Back to Multiple platform build/check report for BioC 3.14
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2022-04-13 12:06:42 -0400 (Wed, 13 Apr 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.4 LTS)x86_644.1.3 (2022-03-10) -- "One Push-Up" 4324
tokay2Windows Server 2012 R2 Standardx644.1.3 (2022-03-10) -- "One Push-Up" 4077
machv2macOS 10.14.6 Mojavex86_644.1.3 (2022-03-10) -- "One Push-Up" 4137
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for HPiP on tokay2


To the developers/maintainers of the HPiP package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 886/2083HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.0.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2022-04-12 01:55:07 -0400 (Tue, 12 Apr 2022)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_14
git_last_commit: e3d7cf4
git_last_commit_date: 2021-10-26 13:12:29 -0400 (Tue, 26 Oct 2021)
nebbiolo2Linux (Ubuntu 20.04.4 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
tokay2Windows Server 2012 R2 Standard / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
machv2macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: HPiP
Version: 1.0.0
Command: C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings HPiP_1.0.0.tar.gz
StartedAt: 2022-04-12 21:12:52 -0400 (Tue, 12 Apr 2022)
EndedAt: 2022-04-12 21:21:48 -0400 (Tue, 12 Apr 2022)
EllapsedTime: 536.2 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings HPiP_1.0.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck'
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.0.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
corr_plot     37.29   1.08   39.25
var_imp       35.70   2.05   37.75
FSmethod      34.44   2.42   36.86
pred_ensembel 21.00   0.43   13.47
enrichfindP    0.50   0.03    8.40
** running examples for arch 'x64' ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
var_imp       33.42   2.34   35.81
corr_plot     34.53   1.17   35.73
FSmethod      31.45   2.27   33.76
pred_ensembel 18.45   0.27   13.83
enrichfindP    0.47   0.03    8.31
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'runTests.R'
 OK
** running tests for arch 'x64' ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck/00check.log'
for details.



Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O http://155.52.207.166/BBS/3.14/bioc/src/contrib/HPiP_1.0.0.tar.gz && rm -rf HPiP.buildbin-libdir && mkdir HPiP.buildbin-libdir && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=HPiP.buildbin-libdir HPiP_1.0.0.tar.gz && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL HPiP_1.0.0.zip && rm HPiP_1.0.0.tar.gz HPiP_1.0.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
 22 2994k   22  684k    0     0  1074k      0  0:00:02 --:--:--  0:00:02 1073k
 88 2994k   88 2658k    0     0  1623k      0  0:00:01  0:00:01 --:--:-- 1623k
100 2994k  100 2994k    0     0  1708k      0  0:00:01  0:00:01 --:--:-- 1708k

install for i386

* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'HPiP'
    finding HTML links ... done
    FSmethod                                html  
    FreqInteractors                         html  
    Gold_ReferenceSet                       html  
    UP000464024_df                          html  
    calculateAAC                            html  
    calculateAutocor                        html  
    calculateBE                             html  
    calculateCTDC                           html  
    calculateCTDD                           html  
    calculateCTDT                           html  
    calculateCTriad                         html  
    calculateDC                             html  
    calculateF                              html  
    calculateKSAAP                          html  
    calculateQD_Sm                          html  
    calculateTC                             html  
    calculateTC_Sm                          html  
    corr_plot                               html  
    enrich.df                               html  
    enrichfindP                             html  
    enrichplot                              html  
    example_data                            html  
    filter_missing_values                   html  
    getFASTA                                html  
    getHPI                                  html  
    get_negativePPI                         html  
    get_positivePPI                         html  
    host_se                                 html  
    impute_missing_data                     html  
    plotPPI                                 html  
    pred_ensembel                           html  
    predicted_PPIs                          html  
    unlabel_data                            html  
    var_imp                                 html  
    viral_se                                html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'HPiP' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'HPiP' as HPiP_1.0.0.zip
* DONE (HPiP)
* installing to library 'C:/Users/biocbuild/bbs-3.14-bioc/R/library'
package 'HPiP' successfully unpacked and MD5 sums checked

Tests output

HPiP.Rcheck/tests_i386/runTests.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 95.973158 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.041972 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.815728 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.367979 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 109.101767 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.112847 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.176102 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 109.086890 
iter  10 value 94.276316
final  value 94.132982 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.541369 
final  value 94.477594 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.800468 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.793083 
final  value 94.046704 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.493035 
iter  10 value 94.275362
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.620601 
iter  10 value 93.843967
final  value 93.843960 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.086037 
final  value 94.275362 
converged
Fitting Repeat 5 

