Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:06:42 -0400 (Wed, 13 Apr 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 886/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.0.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: HPiP |
Version: 1.0.0 |
Command: C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings HPiP_1.0.0.tar.gz |
StartedAt: 2022-04-12 21:12:52 -0400 (Tue, 12 Apr 2022) |
EndedAt: 2022-04-12 21:21:48 -0400 (Tue, 12 Apr 2022) |
EllapsedTime: 536.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings HPiP_1.0.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck' * using R version 4.1.3 (2022-03-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.0.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 37.29 1.08 39.25 var_imp 35.70 2.05 37.75 FSmethod 34.44 2.42 36.86 pred_ensembel 21.00 0.43 13.47 enrichfindP 0.50 0.03 8.40 ** running examples for arch 'x64' ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 33.42 2.34 35.81 corr_plot 34.53 1.17 35.73 FSmethod 31.45 2.27 33.76 pred_ensembel 18.45 0.27 13.83 enrichfindP 0.47 0.03 8.31 * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'runTests.R' OK ** running tests for arch 'x64' ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'C:/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O http://155.52.207.166/BBS/3.14/bioc/src/contrib/HPiP_1.0.0.tar.gz && rm -rf HPiP.buildbin-libdir && mkdir HPiP.buildbin-libdir && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=HPiP.buildbin-libdir HPiP_1.0.0.tar.gz && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL HPiP_1.0.0.zip && rm HPiP_1.0.0.tar.gz HPiP_1.0.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 22 2994k 22 684k 0 0 1074k 0 0:00:02 --:--:-- 0:00:02 1073k 88 2994k 88 2658k 0 0 1623k 0 0:00:01 0:00:01 --:--:-- 1623k 100 2994k 100 2994k 0 0 1708k 0 0:00:01 0:00:01 --:--:-- 1708k install for i386 * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package 'HPiP' finding HTML links ... done FSmethod html FreqInteractors html Gold_ReferenceSet html UP000464024_df html calculateAAC html calculateAutocor html calculateBE html calculateCTDC html calculateCTDD html calculateCTDT html calculateCTriad html calculateDC html calculateF html calculateKSAAP html calculateQD_Sm html calculateTC html calculateTC_Sm html corr_plot html enrich.df html enrichfindP html enrichplot html example_data html filter_missing_values html getFASTA html getHPI html get_negativePPI html get_positivePPI html host_se html impute_missing_data html plotPPI html pred_ensembel html predicted_PPIs html unlabel_data html var_imp html viral_se html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'HPiP' ... ** testing if installed package can be loaded * MD5 sums packaged installation of 'HPiP' as HPiP_1.0.0.zip * DONE (HPiP) * installing to library 'C:/Users/biocbuild/bbs-3.14-bioc/R/library' package 'HPiP' successfully unpacked and MD5 sums checked
HPiP.Rcheck/tests_i386/runTests.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.973158 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.041972 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.815728 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.367979 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 109.101767 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.112847 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.176102 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 109.086890 iter 10 value 94.276316 final value 94.132982 converged Fitting Repeat 4 # weights: 305 initial value 104.541369 final value 94.477594 converged Fitting Repeat 5 # weights: 305 initial value 98.800468 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 114.793083 final value 94.046704 converged Fitting Repeat 2 # weights: 507 initial value 107.493035 iter 10 value 94.275362 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 3 # weights: 507 initial value 97.620601 iter 10 value 93.843967 final value 93.843960 converged Fitting Repeat 4 # weights: 507 initial value 101.086037 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 115.269503 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 102.026223 iter 10 value 94.399523 iter 20 value 88.558443 iter 30 value 88.417183 iter 40 value 87.457927 iter 50 value 87.315386 iter 60 value 87.122308 iter 70 value 84.741663 iter 80 value 84.453877 iter 90 value 84.020589 iter 100 value 83.990042 final value 83.990042 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.894756 iter 10 value 94.105469 iter 20 value 85.532707 iter 30 value 85.012826 iter 40 value 84.544459 iter 50 value 84.298913 iter 60 value 84.068454 iter 70 value 83.988630 final value 83.987960 converged Fitting Repeat 3 # weights: 103 initial value 96.276633 iter 10 value 94.486235 iter 20 value 87.584474 iter 30 value 84.873955 iter 40 value 84.396049 iter 50 value 84.289654 iter 60 value 84.084284 iter 70 value 84.081532 iter 80 value 84.008862 iter 90 value 83.987971 final value 83.987960 converged Fitting Repeat 4 # weights: 103 initial value 103.698037 iter 10 value 94.479525 iter 20 value 94.119437 iter 30 value 94.101321 iter 40 value 94.100769 iter 50 value 89.355855 iter 60 value 87.477616 iter 70 value 87.278386 iter 80 value 86.710906 iter 90 value 84.817131 iter 100 value 84.615581 final value 84.615581 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.188841 iter 10 value 94.484273 iter 20 value 94.359707 iter 30 value 88.431923 iter 40 value 86.226178 iter 50 value 85.416470 iter 60 value 84.576198 iter 70 value 83.848842 iter 80 value 83.622019 iter 90 value 83.535449 iter 100 value 83.470471 final value 83.470471 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.239716 iter 10 value 94.430649 iter 20 value 91.569683 iter 30 value 86.137953 iter 40 value 85.122132 iter 50 value 83.138965 iter 60 value 82.348222 iter 70 value 82.144676 iter 80 value 81.893021 iter 90 value 81.564854 iter 100 value 81.378277 final value 81.378277 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.733152 iter 10 value 94.502631 iter 20 value 92.800275 iter 30 value 92.103694 iter 40 value 91.948409 iter 50 value 91.710087 iter 60 value 88.088442 iter 70 value 85.323163 iter 80 value 84.366849 iter 90 value 83.746289 iter 100 value 83.357081 final value 83.357081 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.252723 iter 10 value 94.488168 iter 20 value 93.693062 iter 30 value 91.360821 iter 40 value 86.446222 iter 50 value 85.936819 iter 60 value 83.745754 iter 70 value 82.758278 iter 80 value 82.333247 iter 90 value 81.568360 iter 100 value 81.498417 final value 81.498417 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.388562 iter 10 value 94.483518 iter 20 value 87.026190 iter 30 value 84.589606 iter 40 value 81.102861 iter 50 value 81.055105 iter 60 value 80.733846 iter 70 value 80.433755 iter 80 value 80.067518 iter 90 value 79.967575 iter 100 value 79.856456 final value 79.856456 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.860245 iter 10 value 94.536915 iter 20 value 89.134451 iter 30 value 85.386017 iter 40 value 84.231332 iter 50 value 81.831026 iter 60 value 81.283897 iter 70 value 80.905085 iter 80 value 80.659140 iter 90 value 80.522483 iter 100 value 80.514529 final value 80.514529 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.343790 iter 10 value 94.595159 iter 20 value 93.408952 iter 30 value 85.341969 iter 40 value 84.809293 iter 50 value 82.812204 iter 60 value 81.833052 iter 70 value 81.287081 iter 80 value 80.563014 iter 90 value 80.462170 iter 100 value 80.264959 final value 80.264959 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.747888 iter 10 value 94.513110 iter 20 value 93.407995 iter 30 value 86.290833 iter 40 value 85.999016 iter 50 value 85.401810 iter 60 value 84.631814 iter 70 value 84.083744 iter 80 value 83.793810 iter 90 value 83.699397 iter 100 value 83.670151 final value 83.670151 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.823889 iter 10 value 94.576749 iter 20 value 94.345343 iter 30 value 87.585442 iter 40 value 86.599932 iter 50 value 84.661758 iter 60 value 83.889376 iter 70 value 82.299547 iter 80 value 81.736143 iter 90 value 81.272033 iter 100 value 80.854713 final value 80.854713 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.285811 iter 10 value 94.808041 iter 20 value 94.507477 iter 30 value 85.554783 iter 40 value 85.087973 iter 50 value 84.512625 iter 60 value 83.827592 iter 70 value 82.894309 iter 80 value 81.969106 iter 90 value 81.854800 iter 100 value 81.851255 final value 81.851255 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.591084 iter 10 value 94.617947 iter 20 value 93.474612 iter 30 value 84.278028 iter 40 value 83.181120 iter 50 value 82.500039 iter 60 value 81.854570 iter 70 value 80.848300 iter 80 value 80.507751 iter 90 value 80.155081 iter 100 value 79.937859 final value 79.937859 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.180205 iter 10 value 94.277126 iter 20 value 94.273678 final value 94.265967 converged Fitting Repeat 2 # weights: 103 initial value 95.408976 iter 10 value 94.277236 iter 20 value 94.275916 iter 30 value 93.884162 iter 40 value 84.052562 iter 50 value 84.036995 iter 60 value 84.036596 iter 70 value 83.721944 final value 83.721836 converged Fitting Repeat 3 # weights: 103 initial value 100.183191 iter 10 value 94.485969 final value 94.484215 converged Fitting Repeat 4 # weights: 103 initial value 98.776340 final value 94.486033 converged Fitting Repeat 5 # weights: 103 initial value 99.966403 iter 10 value 94.277138 iter 20 value 94.276491 iter 30 value 94.038841 final value 94.038329 converged Fitting Repeat 1 # weights: 305 initial value 104.606116 iter 10 value 89.848018 iter 20 value 88.160475 iter 30 value 87.928704 iter 40 value 87.921633 iter 50 value 85.686037 iter 60 value 85.546261 final value 85.546259 converged Fitting Repeat 2 # weights: 305 initial value 98.986516 iter 10 value 94.492095 iter 20 value 94.486501 final value 94.486479 converged Fitting Repeat 3 # weights: 305 initial value 94.478930 iter 10 value 94.280559 iter 20 value 94.050878 iter 30 value 94.038328 final value 94.038275 converged Fitting Repeat 4 # weights: 305 initial value 109.212602 iter 10 value 94.489104 iter 20 value 94.483753 iter 30 value 85.712624 iter 40 value 85.041134 iter 50 value 83.565204 iter 60 value 83.555400 iter 70 value 83.554650 iter 80 value 83.546371 iter 90 value 83.032029 iter 100 value 82.887540 final value 82.887540 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 98.153405 iter 10 value 94.488302 iter 20 value 94.342388 iter 30 value 89.005744 iter 40 value 86.833151 iter 50 value 85.569840 iter 60 value 82.597522 iter 70 value 82.578686 iter 80 value 82.578309 iter 80 value 82.578308 iter 80 value 82.578308 final value 82.578308 converged Fitting Repeat 1 # weights: 507 initial value 119.688935 iter 10 value 94.492886 iter 20 value 94.377285 iter 30 value 91.954178 iter 40 value 87.946979 iter 50 value 82.662678 iter 60 value 82.524545 final value 82.524263 converged Fitting Repeat 2 # weights: 507 initial value 98.634256 iter 10 value 94.492508 iter 20 value 94.458399 iter 30 value 91.412784 iter 40 value 90.286072 iter 50 value 90.280042 iter 60 value 90.274897 iter 70 value 88.865189 iter 80 value 82.626159 iter 90 value 79.951983 iter 100 value 79.951030 final value 79.951030 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.870794 iter 10 value 89.871686 iter 20 value 89.714231 iter 30 value 89.674470 iter 40 value 89.660951 iter 50 value 89.551252 iter 60 value 89.547763 iter 70 value 89.546064 iter 80 value 87.001066 iter 90 value 83.700046 iter 100 value 83.521722 final value 83.521722 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.871124 iter 10 value 94.283676 iter 20 value 93.907703 iter 30 value 87.601365 iter 40 value 86.885530 iter 50 value 86.885149 iter 60 value 85.915207 iter 70 value 85.845920 iter 80 value 85.845687 iter 90 value 85.776459 iter 100 value 