898695 iter 60 value 85.382088 iter 70 value 84.450986 iter 80 value 83.533453 iter 90 value 83.182167 iter 100 value 83.176831 final value 83.176831 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.221646 iter 10 value 94.129788 iter 20 value 93.976091 iter 30 value 87.283657 iter 40 value 85.981869 iter 50 value 85.788100 iter 60 value 85.077348 iter 70 value 84.865322 iter 80 value 84.738859 iter 90 value 84.127818 iter 100 value 84.043117 final value 84.043117 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.033871 iter 10 value 94.044777 iter 20 value 86.966096 iter 30 value 86.106635 iter 40 value 84.742818 iter 50 value 84.541045 iter 60 value 84.302634 iter 70 value 84.168686 iter 80 value 84.154785 iter 90 value 84.141501 iter 100 value 84.033238 final value 84.033238 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.857525 iter 10 value 94.011331 iter 20 value 93.863224 iter 30 value 93.228851 iter 40 value 87.536289 iter 50 value 85.520306 iter 60 value 84.685076 iter 70 value 83.482593 iter 80 value 82.785535 iter 90 value 82.590920 iter 100 value 82.003761 final value 82.003761 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.209098 iter 10 value 95.449987 iter 20 value 89.882201 iter 30 value 86.751963 iter 40 value 85.434013 iter 50 value 84.077381 iter 60 value 83.220417 iter 70 value 82.409324 iter 80 value 81.935632 iter 90 value 81.879772 iter 100 value 81.814390 final value 81.814390 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.819754 iter 10 value 94.002883 iter 20 value 87.333025 iter 30 value 85.891184 iter 40 value 84.523596 iter 50 value 84.125012 iter 60 value 83.674491 iter 70 value 82.784771 iter 80 value 82.314262 iter 90 value 82.281890 iter 100 value 82.233435 final value 82.233435 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.345908 iter 10 value 97.451815 iter 20 value 89.702390 iter 30 value 86.005124 iter 40 value 84.745786 iter 50 value 83.114886 iter 60 value 82.686254 iter 70 value 82.438709 iter 80 value 82.152699 iter 90 value 82.062066 iter 100 value 82.051673 final value 82.051673 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.521285 iter 10 value 94.696331 iter 20 value 94.055492 iter 30 value 92.817088 iter 40 value 92.651772 iter 50 value 87.515527 iter 60 value 86.387755 iter 70 value 83.449681 iter 80 value 82.601806 iter 90 value 82.184216 iter 100 value 82.113342 final value 82.113342 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.946189 iter 10 value 94.035503 iter 20 value 90.545077 iter 30 value 85.676055 iter 40 value 84.597900 iter 50 value 83.780212 iter 60 value 82.982563 iter 70 value 82.433529 iter 80 value 82.310821 iter 90 value 82.170117 iter 100 value 82.160464 final value 82.160464 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.487273 final value 94.054755 converged Fitting Repeat 2 # weights: 103 initial value 100.273378 iter 10 value 93.862196 iter 20 value 93.837259 iter 30 value 93.784990 iter 30 value 93.784990 iter 30 value 93.784990 final value 93.784990 converged Fitting Repeat 3 # weights: 103 initial value 104.818726 final value 94.054814 converged Fitting Repeat 4 # weights: 103 initial value 100.801479 iter 10 value 94.054824 iter 20 value 93.999342 iter 30 value 90.121146 iter 40 value 85.994840 iter 50 value 85.989798 iter 60 value 85.779066 iter 70 value 85.696339 iter 80 value 85.695811 final value 85.695795 converged Fitting Repeat 5 # weights: 103 initial value 101.305341 iter 10 value 93.837721 iter 20 value 93.836708 iter 30 value 93.836245 final value 93.836242 converged Fitting Repeat 1 # weights: 305 initial value 110.662952 iter 10 value 94.016165 iter 20 value 94.015130 iter 30 value 94.011431 iter 40 value 93.815472 iter 50 value 87.089422 iter 60 value 86.203309 iter 70 value 85.811890 iter 80 value 84.021486 iter 90 value 83.107311 iter 100 value 82.757452 final value 82.757452 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.248496 iter 10 value 89.924484 iter 20 value 89.024203 iter 30 value 87.881274 iter 40 value 86.228048 iter 50 value 86.027152 iter 60 value 85.636771 iter 70 value 85.636260 iter 80 value 85.635295 iter 90 value 85.631725 iter 100 value 85.512275 final value 85.512275 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.773219 iter 10 value 94.058137 iter 20 value 94.036950 iter 30 value 