# weights:  507
initial  value 115.269503 
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.026223 
iter  10 value 94.399523
iter  20 value 88.558443
iter  30 value 88.417183
iter  40 value 87.457927
iter  50 value 87.315386
iter  60 value 87.122308
iter  70 value 84.741663
iter  80 value 84.453877
iter  90 value 84.020589
iter 100 value 83.990042
final  value 83.990042 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.894756 
iter  10 value 94.105469
iter  20 value 85.532707
iter  30 value 85.012826
iter  40 value 84.544459
iter  50 value 84.298913
iter  60 value 84.068454
iter  70 value 83.988630
final  value 83.987960 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.276633 
iter  10 value 94.486235
iter  20 value 87.584474
iter  30 value 84.873955
iter  40 value 84.396049
iter  50 value 84.289654
iter  60 value 84.084284
iter  70 value 84.081532
iter  80 value 84.008862
iter  90 value 83.987971
final  value 83.987960 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.698037 
iter  10 value 94.479525
iter  20 value 94.119437
iter  30 value 94.101321
iter  40 value 94.100769
iter  50 value 89.355855
iter  60 value 87.477616
iter  70 value 87.278386
iter  80 value 86.710906
iter  90 value 84.817131
iter 100 value 84.615581
final  value 84.615581 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 98.188841 
iter  10 value 94.484273
iter  20 value 94.359707
iter  30 value 88.431923
iter  40 value 86.226178
iter  50 value 85.416470
iter  60 value 84.576198
iter  70 value 83.848842
iter  80 value 83.622019
iter  90 value 83.535449
iter 100 value 83.470471
final  value 83.470471 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 114.239716 
iter  10 value 94.430649
iter  20 value 91.569683
iter  30 value 86.137953
iter  40 value 85.122132
iter  50 value 83.138965
iter  60 value 82.348222
iter  70 value 82.144676
iter  80 value 81.893021
iter  90 value 81.564854
iter 100 value 81.378277
final  value 81.378277 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 113.733152 
iter  10 value 94.502631
iter  20 value 92.800275
iter  30 value 92.103694
iter  40 value 91.948409
iter  50 value 91.710087
iter  60 value 88.088442
iter  70 value 85.323163
iter  80 value 84.366849
iter  90 value 83.746289
iter 100 value 83.357081
final  value 83.357081 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.252723 
iter  10 value 94.488168
iter  20 value 93.693062
iter  30 value 91.360821
iter  40 value 86.446222
iter  50 value 85.936819
iter  60 value 83.745754
iter  70 value 82.758278
iter  80 value 82.333247
iter  90 value 81.568360
iter 100 value 81.498417
final  value 81.498417 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 107.388562 
iter  10 value 94.483518
iter  20 value 87.026190
iter  30 value 84.589606
iter  40 value 81.102861
iter  50 value 81.055105
iter  60 value 80.733846
iter  70 value 80.433755
iter  80 value 80.067518
iter  90 value 79.967575
iter 100 value 79.856456
final  value 79.856456 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.860245 
iter  10 value 94.536915
iter  20 value 89.134451
iter  30 value 85.386017
iter  40 value 84.231332
iter  50 value 81.831026
iter  60 value 81.283897
iter  70 value 80.905085
iter  80 value 80.659140
iter  90 value 80.522483
iter 100 value 80.514529
final  value 80.514529 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.343790 
iter  10 value 94.595159
iter  20 value 93.408952
iter  30 value 85.341969
iter  40 value 84.809293
iter  50 value 82.812204
iter  60 value 81.833052
iter  70 value 81.287081
iter  80 value 80.563014
iter  90 value 80.462170
iter 100 value 80.264959
final  value 80.264959 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.747888 
iter  10 value 94.513110
iter  20 value 93.407995
iter  30 value 86.290833
iter  40 value 85.999016
iter  50 value 85.401810
iter  60 value 84.631814
iter  70 value 84.083744
iter  80 value 83.793810
iter  90 value 83.699397
iter 100 value 83.670151
final  value 83.670151 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 114.823889 
iter  10 value 94.576749
iter  20 value 94.345343
iter  30 value 87.585442
iter  40 value 86.599932
iter  50 value 84.661758
iter  60 value 83.889376
iter  70 value 82.299547
iter  80 value 81.736143
iter  90 value 81.272033
iter 100 value 80.854713
final  value 80.854713 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 108.285811 
iter  10 value 94.808041
iter  20 value 94.507477
iter  30 value 85.554783
iter  40 value 85.087973
iter  50 value 84.512625
iter  60 value 83.827592
iter  70 value 82.894309
iter  80 value 81.969106
iter  90 value 81.854800
iter 100 value 81.851255
final  value 81.851255 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 122.591084 
iter  10 value 94.617947
iter  20 value 93.474612
iter  30 value 84.278028
iter  40 value 83.181120
iter  50 value 82.500039
iter  60 value 81.854570
iter  70 value 80.848300
iter  80 value 80.507751
iter  90 value 80.155081
iter 100 value 79.937859
final  value 79.937859 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.180205 
iter  10 value 94.277126
iter  20 value 94.273678
final  value 94.265967 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.408976 
iter  10 value 94.277236
iter  20 value 94.275916
iter  30 value 93.884162
iter  40 value 84.052562
iter  50 value 84.036995
iter  60 value 84.036596
iter  70 value 83.721944
final  value 83.721836 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.183191 
iter  10 value 94.485969
final  value 94.484215 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.776340 
final  value 94.486033 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.966403 
iter  10 value 94.277138
iter  20 value 94.276491
iter  30 value 94.038841
final  value 94.038329 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.606116 
iter  10 value 89.848018
iter  20 value 88.160475
iter  30 value 87.928704
iter  40 value 87.921633
iter  50 value 85.686037
iter  60 value 85.546261
final  value 85.546259 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.986516 
iter  10 value 94.492095
iter  20 value 94.486501
final  value 94.486479 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.478930 
iter  10 value 94.280559
iter  20 value 94.050878
iter  30 value 94.038328
final  value 94.038275 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.212602 
iter  10 value 94.489104
iter  20 value 94.483753
iter  30 value 85.712624
iter  40 value 85.041134
iter  50 value 83.565204
iter  60 value 83.555400
iter  70 value 83.554650
iter  80 value 83.546371
iter  90 value 83.032029
iter 100 value 82.887540
final  value 82.887540 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 98.153405 
iter  10 value 94.488302
iter  20 value 94.342388
iter  30 value 89.005744
iter  40 value 86.833151
iter  50 value 85.569840
iter  60 value 82.597522
iter  70 value 82.578686
iter  80 value 82.578309
iter  80 value 82.578308
iter  80 value 82.578308
final  value 82.578308 
converged
Fitting Repeat 1 