83.100220 final value 83.100220 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.355334 iter 10 value 94.273752 iter 20 value 92.107896 iter 30 value 86.564986 final value 86.564984 converged Fitting Repeat 1 # weights: 103 initial value 103.670461 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 110.237799 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.757383 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.796855 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.774905 final value 94.466823 converged Fitting Repeat 1 # weights: 305 initial value 94.587641 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.841456 final value 93.783647 converged Fitting Repeat 3 # weights: 305 initial value 107.237209 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 115.737916 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 106.700461 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.691506 iter 10 value 87.472619 iter 20 value 82.808819 iter 30 value 82.296137 iter 40 value 82.283572 iter 50 value 82.283358 iter 50 value 82.283357 iter 50 value 82.283357 final value 82.283357 converged Fitting Repeat 2 # weights: 507 initial value 111.604078 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.996039 final value 94.484138 converged Fitting Repeat 4 # weights: 507 initial value 112.226766 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 105.294747 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.744742 iter 10 value 94.478302 iter 20 value 94.316069 iter 30 value 94.257422 iter 40 value 88.911257 iter 50 value 85.221249 iter 60 value 84.488457 iter 70 value 84.148638 iter 80 value 84.121115 final value 84.120913 converged Fitting Repeat 2 # weights: 103 initial value 102.227216 iter 10 value 94.488425 iter 20 value 91.182130 iter 30 value 85.061667 iter 40 value 83.882146 final value 83.727542 converged Fitting Repeat 3 # weights: 103 initial value 104.260287 iter 10 value 94.451200 iter 20 value 86.351411 iter 30 value 84.617539 iter 40 value 84.183663 iter 50 value 83.467367 iter 60 value 82.528698 iter 70 value 82.514662 final value 82.514655 converged Fitting Repeat 4 # weights: 103 initial value 97.176591 iter 10 value 93.928426 iter 20 value 91.393071 iter 30 value 87.654162 iter 40 value 86.112871 iter 50 value 84.751616 iter 60 value 84.312719 iter 70 value 84.134079 iter 80 value 84.121236 final value 84.120913 converged Fitting Repeat 5 # weights: 103 initial value 102.385968 iter 10 value 94.475649 iter 20 value 93.046598 iter 30 value 92.003840 iter 40 value 91.894174 iter 50 value 91.618790 iter 60 value 87.636132 iter 70 value 86.351702 iter 80 value 85.774914 iter 90 value 85.062874 iter 100 value 83.795141 final value 83.795141 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.857223 iter 10 value 94.493221 iter 20 value 90.210645 iter 30 value 88.655479 iter 40 value 88.346361 iter 50 value 88.196618 iter 60 value 86.116246 iter 70 value 84.296551 iter 80 value 83.166322 iter 90 value 82.468428 iter 100 value 82.144334 final value 82.144334 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.518429 iter 10 value 94.407583 iter 20 value 87.168961 iter 30 value 83.300859 iter 40 value 81.555862 iter 50 value 81.112584 iter 60 value 81.021134 iter 70 value 80.580585 iter 80 value 80.520564 iter 90 value 80.333062 iter 100 value 80.276720 final value 80.276720 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.306703 iter 10 value 94.456336 iter 20 value 93.879783 iter 30 value 93.754035 iter 40 value 89.652787 iter 50 value 87.662201 iter 60 value 85.060912 iter 70 value 84.446625 iter 80 value 83.977937 iter 90 value 81.750723 iter 100 value 81.120581 final value 81.120581 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.263117 iter 10 value 84.759185 iter 20 value 83.632575 iter 30 value 82.813634 iter 40 value 82.399355 iter 50 value 82.347610 iter 60 value 82.296951 iter 70 value 82.085402 iter 80 value 81.831413 iter 90 value 81.619822 iter 100 value 81.355367 final value 81.355367 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.196305 iter 10 value 94.519837 iter 20 value 89.675552 iter 30 value 85.949481 iter 40 value 84.793537 iter 50 value 84.390382 iter 60 value 83.620488 iter 70 value 81.989234 iter 80 value 81.476101 iter 90 value 81.209181 iter 100 value 81.065317 final value 81.065317 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.563220 iter 10 value 92.682946 iter 20 value 87.773353 iter 30 value 86.902767 iter 40 value 84.699102 iter 50 value 84.196064 iter 60 value 83.578744 iter 70 value 83.055543 iter 80 value 82.604974 iter 90 value 82.240617 iter 100 value 82.143257 final value 82.143257 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.120483 iter 10 value 94.636138 iter 20 value 88.030540 iter 30 value 84.353486 iter 40 value 83.643665 iter 50 value 82.863914 iter 60 value 82.372324 iter 70 value 81.678086 iter 80 value 80.668819 iter 90 value 80.170471 iter 100 value 79.984030 final value 79.984030 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.832858 iter 10 value 87.279131 iter 20 value 85.893470 iter 30 value 84.516541 iter 40 value 82.924900 iter 50 value 82.352765 iter 60 value 81.877463 iter 70 value 81.739632 iter 80 value 81.626668 iter 90 value 81.458921 iter 100 value 81.261008 final value 81.261008 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.314296 iter 10 value 94.776375 iter 20 value 94.462971 iter 30 value 89.547385 iter 40 value 85.834026 iter 50 value 84.150987 iter 60 value 83.579116 iter 70 value 82.001992 iter 80 value 81.659064 iter 90 value 81.486227 iter 100 value 80.959685 final value 80.959685 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 138.425035 iter 10 value 103.579923 iter 20 value 93.477849 iter 30 value 85.703142 iter 40 value 84.305869 iter 50 value 84.027600 iter 60 value 83.588688 iter 70 value 81.650254 iter 80 value 80.849688 iter 90 value 80.597278 iter 100 value 80.410365 final value 80.410365 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.184533 final value 94.485823 converged Fitting Repeat 2 # weights: 103 initial value 99.142165 final value 94.485804 converged Fitting Repeat 3 # weights: 103 initial value 100.705956 final value 94.468413 converged Fitting Repeat 4 # weights: 103 initial value 115.903725 iter 10 value 94.485956 iter 20 value 94.484216 iter 20 value 94.484216 iter 20 value 94.484216 final value 94.484216 converged Fitting Repeat 5 # weights: 103 initial value 98.098801 final value 94.485700 converged Fitting Repeat 1 # weights: 305 initial value 134.572859 iter 10 value 94.391872 iter 20 value 94.389382 iter 30 value 94.312801 iter 40 value 94.310657 final value 94.310652 converged Fitting Repeat 2 # weights: 305 initial value 96.111607 iter 10 value 94.451668 iter 20 value 94.272985 iter 30 value 94.253275 final value 94.252665 converged Fitting Repeat 3 # weights: 305 initial value 97.088890 iter 10 value 93.607357 iter 20 value 87.077341 iter 30 value 86.781830 iter 40 value 86.777095 final value 86.776609 converged Fitting Repeat 4 # weights: 305 initial value 115.086785 iter 10 value 94.488621 iter 20 value 85.409885 iter 30 value 85.061922 iter 40 value 85.038243 final value 85.038239 converged Fitting Repeat 5 # weights: 305 initial value 95.886535 iter 10 value 94.488308 iter 20 value 94.320376 iter 30 value 88.353765 iter 40 value 88.310284 iter 50 value 87.564489 iter 60 value 86.487816 iter 70 value 85.603189 iter 80 value 84.668563 iter 90 value 83.047921 iter 100 value 81.169030 final value 81.169030 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.644859 iter 10 value 94.384523 iter 20 value 94.169043 iter 30 value 94.140183 iter 40 value 92.852965 iter 50 value 92.290216 iter 60 value 92.289779 iter 70 value 90.317698 iter 80 value 87.702343 iter 90 value 87.579544 iter 100 value 87.092116 final value 87.092116 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.203060 iter 10 value 94.492783 iter 20 value 94.391985 iter 30 value 86.902453 iter 40 value 86.878711 iter 50 value 86.876252 iter 60 value 85.666032 iter 70 value 84.878970 iter 80 value 84.877902 iter 90 value 84.732285 iter 100 value 83.912785 final value 83.912785 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.274401 iter 10 value 94.492601 iter 20 value 94.443786 iter 30 value 86.508260 iter 40 value 84.875876 final value 84.875138 converged Fitting Repeat 4 # weights: 507 initial value 98.498298 iter 10 value 94.318093 iter 20 value 94.296018 iter 30 value 92.837433 iter 40 value 86.979508 iter 50 value 83.462985 iter 60 value 83.457606 iter 70 value 83.456895 final value 83.456832 converged Fitting Repeat 5 # weights: 507 initial value 113.588452 iter 10 value 94.321322 iter 20 value 94.150036 iter 30 value 92.214662 iter 40 value 84.293677 final value 84.293104 converged Fitting Repeat 1 # weights: 103 initial value 97.917530 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 112.480556 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.189288 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.251037 final value 92.892738 converged Fitting Repeat 5 # weights: 103 initial value 99.499798 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.673972 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 102.011108 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 100.933269 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.176089 iter 10 value 91.192764 final value 90.811799 converged Fitting Repeat 5 # weights: 305 initial value 97.412113 final value 92.892737 converged Fitting Repeat 1 # weights: 507 initial value 112.600017 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 98.365475 iter 10 value 89.905822 iter 20 value 81.685350 iter 30 value 81.550164 iter 40 value 81.548537 final value 81.548373 converged Fitting Repeat 3 # weights: 507 initial value 120.450231 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 102.357817 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 114.239050 iter 10 value 93.836066 iter 10 value 93.836066 iter 10 value 93.836066 final value 93.836066 converged Fitting Repeat 1 # weights: 103 initial value 104.209604 iter 10 value 94.056772 iter 20 value 93.942770 iter 30 value 86.177455 iter 40 value 84.068530 iter 50 value 83.725794 iter 60 value 83.591529 iter 70 value 83.195111 final value 83.164809 converged Fitting Repeat 2 # weights: 103 initial value 114.356014 iter 10 value 93.394439 iter 20 value 91.677089 iter 30 value 85.677656 iter 40 value 84.221165 iter 50 value 83.823717 iter 60 value 83.425088 iter 70 value 82.890696 iter 80 value 82.742123 final value 82.742064 converged Fitting Repeat 3 # weights: 103 initial value 98.700098 iter 10 value 94.056247 iter 20 value 94.047970 iter 30 value 83.134085 iter 40 value 82.581237 iter 50 value 81.529627 iter 60 value 81.097359 iter 70 value 80.112072 iter 80 value 79.922493 final value 79.908483 converged Fitting Repeat 4 # weights: 103 initial value 96.107964 iter 10 value 93.706026 iter 20 value 89.317745 iter 30 value 83.092564 iter 40 value 81.660645 iter 50 value 81.429848 final value 81.405313 converged Fitting Repeat 5 # weights: 103 initial value 96.121908 iter 10 value 94.057027 iter 20 value 89.252391 iter 30 value 84.999483 iter 40 value 84.403293 iter 50 value 84.163401 iter 60 value 83.631902 iter 70 value 83.211173 iter 80 value 83.164958 final value 83.164809 converged Fitting Repeat 1 # weights: 305 initial value 104.182339 iter 10 value 94.100810 iter 20 value 93.821039 iter 30 value 93.507316 iter 40 value 93.255009 iter 50 value 91.787211 iter 60 value 81.104359 iter 70 value 79.374445 iter 80 value 77.851533 iter 90 value 77.414992 iter 100 value 77.211548 final value 77.211548 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.797905 iter 10 value 93.883538 iter 20 value 85.672143 iter 30 value 85.142325 iter 40 value 84.309289 iter 50 value 80.591593 iter 60 value 78.718807 iter 70 value 78.345468 iter 80 value 77.424044 iter 90 value 77.052811 final