85.909837 final value 85.672434 converged Fitting Repeat 4 # weights: 305 initial value 103.088784 iter 10 value 94.057904 iter 20 value 94.052949 iter 30 value 94.038928 iter 40 value 93.504486 iter 50 value 89.844730 iter 60 value 89.779148 iter 70 value 89.763717 iter 80 value 89.763279 iter 80 value 89.763278 iter 80 value 89.763278 final value 89.763278 converged Fitting Repeat 5 # weights: 305 initial value 100.934154 iter 10 value 94.057918 iter 20 value 93.995078 iter 30 value 86.202919 final value 86.202873 converged Fitting Repeat 1 # weights: 507 initial value 104.664319 iter 10 value 91.809353 iter 20 value 90.336454 iter 30 value 90.332519 iter 40 value 90.262161 iter 50 value 90.257279 iter 60 value 89.397089 iter 70 value 89.280205 iter 80 value 89.279972 final value 89.279311 converged Fitting Repeat 2 # weights: 507 initial value 92.945246 iter 10 value 89.069357 iter 20 value 87.651495 iter 30 value 87.615023 iter 40 value 87.517333 iter 50 value 86.366878 iter 60 value 84.563230 iter 70 value 82.952737 iter 80 value 82.948790 iter 90 value 82.947956 iter 100 value 82.946285 final value 82.946285 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.941550 iter 10 value 94.061598 iter 20 value 93.908280 iter 30 value 93.265806 iter 40 value 89.514568 iter 50 value 88.285116 iter 60 value 88.250386 iter 70 value 88.173885 iter 80 value 87.829507 iter 90 value 87.670124 final value 87.667200 converged Fitting Repeat 4 # weights: 507 initial value 102.685229 iter 10 value 88.267387 iter 20 value 84.654242 iter 30 value 84.185551 final value 84.185310 converged Fitting Repeat 5 # weights: 507 initial value 108.649530 iter 10 value 94.021251 iter 20 value 94.015611 iter 30 value 94.012368 iter 40 value 90.040103 iter 50 value 88.121426 iter 60 value 87.951006 iter 70 value 86.561649 iter 80 value 86.518795 iter 90 value 86.517189 iter 100 value 84.168816 final value 84.168816 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 138.667411 iter 10 value 117.763739 iter 20 value 117.728301 iter 30 value 113.117167 iter 40 value 112.787434 iter 50 value 112.786313 iter 60 value 112.778764 final value 112.778419 converged Fitting Repeat 2 # weights: 305 initial value 141.920115 iter 10 value 117.895008 iter 20 value 117.869437 iter 30 value 117.604630 iter 40 value 117.511541 final value 117.511389 converged Fitting Repeat 3 # weights: 305 initial value 120.742695 iter 10 value 117.764347 iter 20 value 117.737611 iter 30 value 116.230649 iter 40 value 108.479041 iter 50 value 106.258454 iter 60 value 106.224114 iter 70 value 106.220718 iter 80 value 106.219414 final value 106.216898 converged Fitting Repeat 4 # weights: 305 initial value 119.366651 iter 10 value 117.894504 iter 20 value 112.407813 iter 30 value 107.645752 iter 40 value 104.262163 iter 50 value 102.503821 iter 60 value 101.285140 iter 70 value 101.221991 iter 80 value 101.219597 final value 101.217794 converged Fitting Repeat 5 # weights: 305 initial value 123.534199 iter 10 value 117.210957 iter 20 value 117.207000 final value 117.206757 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 12 07:53:22 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. Use `.name_repair = "minimal"`. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 42.028 1.702 50.196
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 31.435 | 0.740 | 32.176 | |
FreqInteractors | 0.165 | 0.004 | 0.169 | |
calculateAAC | 0.050 | 0.008 | 0.059 | |
calculateAutocor | 0.297 | 0.004 | 0.302 | |
calculateBE | 0.075 | 0.000 | 0.075 | |
calculateCTDC | 0.082 | 0.000 | 0.082 | |
calculateCTDD | 0.686 | 0.008 | 0.695 | |
calculateCTDT | 0.222 | 0.000 | 0.222 | |
calculateCTriad | 0.314 | 0.004 | 0.318 | |
calculateDC | 0.112 | 0.000 | 0.112 | |
calculateF | 0.294 | 0.000 | 0.294 | |
calculateKSAAP | 0.084 | 0.004 | 0.088 | |
calculateQD_Sm | 1.774 | 0.048 | 1.823 | |
calculateTC | 2.971 | 0.036 | 3.007 | |
calculateTC_Sm | 0.233 | 0.004 | 0.236 | |
corr_plot | 35.793 | 0.568 | 36.361 | |
enrichfindP | 0.409 | 0.016 | 8.824 | |
enrichplot | 0.235 | 0.004 | 0.239 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.070 | 0.000 | 2.576 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.003 | 0.000 | 0.002 | |
plotPPI | 0.101 | 0.004 | 0.105 | |
pred_ensembel | 14.780 | 0.416 | 11.299 | |
var_imp | 34.596 | 0.760 | 35.357 | |