# weights:  507
initial  value 119.688935 
iter  10 value 94.492886
iter  20 value 94.377285
iter  30 value 91.954178
iter  40 value 87.946979
iter  50 value 82.662678
iter  60 value 82.524545
final  value 82.524263 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.634256 
iter  10 value 94.492508
iter  20 value 94.458399
iter  30 value 91.412784
iter  40 value 90.286072
iter  50 value 90.280042
iter  60 value 90.274897
iter  70 value 88.865189
iter  80 value 82.626159
iter  90 value 79.951983
iter 100 value 79.951030
final  value 79.951030 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 97.870794 
iter  10 value 89.871686
iter  20 value 89.714231
iter  30 value 89.674470
iter  40 value 89.660951
iter  50 value 89.551252
iter  60 value 89.547763
iter  70 value 89.546064
iter  80 value 87.001066
iter  90 value 83.700046
iter 100 value 83.521722
final  value 83.521722 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 102.871124 
iter  10 value 94.283676
iter  20 value 93.907703
iter  30 value 87.601365
iter  40 value 86.885530
iter  50 value 86.885149
iter  60 value 85.915207
iter  70 value 85.845920
iter  80 value 85.845687
iter  90 value 85.776459
iter 100 value 83.100220
final  value 83.100220 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 97.355334 
iter  10 value 94.273752
iter  20 value 92.107896
iter  30 value 86.564986
final  value 86.564984 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.670461 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 110.237799 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.757383 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.796855 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.774905 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.587641 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.841456 
final  value 93.783647 
converged
Fitting Repeat 3 

# weights:  305
initial  value 107.237209 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  305
initial  value 115.737916 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.700461 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.691506 
iter  10 value 87.472619
iter  20 value 82.808819
iter  30 value 82.296137
iter  40 value 82.283572
iter  50 value 82.283358
iter  50 value 82.283357
iter  50 value 82.283357
final  value 82.283357 
converged
Fitting Repeat 2 