value 77.004072 converged Fitting Repeat 3 # weights: 305 initial value 108.303133 iter 10 value 93.904270 iter 20 value 86.069602 iter 30 value 85.293523 iter 40 value 84.799713 iter 50 value 82.171671 iter 60 value 79.736720 iter 70 value 78.001722 iter 80 value 77.414539 iter 90 value 77.206898 iter 100 value 76.987986 final value 76.987986 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.845410 iter 10 value 93.888119 iter 20 value 82.106119 iter 30 value 81.299904 iter 40 value 80.299459 iter 50 value 78.840011 iter 60 value 78.547901 iter 70 value 78.175478 iter 80 value 78.054504 iter 90 value 77.681625 iter 100 value 77.394890 final value 77.394890 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.826069 iter 10 value 93.809697 iter 20 value 86.182913 iter 30 value 82.652648 iter 40 value 79.251527 iter 50 value 77.545259 iter 60 value 76.917779 iter 70 value 76.702337 iter 80 value 76.594560 iter 90 value 76.486580 iter 100 value 76.429622 final value 76.429622 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.861885 iter 10 value 94.198417 iter 20 value 88.100979 iter 30 value 83.099591 iter 40 value 81.974363 iter 50 value 81.519679 iter 60 value 80.966997 iter 70 value 79.406116 iter 80 value 78.628241 iter 90 value 78.066973 iter 100 value 77.920645 final value 77.920645 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 126.781090 iter 10 value 93.948335 iter 20 value 87.097036 iter 30 value 80.712961 iter 40 value 78.708020 iter 50 value 77.257782 iter 60 value 77.015401 iter 70 value 76.767047 iter 80 value 76.728279 iter 90 value 76.672311 iter 100 value 76.632871 final value 76.632871 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.704559 iter 10 value 94.120218 iter 20 value 84.828884 iter 30 value 82.076702 iter 40 value 80.074469 iter 50 value 78.303843 iter 60 value 77.236488 iter 70 value 76.735702 iter 80 value 76.582786 iter 90 value 76.431798 iter 100 value 76.234934 final value 76.234934 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.922102 iter 10 value 95.592365 iter 20 value 92.515889 iter 30 value 89.555619 iter 40 value 83.229041 iter 50 value 80.788410 iter 60 value 80.264410 iter 70 value 79.448905 iter 80 value 78.221081 iter 90 value 77.927294 iter 100 value 77.220051 final value 77.220051 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.483319 iter 10 value 93.745080 iter 20 value 87.488023 iter 30 value 81.307679 iter 40 value 80.243789 iter 50 value 77.931278 iter 60 value 77.789093 iter 70 value 77.674672 iter 80 value 77.629988 iter 90 value 77.454675 iter 100 value 77.410129 final value 77.410129 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.441344 final value 94.054569 converged Fitting Repeat 2 # weights: 103 initial value 96.183035 final value 94.054622 converged Fitting Repeat 3 # weights: 103 initial value 95.767253 final value 94.054511 converged Fitting Repeat 4 # weights: 103 initial value 98.803409 iter 10 value 94.054497 iter 20 value 94.052940 final value 94.052912 converged Fitting Repeat 5 # weights: 103 initial value 98.595770 iter 10 value 92.935198 iter 20 value 92.933878 iter 30 value 92.933665 iter 40 value 91.924274 iter 50 value 79.169274 iter 60 value 77.758484 iter 70 value 77.484625 iter 80 value 77.164498 iter 90 value 77.163159 iter 100 value 77.162642 final value 77.162642 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 95.055126 iter 10 value 93.710098 iter 20 value 93.677407 iter 30 value 92.937279 iter 40 value 92.934643 final value 92.934445 converged Fitting Repeat 2 # weights: 305 initial value 113.346913 iter 10 value 94.058068 iter 20 value 94.053387 iter 30 value 92.937299 final value 92.933709 converged Fitting Repeat 3 # weights: 305 initial value 97.149676 iter 10 value 93.841251 iter 20 value 93.836794 final value 93.836288 converged Fitting Repeat 4 # weights: 305 initial value 94.132402 iter 10 value 83.940394 iter 20 value 81.594443 iter 30 value 80.663059 iter 40 value 79.939583 iter 50 value 79.504483 iter 60 value 79.500518 iter 70 value 79.496677 iter 80 value 79.460376 iter 90 value 79.038756 iter 100 value 79.009856 final value 79.009856 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.799278 iter 10 value 93.769617 iter 20 value 93.768224 iter 30 value 93.765275 iter 40 value 93.765137 final value 93.765111 converged Fitting Repeat 1 # weights: 507 initial value 101.909753 iter 10 value 93.844129 iter 20 value 93.836654 iter 30 value 93.836173 iter 40 value 90.011305 iter 50 value 89.958259 final value 89.958103 converged Fitting Repeat 2 # weights: 507 initial value 100.319602 iter 10 value 93.845891 iter 20 value 93.833385 iter 30 value 92.918324 iter 40 value 92.764775 iter 50 value 86.315663 iter 60 value 83.195622 iter 70 value 83.186018 final value 83.186015 converged Fitting Repeat 3 # weights: 507 initial value 100.453446 iter 10 value 89.596284 iter 20 value 86.460913 iter 30 value 81.249476 iter 40 value 79.842034 iter 50 value 79.638093 iter 60 value 79.052408 iter 70 value 78.667699 iter 80 value 78.457544 iter 90 value 77.412223 iter 100 value 77.034730 final value 77.034730 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.261094 iter 10 value 92.725339 iter 20 value 92.722470 iter 30 value 92.716386 iter 40 value 91.538326 iter 50 value 85.771494 iter 60 value 79.380836 iter 70 value 78.599823 iter 80 value 77.424947 iter 90 value 76.174759 iter 100 value 75.803774 final value 75.803774 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.941184 iter 10 value 94.061524 iter 20 value 94.003499 iter 30 value 93.766362 iter 40 value 93.764074 iter 40 value 93.764073 iter 40 value 93.764073 final value 93.764073 converged Fitting Repeat 1 # weights: 103 initial value 95.001266 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.876303 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.757999 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.359311 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.550603 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 108.048578 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.762103 final value 94.338744 converged Fitting Repeat 3 # weights: 305 initial value 121.323184 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.174506 final value 94.264858 converged Fitting Repeat 5 # weights: 305 initial value 118.012879 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.873213 final value 94.312036 converged Fitting Repeat 2 # weights: 507 initial value 119.099506 iter 10 value 94.433817 iter 10 value 94.433816 iter 10 value 94.433816 final value 94.433816 converged Fitting Repeat 3 # weights: 507 initial value 110.931250 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 98.686712 final value 94.443243 converged Fitting Repeat 5 # weights: 507 initial value 98.118038 iter 10 value 94.324994 iter 20 value 94.323863 final value 94.323810 converged Fitting Repeat 1 # weights: 103 initial value 100.343802 iter 10 value 94.492299 iter 20 value 88.773544 iter 30 value 85.389552 iter 40 value 85.320028 iter 50 value 82.961037 iter 60 value 82.762309 iter 70 value 82.752079 iter 80 value 82.709841 iter 90 value 82.598164 final value 82.594913 converged Fitting Repeat 2 # weights: 103 initial value 100.724696 iter 10 value 94.486847 iter 20 value 93.745791 iter 30 value 92.944923 iter 40 value 85.620523 iter 50 value 82.998928 iter 60 value 82.792364 iter 70 value 82.758259 iter 80 value 82.726191 iter 90 value 82.620193 iter 100 value 82.595618 final value 82.595618 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.956962 iter 10 value 94.417742 iter 20 value 89.661485 iter 30 value 85.867941 iter 40 value 83.053528 iter 50 value 82.420394 iter 60 value 82.353929 iter 70 value 82.347971 iter 80 value 82.334414 iter 90 value 82.237605 iter 100 value 82.196658 final value 82.196658 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.502779 iter 10 value 94.452764 iter 20 value 93.852244 iter 30 value 91.605758 iter 40 value 88.596907 iter 50 value 86.554618 iter 60 value 83.536639 iter 70 value 82.679915 iter 80 value 81.292365 iter 90 value 81.224353 iter 100 value 81.214088 final value 81.214088 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 109.768685 iter 10 value 94.353525 iter 20 value 90.314333 iter 30 value 86.931519 iter 40 value 84.663307 iter 50 value 82.959748 iter 60 value 82.772454 iter 70 value 82.742824 iter 80 value 82.595460 final value 82.594914 converged Fitting Repeat 1 # weights: 305 initial value 133.232299 iter 10 value 93.193536 iter 20 value 86.768013 iter 30 value 86.149252 iter 40 value 83.512464 iter 50 value 83.000665 iter 60 value 82.956777 iter 70 value 82.847765 iter 80 value 81.975398 iter 90 value 81.146345 iter 100 value 80.582653 final value 80.582653 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.695489 iter 10 value 93.945323 iter 20 value 87.282671 iter 30 value 86.970814 iter 40 value 86.754894 iter 50 value 85.837579 iter 60 value 85.635520 iter 70 value 85.480627 iter 80 value 85.179888 iter 90 value 83.562271 iter 100 value 81.330442 final value 81.330442 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.111461 iter 10 value 94.477947 iter 20 value 93.723382 iter 30 value 89.809833 iter 40 value 88.083366 iter 50 value 84.235597 iter 60 value 82.045073 iter 70 value 81.356400 iter 80 value 81.057759 iter 90 value 80.917545 iter 100 value 80.435004 final value 80.435004 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.553325 iter 10 value 94.409021 iter 20 value 86.542648 iter 30 value 84.998129 iter 40 value 82.854376 iter 50 value 81.185967 iter 60 value 80.696293 iter 70 value 80.491024 iter 80 value 80.233952 iter 90 value 80.177441 iter 100 value 80.148084 final value 80.148084 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.704897 iter 10 value 94.918867 iter 20 value 89.458467 iter 30 value 87.737620 iter 40 value 86.575941 iter 50 value 84.677646 iter 60 value 84.266479 iter 70 value 82.184129 iter 80 value 81.390273 iter 90 value 80.763415 iter 100 value 80.504033 final value 80.504033 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.665860 iter 10 value 94.313345 iter 20 value 87.610766 iter 30 value 86.579609 iter 40 value 85.050005 iter 50 value 83.675268 iter 60 value 82.372425 iter 70 value 82.158286 iter 80 value 81.909787 iter 90 value 81.010164 iter 100 value 80.538717 final value 80.538717 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.213648 iter 10 value 93.004367 iter 20 value 92.267161 iter 30 value 91.221564 iter 40 value 90.802041 iter 50 value 90.394879 iter 60 value 88.284978 iter 70 value 84.336093 iter 80 value 81.648787 iter 90 value 81.028858 iter 100 value 80.547062 final value 80.547062 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.301701 iter 10 value 94.072501 iter 20 value 84.323089 iter 30 value 83.466848 iter 40 value 82.579200 iter 50 value 81.949125 iter 60 value 81.351585 iter 70 value 80.965180 iter 80 value 80.374813 iter 90 value 80.157663 iter 100 value 80.145821 final value 80.145821 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.151476 iter 10 value 94.512339 iter 20 value 94.204070 iter 30 value 93.246799 iter 40 value 89.752850 iter 50 value 84.359279 iter 60 value 81.700953 iter 70 value 80.856965 iter 80 value 80.770853 iter 90 value 80.645951 iter 100 value 80.589812 final value 80.589812 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.316446 iter 10 value 95.946378 iter 20 value 94.475183 iter 30 value 88.583865 iter 40 value 86.637530 iter 50 value 86.081030 iter 60 value 83.946091 iter 70 value 83.164507 iter 80 value 82.338563 iter 90 value 81.081002 iter 100 value 80.885319 final value 80.885319 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.294144 final value 94.495512 converged Fitting Repeat 2 # weights: 103 initial value 101.064182 final value 94.485654 converged Fitting Repeat 3 # weights: 103 initial value 95.253594 final value 94.485860 converged Fitting Repeat 4 # weights: 103 initial value 