# weights:  507
initial  value 111.604078 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.996039 
final  value 94.484138 
converged
Fitting Repeat 4 

# weights:  507
initial  value 112.226766 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.294747 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.744742 
iter  10 value 94.478302
iter  20 value 94.316069
iter  30 value 94.257422
iter  40 value 88.911257
iter  50 value 85.221249
iter  60 value 84.488457
iter  70 value 84.148638
iter  80 value 84.121115
final  value 84.120913 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.227216 
iter  10 value 94.488425
iter  20 value 91.182130
iter  30 value 85.061667
iter  40 value 83.882146
final  value 83.727542 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.260287 
iter  10 value 94.451200
iter  20 value 86.351411
iter  30 value 84.617539
iter  40 value 84.183663
iter  50 value 83.467367
iter  60 value 82.528698
iter  70 value 82.514662
final  value 82.514655 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.176591 
iter  10 value 93.928426
iter  20 value 91.393071
iter  30 value 87.654162
iter  40 value 86.112871
iter  50 value 84.751616
iter  60 value 84.312719
iter  70 value 84.134079
iter  80 value 84.121236
final  value 84.120913 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.385968 
iter  10 value 94.475649
iter  20 value 93.046598
iter  30 value 92.003840
iter  40 value 91.894174
iter  50 value 91.618790
iter  60 value 87.636132
iter  70 value 86.351702
iter  80 value 85.774914
iter  90 value 85.062874
iter 100 value 83.795141
final  value 83.795141 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.857223 
iter  10 value 94.493221
iter  20 value 90.210645
iter  30 value 88.655479
iter  40 value 88.346361
iter  50 value 88.196618
iter  60 value 86.116246
iter  70 value 84.296551
iter  80 value 83.166322
iter  90 value 82.468428
iter 100 value 82.144334
final  value 82.144334 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.518429 
iter  10 value 94.407583
iter  20 value 87.168961
iter  30 value 83.300859
iter  40 value 81.555862
iter  50 value 81.112584
iter  60 value 81.021134
iter  70 value 80.580585
iter  80 value 80.520564
iter  90 value 80.333062
iter 100 value 80.276720
final  value 80.276720 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.306703 
iter  10 value 94.456336
iter  20 value 93.879783
iter  30 value 93.754035
iter  40 value 89.652787
iter  50 value 87.662201
iter  60 value 85.060912
iter  70 value 84.446625
iter  80 value 83.977937
iter  90 value 81.750723
iter 100 value 81.120581
final  value 81.120581 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 98.263117 
iter  10 value 84.759185
iter  20 value 83.632575
iter  30 value 82.813634
iter  40 value 82.399355
iter  50 value 82.347610
iter  60 value 82.296951
iter  70 value 82.085402
iter  80 value 81.831413
iter  90 value 81.619822
iter 100 value 81.355367
final  value 81.355367 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.196305 
iter  10 value 94.519837
iter  20 value 89.675552
iter  30 value 85.949481
iter  40 value 84.793537
iter  50 value 84.390382
iter  60 value 83.620488
iter  70 value 81.989234
iter  80 value 81.476101
iter  90 value 81.209181
iter 100 value 81.065317
final  value 81.065317 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.563220 
iter  10 value 92.682946
iter  20 value 87.773353
iter  30 value 86.902767
iter  40 value 84.699102
iter  50 value 84.196064
iter  60 value 83.578744
iter  70 value 83.055543
iter  80 value 82.604974
iter  90 value 82.240617
iter 100 value 82.143257
final  value 82.143257 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.120483 
iter  10 value 94.636138
iter  20 value 88.030540
iter  30 value 84.353486
iter  40 value 83.643665
iter  50 value 82.863914
iter  60 value 82.372324
iter  70 value 81.678086
iter  80 value 80.668819
iter  90 value 80.170471
iter 100 value 79.984030
final  value 79.984030 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 119.832858 
iter  10 value 87.279131
iter  20 value 85.893470
iter  30 value 84.516541
iter  40 value 82.924900
iter  50 value 82.352765
iter  60 value 81.877463
iter  70 value 81.739632
iter  80 value 81.626668
iter  90 value 81.458921
iter 100 value 81.261008
final  value 81.261008 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.314296 
iter  10 value 94.776375
iter  20 value 94.462971
iter  30 value 89.547385
iter  40 value 85.834026
iter  50 value 84.150987
iter  60 value 83.579116
iter  70 value 82.001992
iter  80 value 81.659064
iter  90 value 81.486227
iter 100 value 80.959685
final  value 80.959685 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 138.425035 
iter  10 value 103.579923
iter  20 value 93.477849
iter  30 value 85.703142
iter  40 value 84.305869
iter  50 value 84.027600
iter  60 value 83.588688
iter  70 value 81.650254
iter  80 value 80.849688
iter  90 value 80.597278
iter 100 value 80.410365
final  value 80.410365 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.184533 
final  value 94.485823 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.142165 
final  value 94.485804 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.705956 
final  value 94.468413 
converged
Fitting Repeat 4 