95.862166 final value 94.485999 converged Fitting Repeat 5 # weights: 103 initial value 95.067812 final value 94.485744 converged Fitting Repeat 1 # weights: 305 initial value 131.674123 iter 10 value 94.489499 iter 20 value 94.484302 iter 30 value 90.290258 iter 40 value 87.801608 iter 50 value 85.299975 iter 60 value 83.793256 iter 70 value 83.792401 iter 80 value 83.618828 iter 90 value 83.559129 iter 100 value 83.550138 final value 83.550138 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.317582 iter 10 value 94.485420 iter 20 value 94.166892 iter 30 value 85.660118 iter 40 value 84.693130 iter 50 value 83.581159 iter 60 value 83.576706 iter 70 value 82.874178 iter 80 value 82.865126 iter 90 value 82.289483 iter 100 value 80.809734 final value 80.809734 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.919194 iter 10 value 94.488754 final value 94.484223 converged Fitting Repeat 4 # weights: 305 initial value 95.949802 iter 10 value 86.454047 iter 20 value 86.335216 iter 30 value 86.003086 iter 40 value 85.869443 iter 50 value 85.866548 iter 60 value 85.862650 iter 70 value 82.051691 iter 80 value 81.650818 iter 90 value 79.874799 iter 100 value 79.123610 final value 79.123610 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.107007 iter 10 value 91.430551 iter 20 value 90.684023 iter 30 value 87.303425 iter 40 value 86.231912 iter 50 value 86.231287 iter 60 value 85.855388 iter 70 value 84.458210 iter 80 value 79.377300 iter 90 value 78.676577 iter 100 value 78.418960 final value 78.418960 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.310332 iter 10 value 82.872710 iter 20 value 82.294104 iter 30 value 82.274394 iter 40 value 82.273079 iter 50 value 82.061833 iter 60 value 81.596116 iter 70 value 81.574776 iter 80 value 81.573239 iter 90 value 81.546185 iter 100 value 80.311009 final value 80.311009 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.833525 iter 10 value 94.488843 iter 20 value 94.219459 iter 30 value 94.143022 final value 94.142989 converged Fitting Repeat 3 # weights: 507 initial value 101.198886 iter 10 value 94.483002 iter 20 value 94.419380 iter 30 value 88.634130 iter 40 value 88.381459 iter 50 value 88.380213 iter 60 value 88.093463 iter 70 value 85.380300 iter 80 value 84.956239 iter 90 value 84.955464 final value 84.955104 converged Fitting Repeat 4 # weights: 507 initial value 107.161015 iter 10 value 92.284824 iter 20 value 91.962046 iter 30 value 86.195131 iter 40 value 84.718268 iter 50 value 83.818653 iter 60 value 83.797439 iter 70 value 83.755974 iter 80 value 83.745882 iter 90 value 83.735109 iter 100 value 83.707040 final value 83.707040 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.078568 iter 10 value 94.492449 iter 20 value 94.484597 iter 30 value 94.273487 final value 94.263488 converged Fitting Repeat 1 # weights: 103 initial value 100.932021 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.040801 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.132874 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.593930 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.537988 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 111.265455 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.798280 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 99.431856 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 98.665493 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 104.915658 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 98.025365 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 98.243613 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 100.566033 final value 93.915746 converged Fitting Repeat 4 # weights: 507 initial value 94.337343 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 98.447772 iter 10 value 93.954865 final value 93.954846 converged Fitting Repeat 1 # weights: 103 initial value 100.320452 iter 10 value 94.025020 iter 20 value 93.736471 iter 30 value 92.487468 iter 40 value 90.045142 iter 50 value 89.269186 iter 60 value 88.898083 iter 70 value 86.297738 iter 80 value 86.110970 iter 90 value 86.073341 iter 100 value 86.034828 final value 86.034828 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.944187 iter 10 value 93.993243 iter 20 value 87.085388 iter 30 value 86.552043 iter 40 value 86.017934 iter 50 value 85.839289 iter 60 value 84.933848 iter 70 value 84.534984 iter 80 value 84.320159 final value 84.320030 converged Fitting Repeat 3 # weights: 103 initial value 98.960805 iter 10 value 93.925385 iter 20 value 93.803450 iter 30 value 93.791183 iter 40 value 93.761773 iter 50 value 93.730506 iter 60 value 89.988934 iter 70 value 87.140203 iter 80 value 86.231344 iter 90 value 86.115943 iter 100 value 86.043539 final value 86.043539 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.230342 iter 10 value 93.360772 iter 20 value 86.259143 iter 30 value 84.985000 iter 40 value 84.654316 iter 50 value 84.538165 final value 84.536517 converged Fitting Repeat 5 # weights: 103 initial value 101.660332 iter 10 value 93.863184 iter 20 value 93.161308 iter 30 value 89.734542 iter 40 value 88.280625 iter 50 value 87.852297 iter 60 value 86.654605 iter 70 value 84.739506 iter 80 value 84.537432 final value 84.536517 converged Fitting Repeat 1 # weights: 305 initial value 108.380955 iter 10 value 95.677846 iter 20 value 93.665975 iter 30 value 88.675357 iter 40 value 86.856239 iter 50 value 86.465373 iter 60 value 85.368540 iter 70 value 84.553869 iter 80 value 84.402944 iter 90 value 83.986157 iter 100 value 83.522164 final value 83.522164 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.560816 iter 10 value 94.121443 iter 20 value 89.813878 iter 30 value 87.762886 iter 40 value 86.619583 iter 50 value 84.945351 iter 60 value 84.036593 iter 70 value 83.856476 iter 80 value 83.695574 iter 90 value 83.512590 iter 100 value 83.344826 final value 83.344826 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.975903 iter 10 value 94.117337 iter 20 value 87.379660 iter 30 value 86.718844 iter 40 value 86.654048 iter 50 value 86.570647 iter 60 value 85.846397 iter 70 value 84.598325 iter 80 value 84.006859 iter 90 value 83.425753 iter 100 value 82.867231 final value 82.867231 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.323970 iter 10 value 94.010653 iter 20 value 91.941352 iter 30 value 90.588074 iter 40 value 87.512563 iter 50 value 85.540736 iter 60 value 83.897831 iter 70 value 83.331297 iter 80 value 83.140395 iter 90 value 82.998566 iter 100 value 82.797236 final value 82.797236 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.988465 iter 10 value 93.964069 iter 20 value 88.334901 iter 30 value 87.426720 iter 40 value 86.989630 iter 50 value 84.497548 iter 60 value 83.718065 iter 70 value 83.369661 iter 80 value 83.075968 iter 90 value 83.066788 iter 100 value 82.760860 final value 82.760860 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.940723 iter 10 value 94.220660 iter 20 value 90.182734 iter 30 value 86.635863 iter 40 value 85.989732 iter 50 value 84.397721 iter 60 value 84.153456 iter 70 value 83.393349 iter 80 value 83.226666 iter 90 value 82.801332 iter 100 value 82.693331 final value 82.693331 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.027626 iter 10 value 93.990608 iter 20 value 86.000065 iter 30 value 84.274202 iter 40 value 83.586916 iter 50 value 83.050952 iter 60 value 82.643613 iter 70 value 82.605351 iter 80 value 82.589360 iter 90 value 82.578189 iter 100 value 82.529539 final value 82.529539 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 131.133262 iter 10 value 94.374933 iter 20 value 88.789666 iter 30 value 86.948834 iter 40 value 86.057188 iter 50 value 84.053321 iter 60 value 83.620422 iter 70 value 83.396084 iter 80 value 82.844545 iter 90 value 82.539970 iter 100 value 82.504424 final value 82.504424 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.059692 iter 10 value 94.008560 iter 20 value 93.060266 iter 30 value 90.689855 iter 40 value 84.602092 iter 50 value 84.054024 iter 60 value 83.792582 iter 70 value 83.429974 iter 80 value 82.943025 iter 90 value 82.617378 iter 100 value 82.534583 final value 82.534583 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.277144 iter 10 value 96.084491 iter 20 value 87.173882 iter 30 value 86.374307 iter 40 value 85.956187 iter 50 value 85.854297 iter 60 value 85.207777 iter 70 value 84.523013 iter 80 value 83.982557 iter 90 value 83.339653 iter 100 value 83.320946 final value 83.320946 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.416125 final value 93.914436 converged Fitting Repeat 2 # weights: 103 initial value 100.530109 final value 94.054619 converged Fitting Repeat 3 # weights: 103 initial value 101.157253 final value 94.054542 converged Fitting Repeat 4 # weights: 103 initial value 99.051776 final value 93.765407 converged Fitting Repeat 5 # weights: 103 initial value 96.084821 final value 93.917520 converged Fitting Repeat 1 # weights: 305 initial value 96.833722 iter 10 value 94.057519 iter 20 value 94.052944 iter 30 value 93.715339 iter 40 value 88.700030 iter 50 value 85.647793 iter 60 value 84.779572 iter 70 value 84.577577 iter 80 value 84.545327 iter 80 value 84.545326 iter 90 value 84.543605 iter 100 value 84.543400 final value 84.543400 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.731636 iter 10 value 91.803883 iter 20 value 91.739900 iter 30 value 91.739352 iter 40 value 91.738493 iter 50 value 91.737185 iter 60 value 91.735917 iter 70 value 91.735410 iter 80 value 91.735218 final value 91.735143 converged Fitting Repeat 3 # weights: 305 initial value 134.800501 iter 10 value 94.057994 final value 94.053406 converged Fitting Repeat 4 # weights: 305 initial value 120.390464 iter 10 value 93.768629 iter 20 value 93.766282 iter 30 value 93.760347 iter 40 value 93.757355 iter 50 value 90.256911 iter 60 value 86.195123 iter 70 value 86.182347 final value 86.181716 converged Fitting Repeat 5 # weights: 305 initial value 99.791238 iter 10 value 94.057904 iter 20 value 93.735047 iter 30 value 86.935174 iter 40 value 86.934837 iter 40 value 86.934837 iter 50 value 86.543640 iter 60 value 86.543435 iter 60 value 86.543434 iter 60 value 86.543434 final value 86.543434 converged Fitting Repeat 1 # weights: 507 initial value 105.455567 iter 10 value 94.064563 iter 20 value 94.053112 iter 30 value 93.752457 final value 93.705080 converged Fitting Repeat 2 # weights: 507 initial value 95.045856 iter 10 value 94.060386 iter 20 value 93.148940 iter 30 value 86.952204 iter 40 value 86.936908 iter 50 value 86.936058 iter 60 value 86.935544 iter 70 value 86.935089 iter 80 value 86.283227 iter 90 value 83.864511 iter 100 value 82.194101 final value 82.194101 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.581768 iter 10 value 93.615057 iter 20 value 93.575530 iter 30 value 89.192834 iter 40 value 86.991309 iter 50 value 86.921645 final value 86.920395 converged Fitting Repeat 4 # weights: 507 initial value 105.463398 iter 10 value 93.772604 iter 20 value 93.765517 iter 30 value 91.638889 iter 40 value 91.247262 iter 50 value 91.175946 iter 60 value 91.171992 final value 91.171935 converged Fitting Repeat 5 # weights: 507 initial value 116.777141 iter 10 value 93.924009 iter 20 value 93.798048 iter 30 value 89.076233 iter 40 value 88.706331 final value 88.706167 converged Fitting Repeat 1 # weights: 507 initial value 135.012263 iter 10 value 118.756487 iter 20 value 107.316003 iter 30 value 105.930962 iter 40 value 105.421463 iter 50 value 105.162071 iter 60 value 104.809406 iter 70 value 104.748291 iter 80 value 104.696245 iter 90 value 103.935796 iter 100 value 103.346886 final value 103.346886 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 135.037525 iter 10 value 117.846235 iter 20 value 117.606335 iter 30 value 116.323995 iter 40 value 109.266489 iter 50 value 106.714496 iter 60 value 105.242196 iter 70 value 104.380415 iter 80 value 104.245683 iter 90 value 103.195108 iter 100 value 102.918942 final value 102.918942 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 150.060395 iter 10 value 117.311345 iter 20 value 107.772899 iter 30 value 106.682926 iter 40 value 106.537130 iter 50 value 102.830456 iter 60 value 101.210719 iter 70 value 100.988949 iter 80 value 100.947281 iter 90 value 100.717034 iter 100 value 100.551067 final value 100.551067 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 130.951953 iter 10 value 117.810905 iter 20 value 108.352514 iter 30 value 106.243194 iter 40 value 103.646806 iter 50 value 103.076980 iter 60 value 102.346206 iter 70 value 101.946898 iter 80 value 101.871858 iter 90 value 101.851859 iter 100 value 101.808664 final value 101.808664 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 149.693655 iter 10 value 115.285543 iter 20 value 111.575863 iter 30 value 111.012650 iter 40 value 108.133764 iter 50 value 105.688059 iter 60 value 104.873774 iter 70 value 103.662146 iter 80 value 103.253480 iter 90 value 102.809083 iter 100 value 102.309617 final value 102.309617 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 12 21:20:50 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. Use `.name_repair = "minimal"`. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 73.78 1.67 48.59 |