# weights:  103
initial  value 115.903725 
iter  10 value 94.485956
iter  20 value 94.484216
iter  20 value 94.484216
iter  20 value 94.484216
final  value 94.484216 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.098801 
final  value 94.485700 
converged
Fitting Repeat 1 

# weights:  305
initial  value 134.572859 
iter  10 value 94.391872
iter  20 value 94.389382
iter  30 value 94.312801
iter  40 value 94.310657
final  value 94.310652 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.111607 
iter  10 value 94.451668
iter  20 value 94.272985
iter  30 value 94.253275
final  value 94.252665 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.088890 
iter  10 value 93.607357
iter  20 value 87.077341
iter  30 value 86.781830
iter  40 value 86.777095
final  value 86.776609 
converged
Fitting Repeat 4 

# weights:  305
initial  value 115.086785 
iter  10 value 94.488621
iter  20 value 85.409885
iter  30 value 85.061922
iter  40 value 85.038243
final  value 85.038239 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.886535 
iter  10 value 94.488308
iter  20 value 94.320376
iter  30 value 88.353765
iter  40 value 88.310284
iter  50 value 87.564489
iter  60 value 86.487816
iter  70 value 85.603189
iter  80 value 84.668563
iter  90 value 83.047921
iter 100 value 81.169030
final  value 81.169030 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 110.644859 
iter  10 value 94.384523
iter  20 value 94.169043
iter  30 value 94.140183
iter  40 value 92.852965
iter  50 value 92.290216
iter  60 value 92.289779
iter  70 value 90.317698
iter  80 value 87.702343
iter  90 value 87.579544
iter 100 value 87.092116
final  value 87.092116 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.203060 
iter  10 value 94.492783
iter  20 value 94.391985
iter  30 value 86.902453
iter  40 value 86.878711
iter  50 value 86.876252
iter  60 value 85.666032
iter  70 value 84.878970
iter  80 value 84.877902
iter  90 value 84.732285
iter 100 value 83.912785
final  value 83.912785 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 116.274401 
iter  10 value 94.492601
iter  20 value 94.443786
iter  30 value 86.508260
iter  40 value 84.875876
final  value 84.875138 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.498298 
iter  10 value 94.318093
iter  20 value 94.296018
iter  30 value 92.837433
iter  40 value 86.979508
iter  50 value 83.462985
iter  60 value 83.457606
iter  70 value 83.456895
final  value 83.456832 
converged
Fitting Repeat 5 

# weights:  507
initial  value 113.588452 
iter  10 value 94.321322
iter  20 value 94.150036
iter  30 value 92.214662
iter  40 value 84.293677
final  value 84.293104 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.917530 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 112.480556 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.189288 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.251037 
final  value 92.892738 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.499798 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.673972 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.011108 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.933269 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.176089 
iter  10 value 91.192764
final  value 90.811799 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.412113 
final  value 92.892737 
converged
Fitting Repeat 1 

# weights:  507
initial  value 112.600017 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.365475 
iter  10 value 89.905822
iter  20 value 81.685350
iter  30 value 81.550164
iter  40 value 81.548537
final  value 81.548373 
converged
Fitting Repeat 3 

# weights:  507
initial  value 120.450231 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.357817 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.239050 
iter  10 value 93.836066
iter  10 value 93.836066
iter  10 value 93.836066
final  value 93.836066 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.209604 
iter  10 value 94.056772
iter  20 value 93.942770
iter  30 value 86.177455
iter  40 value 84.068530
iter  50 value 83.725794
iter  60 value 83.591529
iter  70 value 83.195111
final  value 83.164809 
converged
Fitting Repeat 2 