HPiP.Rcheck/tests_x64/runTests.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.981120 iter 10 value 88.631249 iter 20 value 85.356059 iter 30 value 85.146555 iter 40 value 85.145639 iter 40 value 85.145638 iter 40 value 85.145638 final value 85.145638 converged Fitting Repeat 2 # weights: 103 initial value 114.581580 iter 10 value 93.493988 iter 20 value 93.262930 final value 92.945355 converged Fitting Repeat 3 # weights: 103 initial value 97.839945 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.121816 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.108027 iter 10 value 92.893450 final value 92.878839 converged Fitting Repeat 1 # weights: 305 initial value 109.017330 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 98.026434 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 104.540318 iter 10 value 94.052915 iter 10 value 94.052914 iter 10 value 94.052914 final value 94.052914 converged Fitting Repeat 4 # weights: 305 initial value 98.831762 final value 94.052911 converged Fitting Repeat 5 # weights: 305 initial value 103.129835 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 95.151299 iter 10 value 92.945355 iter 10 value 92.945355 iter 10 value 92.945355 final value 92.945355 converged Fitting Repeat 2 # weights: 507 initial value 99.570657 iter 10 value 93.347629 iter 20 value 92.855550 final value 92.814053 converged Fitting Repeat 3 # weights: 507 initial value 103.289108 iter 10 value 92.944705 iter 20 value 92.878841 iter 20 value 92.878841 iter 20 value 92.878841 final value 92.878841 converged Fitting Repeat 4 # weights: 507 initial value 106.116381 iter 10 value 94.052911 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 107.692610 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 111.753088 iter 10 value 94.054839 iter 20 value 93.613412 iter 30 value 93.456488 iter 40 value 93.186798 iter 50 value 92.623828 iter 60 value 87.100771 iter 70 value 86.397094 iter 80 value 86.067026 iter 90 value 85.321336 iter 100 value 84.322413 final value 84.322413 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.175055 iter 10 value 91.794247 iter 20 value 85.209203 iter 30 value 84.730246 iter 40 value 84.319044 iter 50 value 83.402117 iter 60 value 83.054881 iter 70 value 82.358094 iter 80 value 81.931799 iter 90 value 81.809691 final value 81.809433 converged Fitting Repeat 3 # weights: 103 initial value 96.862880 iter 10 value 94.056241 iter 20 value 93.304763 iter 30 value 93.268627 iter 40 value 93.246570 iter 50 value 89.533919 iter 60 value 83.846129 iter 70 value 83.227149 iter 80 value 82.686719 iter 90 value 82.512767 iter 100 value 82.198267 final value 82.198267 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 109.621015 iter 10 value 93.323479 iter 20 value 85.792530 iter 30 value 85.122905 iter 40 value 84.794652 iter 50 value 84.127498 iter 60 value 83.926653 iter 70 value 83.917206 final value 83.917205 converged Fitting Repeat 5 # weights: 103 initial value 97.832890 iter 10 value 94.056489 iter 20 value 86.852276 iter 30 value 83.056306 iter 40 value 82.342820 iter 50 value 82.254773 iter 60 value 82.199720 iter 70 value 82.128215 iter 80 value 82.119815 iter 90 value 82.107950 iter 100 value 82.102944 final value 82.102944 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 120.032434 iter 10 value 94.884228 iter 20 value 93.715500 iter 30 value 93.019567 iter 40 value 90.856053 iter 50 value 87.555257 iter 60 value 87.270041 iter 70 value 87.187554 iter 80 value 84.388490 iter 90 value 82.543476 iter 100 value 81.249412 final value 81.249412 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.165486 iter 10 value 94.130757 iter 20 value 92.809409 iter 30 value 89.863747 iter 40 value 86.634467 iter 50 value 83.537972 iter 60 value 82.942916 iter 70 value 82.660400 iter 80 value 81.719626 iter 90 value 81.391080 iter 100 value 81.224907 final value 81.224907 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.762088 iter 10 value 93.990843 iter 20 value 84.378799 iter 30 value 83.559726 iter 40 value 83.314497 iter 50 value 83.165597 iter 60 value 82.704977 iter 70 value 82.428180 iter 80 value 82.131727 iter 90 value 82.029531 iter 100 value 81.931886 final value 81.931886 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.184629 iter 10 value 94.169540 iter 20 value 93.489693 iter 30 value 93.198094 iter 40 value 84.014682 iter 50 value 83.425311 iter 60 value 83.043987 iter 70 value 82.635083 iter 80 value 82.512481 iter 90 value 82.319513 iter 100 value 82.017642 final value 82.017642 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.740215 iter 10 value 93.241495 iter 20 value 89.416982 iter 30 value 88.572630 iter 40 value 88.057735 iter 50 value 83.815033 iter 60 value 82.935381 iter 70 value 82.743634 iter 80 value 81.212271 iter 90 value 81.053992 iter 100 value 80.914589 final value 80.914589 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.857384 iter 10 value 94.951493 iter 20 value 93.624417 iter 30 value 92.868423 iter 40 value 87.908973 iter 50 value 86.212103 iter 60 value 83.600750 iter 70 value 82.195853 iter 80 value 81.918786 iter 90 value 81.420898 iter 100 value 81.233274 final value 81.233274 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.558764 iter 10 value 98.099519 iter 20 value 94.366685 iter 30 value 93.083363 iter 40 value 93.020614 iter 50 value 90.646431 iter 60 value 83.951625 iter 70 value 83.585661 iter 80 value 83.018132 iter 90 value 82.258271 iter 100 value 81.716560 final value 81.716560 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.745553 iter 10 value 98.357329 iter 20 value 92.845101 iter 30 value 86.797640 iter 40 value 86.339941 iter 50 value 85.861620 iter 60 value 82.688205 iter 70 value 81.851136 iter 80 value 80.987741 iter 90 value 80.905818 iter 100 value 80.750977 final value 80.750977 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.339456 iter 10 value 95.463155 iter 20 value 92.475503 iter 30 value 88.857001 iter 40 value 86.766705 iter 50 value 83.261576 iter 60 value 81.516167 iter 70 value 80.658561 iter 80 value 80.462553 iter 90 value 80.453412 iter 100 value 80.428519 final value 80.428519 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.338282 iter 10 value 94.010411 iter 20 value 91.979695 iter 30 value 89.685730 iter 40 value 87.365840 iter 50 value 85.120159 iter 60 value 83.455325 iter 70 value 82.419027 iter 80 value 81.922646 iter 90 value 81.625969 iter 100 value 81.157221 final value 81.157221 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.329325 final value 94.054481 converged Fitting Repeat 2 # weights: 103 initial value 102.482421 final value 94.054697 converged Fitting Repeat 3 # weights: 103 initial value 94.237441 final value 94.054717 converged Fitting Repeat 4 # weights: 103 initial value 103.200775 final value 94.054488 converged Fitting Repeat 5 # weights: 103 initial value 97.580705 iter 10 value 92.947382 iter 20 value 92.946105 iter 30 value 92.816314 iter 40 value 92.812532 iter 50 value 92.534340 iter 60 value 91.186058 iter 70 value 86.431604 iter 80 value 83.093309 iter 90 value 83.019114 iter 100 value 83.018237 final value 83.018237 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 97.641948 iter 10 value 92.887973 iter 20 value 92.884486 iter 30 value 92.817528 iter 40 value 92.816849 iter 50 value 92.814988 iter 60 value 92.442164 iter 70 value 86.209203 iter 80 value 86.203556 iter 90 value 86.144505 iter 100 value 86.142958 final value 86.142958 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.815872 iter 10 value 92.258697 iter 20 value 91.692938 iter 30 value 89.158589 iter 40 value 87.790377 iter 50 value 82.329245 iter 60 value 81.586836 iter 70 value 80.796320 iter 80 value 80.467908 iter 90 value 80.343819 iter 100 value 80.108908 final value 80.108908 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.029024 iter 10 value 93.742524 iter 20 value 93.736282 iter 30 value 91.103017 iter 40 value 91.074087 iter 50 value 91.073687 iter 60 value 91.070007 iter 70 value 90.997371 iter 80 value 90.824500 iter 80 value 90.824500 iter 80 value 90.824500 final value 90.824500 converged Fitting Repeat 4 # weights: 305 initial value 96.688753 iter 10 value 94.057692 iter 20 value 94.052932 iter 30 value 92.946049 final value 92.946048 converged Fitting Repeat 5 # weights: 305 initial value 109.702347 iter 10 value 94.057830 iter 20 value 94.052920 iter 30 value 93.965232 final value 92.891527 converged Fitting Repeat 1 # weights: 507 initial value 94.256579 iter 10 value 90.963935 iter 20 value 90.929620 iter 30 value 90.926379 iter 40 value 90.923359 iter 50 value 85.564789 iter 60 value 83.458578 iter 70 value 83.422960 final value 83.422529 converged Fitting Repeat 2 # weights: 507 initial value 111.828969 iter 10 value 93.196731 iter 20 value 87.005096 iter 30 value 86.396823 iter 40 value 86.390137 iter 50 value 85.751332 iter 60 value 85.545842 iter 70 value 85.544228 iter 80 value 85.539392 final value 85.537334 converged Fitting Repeat 3 # weights: 507 initial value 98.815937 iter 10 value 94.099763 iter 20 value 94.088333 iter 30 value 88.820927 iter 40 value 88.171095 iter 50 value 82.531638 iter 60 value 82.349690 iter 70 value 82.331368 iter 80 value 82.228602 iter 90 value 82.225175 iter 100 value 82.167165 final value 82.167165 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.504708 iter 10 value 92.955936 iter 20 value 92.952737 iter 30 value 92.881762 iter 40 value 92.880923 iter 50 value 91.680490 iter 60 value 87.284807 iter 70 value 80.516771 iter 80 value 80.397525 iter 90 value 80.382749 final value 80.382569 converged Fitting Repeat 5 # weights: 507 initial value 97.136308 iter 10 value 92.954168 iter 20 value 92.930855 iter 30 value 92.888660 iter 40 value 92.862519 iter 50 value 87.714562 iter 60 value 84.531226 iter 70 value 84.367453 iter 80 value 84.004943 iter 90 value 82.457173 iter 100 value 81.412555 final value 81.412555 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.642972 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.549244 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.865050 final value 94.409357 converged Fitting Repeat 4 # weights: 103 initial value 98.827064 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.168967 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.456742 iter 10 value 85.793547 final value 85.647280 converged Fitting Repeat 2 # weights: 305 initial value 96.549478 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.879583 iter 10 value 94.052440 final value 94.052435 converged Fitting Repeat 4 # weights: 305 initial value 101.387093 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.633899 iter 10 value 94.026544 final value 94.026542 converged Fitting Repeat 1 # weights: 507 initial value 98.182573 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 99.395409 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 98.457152 final value 94.409356 converged Fitting Repeat 4 # weights: 507 initial value 97.871258 iter 10 value 90.427640 iter 20 value 88.464016 iter 30 value 88.339496 iter 40 value 88.338172 final value 88.338164 converged Fitting Repeat 5 # weights: 507 initial value 114.328937 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 100.804812 iter 10 value 93.953372 iter 20 value 90.112879 iter 30 value 87.615581 iter 40 value 87.189628 iter 50 value 84.109264 iter 60 value 81.612777 iter 70 value 80.561498 iter 80 value 80.146791 iter 90 value 80.135556 iter 100 value 80.121120 final value 80.121120 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.467618 iter 10 value 91.561218 iter 20 value 83.595044 iter 30 value 82.864135 iter 40 value 82.591575 iter 50 value 81.855281 iter 60 value 81.517829 iter 70 value 81.493171 iter 80 value 81.486354 final value 81.486146 converged Fitting Repeat 3 # weights: 103 initial value 99.711685 iter 10 value 94.429765 iter 20 value 92.874381 iter 30 value 83.616222 iter 40 value 82.919347 iter 50 value 82.215947 iter 60 value 81.849841 iter 70 value 81.825868 iter 80 value 81.702020 iter 90 value 81.605563 final value 81.604873 converged Fitting Repeat 4 # weights: 103 initial value 105.198970 iter 10 value 93.240134 iter 20 value 89.769126 iter 30 value 89.362173 iter 40 value 85.283568 iter 50 value 84.915833 iter 60 value 84.297771 iter 70 value 83.876655 iter 80 value 83.817456 final value 83.817454 converged Fitting Repeat 5 # weights: 103 initial value 97.563357 iter 10 value 94.485908 iter 20 value 88.923275 iter 30 value 84.151480 iter 40 value 81.743815 iter 50 value 80.313455 iter 60 value 80.261556 iter 70 value 80.138562 iter 80 value 80.121277 final value 80.121112 converged Fitting Repeat 1 # weights: 305 initial value 110.915959 iter 10 value 94.557020 iter 20 value 93.979501 iter 30 value 87.310413 iter 40 value 84.268696 iter 50 value 81.510748 iter 60 value 80.216412 iter 70 value 79.718306 iter 80 value 79.224370 iter 90 value 78.774622 iter 100 value 78.663738 final value 78.663738 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.725478 iter 10 value 95.312630 iter 20 value 93.800865 iter 30 value 87.364904 iter 40 value 86.877679 iter 50 value 84.792379 iter 60 value 82.766751 iter 70 value 81.435925 iter 80 value 80.485085 iter 90 value 80.297402 iter 100 value 80.140702 final value 80.140702 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.399523 iter 10 value 92.094955 iter 20 value 85.818004 iter 30 value 82.665141 iter 40 value 82.541741 iter 50 value 82.090197 iter 60 value 79.870040 iter 70 value 79.104855 iter 80 value 78.970074 iter 90 value 78.559496 iter 100 value 78.369865 final value 78.369865 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.261977 iter 10 value 94.510948 iter 20 value 93.630187 iter 30 value 83.896774 iter 40 value 83.000670 iter 50 value 82.455193 iter 60 value 81.880955 iter 70 value 81.738695 iter 80 value 81.272491 iter 90 value 80.884425 iter 100 value 80.518385 final value 80.518385 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.408234 iter 10 value 93.611385 iter 20 value 92.259526 iter 30 value 91.658307 iter 40 value 88.829235 iter 50 value 86.723564 iter 60 value 85.221789 iter 70 value 82.636172 iter 80 value 80.545009 iter 90 value 79.970679 iter 100 value 79.745593 final value 79.745593 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.667559 iter 10 value 95.129167 iter 20 value 91.132134 iter 30 value 86.296416 iter 40 value 80.573193 iter 50 value 79.653783 iter 60 value 79.082149 iter 70 value 78.939057 iter 80 value 78.629873 iter 90 value 78.550894 iter 100 value 78.464899 final value 78.464899 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.485382 iter 10 value 98.672106 iter 20 value 89.469273 iter 30 value 82.094527 iter 40 value 80.465403 iter 50 value 79.242732 iter 60 value 78.986897 iter 70 value 78.908420 iter 80 value 78.798076 iter 90 value 78.781067 iter 100 value 78.749563 final value 78.749563 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.847933 iter 10 value 94.499827 iter 20 value 89.228908 iter 30 value 85.703810 iter 40 value 83.607119 iter 50 value 81.905658 iter 60 value 79.513321 iter 70 value 79.213103 iter 80 value 79.088422 iter 90 value 79.052760 iter 100 value 78.813278 final value 78.813278 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.799503 iter 10 value 95.883843 iter 20 value 92.849921 iter 30 value 88.392457 iter 40 value 85.566442 iter 50 value 83.671067 iter 60 value 82.195345 iter 70 value 81.370721 iter 80 value 80.240503 iter 90 value 79.252035 iter 100 value 78.614425 final value 78.614425 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.730804 iter 10 value 95.339122 iter 20 value 92.916164 iter 30 value 92.449951 iter 40 value 89.788765 iter 50 value 83.787635 iter 60 value 82.006028 iter 70 value 81.102701 iter 80 value 80.580748 iter 90 value 80.424294 iter 100 value 80.171445 final value 80.171445 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.497944 final value 94.485868 converged Fitting Repeat 2 # weights: 103 initial value 96.285894 final value 94.485710 converged Fitting Repeat 3 # weights: 103 initial value 100.539073 final value 94.485676 converged Fitting Repeat 4 # weights: 103 initial value 98.358600 iter 10 value 94.028348 iter 20 value 94.027371 iter 30 value 89.699939 iter 40 value 86.568193 iter 50 value 86.261246 iter 50 value 86.261245 iter 50 value 86.261245 final value 86.261245 converged Fitting Repeat 5 # weights: 103 initial value 96.808574 final value 94.485855 converged Fitting Repeat 1 # weights: 305 initial value 95.442044 iter 10 value 94.490426 iter 20 value 94.485343 iter 30 value 94.027856 iter 40 value 94.026917 iter 50 value 94.026735 iter 50 value 94.026735 final value 94.026735 converged Fitting Repeat 2 # weights: 305 initial value 105.379098 iter 10 value 94.488860 iter 20 value 94.484580 iter 20 value 94.484580 iter 20 value 94.484580 final value 94.484580 converged Fitting Repeat 3 # weights: 305 initial value 102.233020 iter 10 value 94.031819 iter 20 value 93.982442 final value 93.976840 converged Fitting Repeat 4 # weights: 305 initial value 99.607195 iter 10 value 94.489110 iter 20 value 94.314644 iter 30 value 82.576797 iter 40 value 82.278488 iter 50 value 82.278030 iter 60 value 82.277072 iter 60 value 82.277072 final value 82.277072 converged Fitting Repeat 5 # weights: 305 initial value 95.246976 iter 10 value 94.486676 iter 20 value 89.455195 iter 30 value 82.796630 iter 40 value 82.179004 iter 50 value 82.168568 final value 82.166198 converged Fitting Repeat 1 # weights: 507 initial value 101.984822 iter 10 value 94.492269 iter 20 value 94.298162 iter 30 value 91.070381 iter 40 value 87.291131 iter 50 value 87.204560 iter 60 value 86.096549 iter 70 value 86.092742 iter 80 value 85.112585 iter 90 value 84.692354 iter 100 value 84.641639 final value 84.641639 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.963433 iter 10 value 94.034423 iter 20 value 94.029413 final value 94.027936 converged Fitting Repeat 3 # weights: 507 initial value 108.701197 iter 10 value 94.035477 iter 20 value 94.027320 iter 30 value 92.987728 iter 40 value 87.246768 iter 50 value 81.980777 iter 60 value 81.937082 final value 81.935615 converged Fitting Repeat 4 # weights: 507 initial value 102.507805 iter 10 value 94.418366 iter 20 value 94.034410 iter 30 value 94.030434 iter 40 value 94.007549 iter 50 value 94.005122 iter 60 value 84.757062 iter 70 value 82.907824 iter 80 value 80.316578 iter 90 value 79.177804 iter 100 value 78.749104 final value 78.749104 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.836860 iter 10 value 94.491348 iter 20 value 89.225453 iter 30 value 84.627528 iter 40 value 84.511996 iter 50 value 84.218136 iter 60 value 84.140674 final value 84.128638 converged Fitting Repeat 1 # weights: 103 initial value 101.985449 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.274998 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.994164 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.015751 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.179504 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.336216 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.163348 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.272731 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 114.573247 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 105.205258 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.639412 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 95.666689 final value 93.811828 converged Fitting Repeat 3 # weights: 507 initial value 118.276308 final value 93.811828 converged Fitting Repeat 4 # weights: 507 initial value 102.636534 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.700319 iter 10 value 93.706293 final value 93.705856 converged Fitting Repeat 1 # weights: 103 initial value 96.637271 iter 10 value 93.987115 iter 20 value 89.562028 iter 30 value 88.593546 iter 40 value 87.672360 iter 50 value 85.434745 iter 60 value 84.535973 iter 70 value 84.398180 final value 84.397772 converged Fitting Repeat 2 # weights: 103 initial value 96.996173 iter 10 value 94.451726 iter 20 value 91.230342 iter 30 value 90.715141 iter 40 value 86.973581 iter 50 value 85.931573 iter 60 value 85.737219 iter 70 value 85.720505 final value 85.715548 converged Fitting Repeat 3 # weights: 103 initial value 101.585282 iter 10 value 94.477022 iter 20 value 92.729376 iter 30 value 92.098707 iter 40 value 89.657759 iter 50 value 88.285504 iter 60 value 87.202629 iter 70 value 86.562220 iter 80 value 85.874692 iter 90 value 84.770759 iter 100 value 84.764153 final value 84.764153 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.661132 iter 10 value 94.567072 iter 20 value 87.418665 iter 30 value 86.984180 iter 40 value 86.572383 iter 50 value 85.412731 iter 60 value 85.355152 iter 70 value 85.325878 iter 80 value 85.310922 final value 85.310910 converged Fitting Repeat 5 # weights: 103 initial value 104.730162 iter 10 value 94.376519 iter 20 value 91.393306 iter 30 value 90.458544 iter 40 value 88.390498 iter 50 value 86.217548 iter 60 value 85.701927 iter 70 value 85.455658 iter 80 value 85.350442 iter 90 value 85.193770 iter 100 value 85.088054 final value 85.088054 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.968108 iter 10 value 94.724622 iter 20 value 92.715081 iter 30 value 89.016921 iter 40 value 87.560069 iter 50 value 87.089105 iter 60 value 85.342252 iter 70 value 83.748810 iter 80 value 82.768874 iter 90 value 82.124409 iter 100 value 81.993669 final value 81.993669 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.302512 iter 10 value 94.023852 iter 20 value 93.839617 iter 30 value 91.951187 iter 40 value 87.707506 iter 50 value 86.834130 iter 60 value 86.038990 iter 70 value 84.243223 iter 80 value 82.965522 iter 90 value 82.606815 iter 100 value 82.214041 final value 82.214041 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.615653 iter 10 value 94.490254 iter 20 value 87.371544 iter 30 value 83.912497 iter 40 value 83.399146 iter 50 value 83.067594 iter 60 value 82.537980 iter 70 value 82.438481 iter 80 value 81.933246 iter 90 value 80.992216 iter 100 value 80.861343 final value 80.861343 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.997592 iter 10 value 94.693713 iter 20 value 94.113615 iter 30 value 94.044231 iter 40 value 90.919993 iter 50 value 88.531031 iter 60 value 87.909956 iter 70 value 87.408568 iter 80 value 86.317964 iter 90 value 82.755182 iter 100 value 82.321372 final value 82.321372 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.975273 iter 10 value 94.523901 iter 20 value 94.482193 iter 30 value 94.272004 iter 40 value 93.491005 iter 50 value 92.099596 