# weights:  103
initial  value 114.356014 
iter  10 value 93.394439
iter  20 value 91.677089
iter  30 value 85.677656
iter  40 value 84.221165
iter  50 value 83.823717
iter  60 value 83.425088
iter  70 value 82.890696
iter  80 value 82.742123
final  value 82.742064 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.700098 
iter  10 value 94.056247
iter  20 value 94.047970
iter  30 value 83.134085
iter  40 value 82.581237
iter  50 value 81.529627
iter  60 value 81.097359
iter  70 value 80.112072
iter  80 value 79.922493
final  value 79.908483 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.107964 
iter  10 value 93.706026
iter  20 value 89.317745
iter  30 value 83.092564
iter  40 value 81.660645
iter  50 value 81.429848
final  value 81.405313 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.121908 
iter  10 value 94.057027
iter  20 value 89.252391
iter  30 value 84.999483
iter  40 value 84.403293
iter  50 value 84.163401
iter  60 value 83.631902
iter  70 value 83.211173
iter  80 value 83.164958
final  value 83.164809 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.182339 
iter  10 value 94.100810
iter  20 value 93.821039
iter  30 value 93.507316
iter  40 value 93.255009
iter  50 value 91.787211
iter  60 value 81.104359
iter  70 value 79.374445
iter  80 value 77.851533
iter  90 value 77.414992
iter 100 value 77.211548
final  value 77.211548 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.797905 
iter  10 value 93.883538
iter  20 value 85.672143
iter  30 value 85.142325
iter  40 value 84.309289
iter  50 value 80.591593
iter  60 value 78.718807
iter  70 value 78.345468
iter  80 value 77.424044
iter  90 value 77.052811
final  value 77.004072 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.303133 
iter  10 value 93.904270
iter  20 value 86.069602
iter  30 value 85.293523
iter  40 value 84.799713
iter  50 value 82.171671
iter  60 value 79.736720
iter  70 value 78.001722
iter  80 value 77.414539
iter  90 value 77.206898
iter 100 value 76.987986
final  value 76.987986 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 112.845410 
iter  10 value 93.888119
iter  20 value 82.106119
iter  30 value 81.299904
iter  40 value 80.299459
iter  50 value 78.840011
iter  60 value 78.547901
iter  70 value 78.175478
iter  80 value 78.054504
iter  90 value 77.681625
iter 100 value 77.394890
final  value 77.394890 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 114.826069 
iter  10 value 93.809697
iter  20 value 86.182913
iter  30 value 82.652648
iter  40 value 79.251527
iter  50 value 77.545259
iter  60 value 76.917779
iter  70 value 76.702337
iter  80 value 76.594560
iter  90 value 76.486580
iter 100 value 76.429622
final  value 76.429622 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.861885 
iter  10 value 94.198417
iter  20 value 88.100979
iter  30 value 83.099591
iter  40 value 81.974363
iter  50 value 81.519679
iter  60 value 80.966997
iter  70 value 79.406116
iter  80 value 78.628241
iter  90 value 78.066973
iter 100 value 77.920645
final  value 77.920645 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 126.781090 
iter  10 value 93.948335
iter  20 value 87.097036
iter  30 value 80.712961
iter  40 value 78.708020
iter  50 value 77.257782
iter  60 value 77.015401
iter  70 value 76.767047
iter  80 value 76.728279
iter  90 value 76.672311
iter 100 value 76.632871
final  value 76.632871 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 123.704559 
iter  10 value 94.120218
iter  20 value 84.828884
iter  30 value 82.076702
iter  40 value 80.074469
iter  50 value 78.303843
iter  60 value 77.236488
iter  70 value 76.735702
iter  80 value 76.582786
iter  90 value 76.431798
iter 100 value 76.234934
final  value 76.234934 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 118.922102 
iter  10 value 95.592365
iter  20 value 92.515889
iter  30 value 89.555619
iter  40 value 83.229041
iter  50 value 80.788410
iter  60 value 80.264410
iter  70 value 79.448905
iter  80 value 78.221081
iter  90 value 77.927294
iter 100 value 77.220051
final  value 77.220051 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.483319 
iter  10 value 93.745080
iter  20 value 87.488023
iter  30 value 81.307679
iter  40 value 80.243789
iter  50 value 77.931278
iter  60 value 77.789093
iter  70 value 77.674672
iter  80 value 77.629988
iter  90 value 77.454675
iter 100 value 77.410129
final  value 77.410129 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.441344 
final  value 94.054569 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.183035 
final  value 94.054622 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.767253 
final  value 94.054511 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.803409 
iter  10 value 94.054497
iter  20 value 94.052940
final  value 94.052912 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.595770 
iter  10 value 92.935198
iter  20 value 92.933878
iter  30 value 92.933665
iter  40 value 91.924274
iter  50 value 79.169274
iter  60 value 77.758484
iter  70 value 77.484625
iter  80 value 77.164498
iter  90 value 77.163159
iter 100 value 77.162642
final  value 77.162642 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 95.055126 
iter  10 value 93.710098
iter  20 value 93.677407
iter  30 value 92.937279
iter  40 value 92.934643
final  value 92.934445 
converged
Fitting Repeat 2 