iter 60 value 86.270722 iter 70 value 84.273122 iter 80 value 83.124367 iter 90 value 82.480731 iter 100 value 82.276351 final value 82.276351 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.796052 iter 10 value 95.751754 iter 20 value 92.322429 iter 30 value 90.432853 iter 40 value 85.274132 iter 50 value 84.738600 iter 60 value 82.797777 iter 70 value 81.730164 iter 80 value 81.265987 iter 90 value 80.955376 iter 100 value 80.878861 final value 80.878861 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.312242 iter 10 value 93.951871 iter 20 value 87.770466 iter 30 value 85.907364 iter 40 value 84.824288 iter 50 value 84.668691 iter 60 value 84.480205 iter 70 value 84.192599 iter 80 value 83.293931 iter 90 value 82.263679 iter 100 value 81.411751 final value 81.411751 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.712419 iter 10 value 94.585116 iter 20 value 92.349295 iter 30 value 89.650940 iter 40 value 87.033104 iter 50 value 83.454346 iter 60 value 81.491019 iter 70 value 80.921663 iter 80 value 80.704584 iter 90 value 80.529690 iter 100 value 80.325697 final value 80.325697 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.467795 iter 10 value 94.281489 iter 20 value 90.379002 iter 30 value 88.365297 iter 40 value 87.926968 iter 50 value 86.478115 iter 60 value 83.157785 iter 70 value 82.353927 iter 80 value 81.868816 iter 90 value 81.587425 iter 100 value 81.036804 final value 81.036804 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.579520 iter 10 value 94.992288 iter 20 value 89.562570 iter 30 value 88.151622 iter 40 value 85.038193 iter 50 value 84.136326 iter 60 value 82.591006 iter 70 value 81.369474 iter 80 value 81.155470 iter 90 value 80.726944 iter 100 value 80.628878 final value 80.628878 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.486104 final value 94.485703 converged Fitting Repeat 2 # weights: 103 initial value 96.047594 final value 94.486029 converged Fitting Repeat 3 # weights: 103 initial value 97.630659 iter 10 value 90.559963 iter 20 value 85.845778 iter 30 value 85.605217 iter 40 value 85.582576 final value 85.582109 converged Fitting Repeat 4 # weights: 103 initial value 101.357622 iter 10 value 94.485902 iter 20 value 94.484057 iter 30 value 89.092001 iter 40 value 87.859754 iter 50 value 86.788519 iter 60 value 86.172077 iter 70 value 86.166276 iter 80 value 86.090494 final value 86.090466 converged Fitting Repeat 5 # weights: 103 initial value 97.778994 iter 10 value 93.848114 iter 20 value 93.814348 iter 30 value 93.813845 iter 40 value 93.812219 final value 93.812183 converged Fitting Repeat 1 # weights: 305 initial value 103.347342 iter 10 value 94.488972 iter 20 value 94.444946 iter 30 value 94.032737 iter 40 value 93.540289 final value 93.540184 converged Fitting Repeat 2 # weights: 305 initial value 95.745375 iter 10 value 94.485734 iter 20 value 94.319391 iter 30 value 88.762696 iter 40 value 85.357036 iter 50 value 84.665804 iter 60 value 84.660054 final value 84.659896 converged Fitting Repeat 3 # weights: 305 initial value 95.693652 iter 10 value 92.292068 iter 20 value 92.254791 iter 30 value 92.238765 iter 40 value 92.236255 iter 50 value 92.236090 iter 60 value 92.234424 final value 92.234194 converged Fitting Repeat 4 # weights: 305 initial value 111.022461 iter 10 value 94.489106 iter 20 value 94.483915 iter 30 value 90.933152 iter 40 value 87.942801 iter 50 value 87.732241 iter 60 value 87.731377 iter 60 value 87.731377 final value 87.731377 converged Fitting Repeat 5 # weights: 305 initial value 97.939578 iter 10 value 94.489030 iter 20 value 93.821560 final value 93.812314 converged Fitting Repeat 1 # weights: 507 initial value 107.384016 iter 10 value 94.475833 iter 20 value 94.471380 iter 30 value 93.812939 final value 93.812897 converged Fitting Repeat 2 # weights: 507 initial value 101.193315 iter 10 value 94.493052 iter 20 value 94.409868 iter 30 value 91.917681 final value 91.474114 converged Fitting Repeat 3 # weights: 507 initial value 103.757271 iter 10 value 93.372741 iter 20 value 93.234498 iter 30 value 93.184300 iter 40 value 93.166751 iter 50 value 91.044518 iter 60 value 90.648868 iter 70 value 90.527369 iter 80 value 90.503587 final value 90.485960 converged Fitting Repeat 4 # weights: 507 initial value 108.762154 iter 10 value 93.820580 iter 20 value 93.815312 iter 30 value 93.801265 iter 40 value 93.797310 final value 93.797282 converged Fitting Repeat 5 # weights: 507 initial value 107.726348 iter 10 value 94.491497 iter 20 value 94.484335 iter 30 value 94.010284 iter 40 value 89.651853 iter 50 value 84.502929 iter 60 value 82.992498 iter 70 value 80.793262 iter 80 value 80.738211 iter 90 value 80.736932 iter 100 value 80.378953 final value 80.378953 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.810158 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 105.141446 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.440562 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.267191 final value 94.354396 converged Fitting Repeat 5 # weights: 103 initial value 98.998292 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 129.754735 iter 10 value 94.354402 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 102.001280 final value 94.354396 converged Fitting Repeat 3 # weights: 305 initial value 139.977802 final value 94.057229 converged Fitting Repeat 4 # weights: 305 initial value 103.734642 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.686822 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.441018 iter 10 value 93.147768 iter 20 value 91.568977 final value 91.568966 converged Fitting Repeat 2 # weights: 507 initial value 96.033458 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 94.724066 iter 10 value 94.484212 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.558423 iter 10 value 94.387501 iter 10 value 94.387501 iter 10 value 94.387501 final value 94.387501 converged Fitting Repeat 5 # weights: 507 initial value 118.865811 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 105.628128 iter 10 value 94.576947 iter 20 value 94.488523 iter 30 value 93.705568 iter 40 value 93.488370 iter 50 value 84.859079 iter 60 value 82.526299 iter 70 value 81.874380 iter 80 value 81.804434 iter 90 value 81.793358 final value 81.792648 converged Fitting Repeat 2 # weights: 103 initial value 97.984762 iter 10 value 93.994256 iter 20 value 85.347005 iter 30 value 83.288389 iter 40 value 82.536828 iter 50 value 82.100695 iter 60 value 82.034961 final value 82.032250 converged Fitting Repeat 3 # weights: 103 initial value 98.523311 iter 10 value 94.246913 iter 20 value 93.526413 iter 30 value 93.240801 iter 40 value 88.241911 iter 50 value 81.997630 iter 60 value 81.358749 iter 70 value 80.405185 iter 80 value 80.256410 iter 90 value 79.962315 iter 100 value 79.487443 final value 79.487443 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.973264 iter 10 value 94.498924 iter 20 value 92.157282 iter 30 value 88.152063 iter 40 value 82.402531 iter 50 value 81.925727 iter 60 value 81.310690 iter 70 value 80.683380 iter 80 value 80.135833 iter 90 value 79.513052 iter 100 value 79.412494 final value 79.412494 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 108.202442 iter 10 value 94.412989 iter 20 value 92.379111 iter 30 value 91.647107 iter 40 value 91.612061 iter 50 value 91.611362 iter 60 value 91.610233 final value 91.609364 converged Fitting Repeat 1 # weights: 305 initial value 103.462129 iter 10 value 94.475727 iter 20 value 93.008989 iter 30 value 82.921694 iter 40 value 82.739758 iter 50 value 82.613092 iter 60 value 82.522976 iter 70 value 82.009592 iter 80 value 80.523801 iter 90 value 79.212914 iter 100 value 78.213174 final value 78.213174 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.385247 iter 10 value 94.410969 iter 20 value 94.172290 iter 30 value 92.695080 iter 40 value 85.470458 iter 50 value 79.667375 iter 60 value 78.782270 iter 70 value 78.638057 iter 80 value 78.255915 iter 90 value 77.800894 iter 100 value 77.540752 final value 77.540752 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.732030 iter 10 value 94.683063 iter 20 value 86.224504 iter 30 value 85.496363 iter 40 value 83.109335 iter 50 value 82.632545 iter 60 value 81.646226 iter 70 value 79.926207 iter 80 value 78.583267 iter 90 value 77.997020 iter 100 value 77.877786 final value 77.877786 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.573000 iter 10 value 94.564251 iter 20 value 94.437722 iter 30 value 89.143840 iter 40 value 82.616224 iter 50 value 82.163082 iter 60 value 81.434992 iter 70 value 79.777468 iter 80 value 78.274540 iter 90 value 77.866264 iter 100 value 77.839767 final value 77.839767 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.897784 iter 10 value 94.555520 iter 20 value 94.475704 iter 30 value 93.810854 iter 40 value 86.546683 iter 50 value 85.937665 iter 60 value 83.822093 iter 70 value 82.449687 iter 80 value 81.953075 iter 90 value 81.704585 iter 100 value 80.937344 final value 80.937344 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.980969 iter 10 value 91.138035 iter 20 value 81.972393 iter 30 value 81.436139 iter 40 value 81.061380 iter 50 value 80.603893 iter 60 value 79.488245 iter 70 value 78.355653 iter 80 value 77.955283 iter 90 value 77.750842 iter 100 value 77.493434 final value 77.493434 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.824204 iter 10 value 93.598682 iter 20 value 87.514843 iter 30 value 84.028801 iter 40 value 82.518627 iter 50 value 80.568294 iter 60 value 80.408580 iter 70 value 79.823710 iter 80 value 79.521471 iter 90 value 79.158775 iter 100 value 78.900566 final value 78.900566 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.625379 iter 10 value 94.209838 iter 20 value 93.252515 iter 30 value 92.768186 iter 40 value 90.900320 iter 50 value 87.950807 iter 60 value 86.319408 iter 70 value 84.328911 iter 80 value 81.161342 iter 90 value 79.237355 iter 100 value 77.998113 final value 77.998113 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.938013 iter 10 value 95.346822 iter 20 value 92.765757 iter 30 value 86.444356 iter 40 value 82.803534 iter 50 value 81.334879 iter 60 value 80.333125 iter 70 value 78.261701 iter 80 value 77.996068 iter 90 value 77.820473 iter 100 value 77.784611 final value 77.784611 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.157110 iter 10 value 92.849691 iter 20 value 86.964691 iter 30 value 86.032205 iter 40 value 81.725611 iter 50 value 80.158984 iter 60 value 78.186599 iter 70 value 77.910151 iter 80 value 77.793634 iter 90 value 77.682369 iter 100 value 77.491641 final value 77.491641 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.207864 iter 10 value 94.317488 iter 20 value 92.574619 iter 30 value 92.550236 iter 40 value 92.434690 iter 50 value 92.431080 final value 92.431030 converged Fitting Repeat 2 # weights: 103 initial value 99.314920 final value 93.321999 converged Fitting Repeat 3 # weights: 103 initial value 98.638662 final value 94.485836 converged Fitting Repeat 4 # weights: 103 initial value 97.797894 final value 94.486078 converged Fitting Repeat 5 # weights: 103 initial value 101.432861 final value 94.485864 converged Fitting Repeat 1 # weights: 305 initial value 96.425133 iter 10 value 94.358974 final value 94.356226 converged Fitting Repeat 2 # weights: 305 initial value 104.632893 iter 10 value 94.488677 iter 20 value 94.478833 final value 94.354552 converged Fitting Repeat 3 # weights: 305 initial value 96.126810 iter 10 value 94.489321 iter 20 value 94.484235 iter 30 value 94.419738 iter 40 value 93.868596 iter 50 value 93.660915 iter 60 value 93.185088 final value 91.810055 converged Fitting Repeat 4 # weights: 305 initial value 107.413917 iter 10 value 94.489434 iter 20 value 94.402505 final value 94.354599 converged Fitting Repeat 5 # weights: 305 initial value 103.508731 iter 10 value 94.488860 iter 20 value 94.456025 iter 30 value 83.938511 iter 40 value 82.413196 iter 50 value 82.411822 final value 82.411820 converged Fitting Repeat 1 # weights: 507 initial value 99.045758 iter 10 value 94.362628 iter 20 value 93.784719 iter 30 value 93.321404 final value 93.321367 converged Fitting Repeat 2 # weights: 507 initial value 99.797989 iter 10 value 94.492676 iter 20 value 94.484428 iter 30 value 94.479076 iter 40 value 87.882860 iter 50 value 87.776267 final value 87.775270 converged Fitting Repeat 3 # weights: 507 initial value 106.343283 iter 10 value 94.362660 iter 20 value 94.280352 iter 30 value 85.706608 iter 40 value 80.039486 iter 50 value 80.038135 iter 60 value 79.943221 iter 70 value 79.938416 iter 80 value 79.589712 iter 90 value 79.479899 iter 100 value 79.476898 final value 79.476898 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.733580 iter 10 value 94.492849 iter 20 value 94.483550 iter 30 value 85.301872 iter 40 value 84.552050 iter 50 value 84.488162 iter 50 value 84.488161 iter 50 value 84.488161 final value 84.488161 converged Fitting Repeat 5 # weights: 507 initial value 110.396067 iter 10 value 94.466504 iter 20 value 87.278077 iter 30 value 83.554665 iter 40 value 83.550815 iter 50 value 83.491357 iter 60 value 83.269335 iter 70 value 80.751267 iter 80 value 80.255051 iter 90 value 80.249277 iter 100 value 80.180250 final value 80.180250 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.480021 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.428529 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 110.939362 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 112.824373 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.837967 final value 94.032967 converged Fitting Repeat 1 # weights: 305 initial value 107.685803 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 102.931658 final value 94.032967 converged Fitting Repeat 3 # weights: 305 initial value 106.604379 iter 10 value 93.994675 final value 93.869755 converged Fitting Repeat 4 # weights: 305 initial value 97.550043 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 98.258812 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 101.667010 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 96.983602 iter 10 value 84.001631 iter 20 value 82.988338 iter 30 value 82.942895 final value 82.942859 converged Fitting Repeat 3 # weights: 507 initial value 103.130956 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 104.834473 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 113.843079 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 95.776968 iter 10 value 92.553220 iter 20 value 86.831130 iter 30 value 84.930745 iter 40 value 83.592635 iter 50 value 82.882322 iter 60 value 81.675505 iter 70 value 81.322887 iter 80 value 81.319729 final value 81.319472 converged Fitting Repeat 2 # weights: 103 initial value 110.272342 iter 10 value 94.117369 iter 20 value 94.048010 iter 30 value 90.473480 iter 40 value 83.358748 iter 50 value 82.746959 iter 60 value 82.255672 iter 70 value 82.082245 iter 80 value 82.017320 iter 90 value 81.986201 final value 81.985724 converged Fitting Repeat 3 # weights: 103 initial value 101.366589 iter 10 value 87.881014 iter 20 value 83.060860 iter 30 value 82.301186 iter 40 value 82.163785 iter 50 value 82.046535 final value 82.045333 converged Fitting Repeat 4 # weights: 103 initial value 96.455758 iter 10 value 94.046264 iter 20 value 91.324518 iter 30 value 91.051271 iter 40 value 90.174019 iter 50 value 84.364358 iter 60 value 83.041411 iter 70 value 82.161086 iter 80 value 82.061059 iter 90 value 82.045351 final value 82.045332 converged Fitting Repeat 5 # weights: 103 initial value 106.863713 iter 10 value 93.867262 iter 20 value 83.983152 iter 30 value 83.055499 iter 40 value 82.828646 iter 50 value 82.592777 iter 60 value 82.554228 iter 70 value 82.535644 final value 82.535614 converged Fitting Repeat 1 # weights: 305 initial value 110.108495 iter 10 value 94.190154 iter 20 value 90.223835 iter 30 value 84.535066 iter 40 value 84.080329 iter 50 value 83.054955 iter 60 value 81.912827 iter 70 value 81.271473 iter 80 value 81.004568 iter 90 value 80.657986 iter 100 value 80.579202 final value 80.579202 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.101746 iter 10 value 94.352913 iter 20 value 93.749360 iter 30 value 85.943985 iter 40 value 84.664499 iter 50 value 83.253619 iter 60 value 82.448113 iter 70 value 82.375647 iter 80 value 82.317081 iter 90 value 82.196973 iter 100 value 82.092766 final value 82.092766 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 126.275515 iter 10 value 94.095934 iter 20 value 90.923812 iter 30 value 83.757815 iter 40 value 82.240539 iter 50 value 82.059268 iter 60 value 81.981611 iter 70 value 81.954518 iter 80 value 81.778607 iter 90 value 81.379947 iter 100 value 80.905294 final value 80.905294 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.879754 iter 10 value 94.056871 iter 20 value 93.504074 iter 30 value 93.205696 iter 40 value 91.816042 iter 50 value 85.224834 iter 60 value 82.629701 iter 70 value 82.382050 iter 80 value 81.886620 iter 90 value 81.391871 iter 100 value 81.147057 final value 81.147057 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.440714 iter 10 value 94.715155 iter 20 value 90.196510 iter 30 value 88.595266 iter 40 value 87.930332 iter 50 value 86.284499 iter 60 value 85.331636 iter 70 value 83.064348 iter 80 value 82.645111 iter 90 value 81.343082 iter 100 value 81.207068 final value 81.207068 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.487348 iter 10 value 94.019385 iter 20 value 85.962846 iter 30 value 83.586535 iter 40 value 83.069024 iter 50 value 81.893135 iter 60 value 80.630409 iter 70 value 80.017700 iter 80 value 79.748724 iter 90 value 79.629510 iter 100 value 79.505531 final value 79.505531 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 136.701407 iter 10 value 93.809740 iter 20 value 86.688653 iter 30 value 84.210867 iter 40 value 82.936457 iter 50 value 81.881774 iter 60 value 80.345377 iter 70 value 80.118436 iter 80 value 80.085729 iter 90 value 80.010664 iter 100 value 79.720056 final value 79.720056 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.526121 iter 10 value 93.998646 iter 20 value 86.664172 iter 30 value 85.172586 iter 40 value 84.185464 iter 50 value 82.435111 iter 60 value 82.081371 iter 70 value 81.566290 iter 80 value 81.309666 iter 90 value 80.466554 iter 100 value 80.129870 final value 80.129870 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.333405 iter 10 value 94.966760 iter 20 value 94.005005 iter 30 value 87.417280 iter 40 value 84.832451 iter 50 value 83.988784 iter 60 value 83.409342 iter 70 value 82.990276 iter 80 value 82.889904 iter 90 value 82.379679 iter 100 value 82.198441 final value 82.198441 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.713538 iter 10 value 94.044504 iter 20 value 85.835547 iter 30 value 83.331796 iter 40 value 83.222704 iter 50 value 82.317075 iter 60 value 80.652432 iter 70 value 80.495523 iter 80 value 80.220132 iter 90 value 80.032478 iter 100 value 79.726757 final value 79.726757 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.334727 final value 94.054446 converged Fitting Repeat 2 # weights: 103 initial value 96.371298 final value 94.054705 converged Fitting Repeat 3 # weights: 103 initial value 95.059470 final value 93.698712 converged Fitting Repeat 4 # weights: 103 initial value 103.222871 final value 94.054430 converged Fitting Repeat 5 # weights: 103 initial value 96.828976 final value 94.054585 converged Fitting Repeat 1 # weights: 305 initial value 111.797417 iter 10 value 93.884266 iter 20 value 93.873252 iter 30 value 93.142189 iter 40 value 89.120160 iter 50 value 89.092767 iter 60 value 89.091051 iter 70 value 89.090502 iter 80 value 84.089729 iter 90 value 81.516735 iter 100 value 81.516073 final value 81.516073 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.030670 iter 10 value 94.056496 iter 20 value 93.922409 iter 30 value 93.455887 iter 40 value 93.416139 iter 50 value 93.412815 iter 50 value 93.412815 final value 93.412815 converged Fitting Repeat 3 # weights: 305 initial value 99.330821 iter 10 value 94.057675 final value 94.053235 converged Fitting Repeat 4 # weights: 305 initial value 105.690844 iter 10 value 94.057804 iter 20 value 94.025368 iter 30 value 91.081683 iter 40 value 91.074296 iter 50 value 91.072447 iter 60 value 91.072103 iter 70 value 90.679637 final value 90.502493 converged Fitting Repeat 5 # weights: 305 initial value 115.222426 iter 10 value 94.057746 iter 20 value 94.004465 iter 30 value 93.402703 final value 93.377451 converged Fitting Repeat 1 # weights: 507 initial value 104.793570 iter 10 value 94.062209 iter 20 value 93.804710 iter 30 value 90.056954 iter 40 value 89.552431 iter 50 value 89.543256 iter 60 value 85.969815 iter 70 value 82.393370 iter 80 value 82.117604 iter 90 value 80.791886 iter 100 value 80.780077 final value 80.780077 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.957183 iter 10 value 94.041725 iter 20 value 94.035654 iter 30 value 85.841436 iter 40 value 85.515394 iter 50 value 84.432871 iter 60 value 84.299578 iter 70 value 84.299292 iter 80 value 84.296443 iter 90 value 84.291988 iter 100 value 80.648390 final value 80.648390 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 94.915973 iter 10 value 94.042603 iter 20 value 94.001047 iter 30 value 90.817503 iter 40 value 90.671976 final value 90.671974 converged Fitting Repeat 4 # weights: 507 initial value 95.541760 iter 10 value 94.060516 iter 20 value 88.579377 iter 30 value 86.822168 iter 40 value 83.873719 iter 50 value 82.913243 iter 60 value 82.749769 iter 70 value 82.748496 final value 82.748440 converged Fitting Repeat 5 # weights: 507 initial value 111.214758 iter 10 value 93.659190 iter 20 value 93.376204 iter 30 value 93.374874 iter 40 value 87.527447 iter 50 value 82.889743 iter 60 value 82.013107 iter 70 value 81.774574 iter 80 value 81.744692 iter 90 value 81.547911 iter 100 value 81.051816 final value 81.051816 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.119755 iter 10 value 111.285631 iter 20 value 108.019526 iter 30 value 104.448156 iter 40 value 101.863498 iter 50 value 101.391508 iter 60 value 100.690436 iter 70 value 100.527352 iter 80 value 100.408242 iter 90 value 100.174702 iter 100 value 100.024760 final value 100.024760 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 139.966614 iter 10 value 118.282450 iter 20 value 111.238495 iter 30 value 108.165943 iter 40 value 106.139088 iter 50 value 105.139206 iter 60 value 104.908833 iter 70 value 104.863698 iter 80 value 104.780708 iter 90 value 103.954194 iter 100 value 103.229163 final value 103.229163 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 145.701976 iter 10 value 117.902540 iter 20 value 115.359987 iter 30 value 114.611336 iter 40 value 112.200656 iter 50 value 109.585556 iter 60 value 104.822243 iter 70 value 102.694258 iter 80 value 102.431252 iter 90 value 101.717349 iter 100 value 101.298668 final value 101.298668 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 143.770937 iter 10 value 118.013026 iter 20 value 117.925020 iter 30 value 117.648280 iter 40 value 117.506490 iter 50 value 109.922682 iter 60 value 104.481558 iter 70 value 104.020888 iter 80 value 102.832335 iter 90 value 101.501926 iter 100 value 101.036077 final value 101.036077 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 135.073723 iter 10 value 117.926747 iter 20 value 116.340125 iter 30 value 114.045700 iter 40 value 108.684599 iter 50 value 104.084102 iter 60 value 103.081978 iter 70 value 101.933933 iter 80 value 101.571185 iter 90 value 100.808389 iter 100 value 100.429793 final value 100.429793 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 12 21:21:39 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. Use `.name_repair = "minimal"`. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 60.39 1.34 48.09 |
HPiP.Rcheck/examples_i386/HPiP-Ex.timings
|
HPiP.Rcheck/examples_x64/HPiP-Ex.timings
|