# weights:  305
initial  value 113.346913 
iter  10 value 94.058068
iter  20 value 94.053387
iter  30 value 92.937299
final  value 92.933709 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.149676 
iter  10 value 93.841251
iter  20 value 93.836794
final  value 93.836288 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.132402 
iter  10 value 83.940394
iter  20 value 81.594443
iter  30 value 80.663059
iter  40 value 79.939583
iter  50 value 79.504483
iter  60 value 79.500518
iter  70 value 79.496677
iter  80 value 79.460376
iter  90 value 79.038756
iter 100 value 79.009856
final  value 79.009856 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.799278 
iter  10 value 93.769617
iter  20 value 93.768224
iter  30 value 93.765275
iter  40 value 93.765137
final  value 93.765111 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.909753 
iter  10 value 93.844129
iter  20 value 93.836654
iter  30 value 93.836173
iter  40 value 90.011305
iter  50 value 89.958259
final  value 89.958103 
converged
Fitting Repeat 2 

# weights:  507
initial  value 100.319602 
iter  10 value 93.845891
iter  20 value 93.833385
iter  30 value 92.918324
iter  40 value 92.764775
iter  50 value 86.315663
iter  60 value 83.195622
iter  70 value 83.186018
final  value 83.186015 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.453446 
iter  10 value 89.596284
iter  20 value 86.460913
iter  30 value 81.249476
iter  40 value 79.842034
iter  50 value 79.638093
iter  60 value 79.052408
iter  70 value 78.667699
iter  80 value 78.457544
iter  90 value 77.412223
iter 100 value 77.034730
final  value 77.034730 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.261094 
iter  10 value 92.725339
iter  20 value 92.722470
iter  30 value 92.716386
iter  40 value 91.538326
iter  50 value 85.771494
iter  60 value 79.380836
iter  70 value 78.599823
iter  80 value 77.424947
iter  90 value 76.174759
iter 100 value 75.803774
final  value 75.803774 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 98.941184 
iter  10 value 94.061524
iter  20 value 94.003499
iter  30 value 93.766362
iter  40 value 93.764074
iter  40 value 93.764073
iter  40 value 93.764073
final  value 93.764073 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.001266 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.876303 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.757999 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.359311 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.550603 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.048578 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.762103 
final  value 94.338744 
converged
Fitting Repeat 3 

# weights:  305
initial  value 121.323184 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.174506 
final  value 94.264858 
converged
Fitting Repeat 5 

# weights:  305
initial  value 118.012879 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.873213 
final  value 94.312036 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.099506 
iter  10 value 94.433817
iter  10 value 94.433816
iter  10 value 94.433816
final  value 94.433816 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.931250 
final  value 94.443243 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.686712 
final  value 94.443243 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.118038 
iter  10 value 94.324994
iter  20 value 94.323863
final  value 94.323810 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.343802 
iter  10 value 94.492299
iter  20 value 88.773544
iter  30 value 85.389552
iter  40 value 85.320028
iter  50 value 82.961037
iter  60 value 82.762309
iter  70 value 82.752079
iter  80 value 82.709841
iter  90 value 82.598164
final  value 82.594913 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.724696 
iter  10 value 94.486847
iter  20 value 93.745791
iter  30 value 92.944923
iter  40 value 85.620523
iter  50 value 82.998928
iter  60 value 82.792364
iter  70 value 82.758259
iter  80 value 82.726191
iter  90 value 82.620193
iter 100 value 82.595618
final  value 82.595618 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 102.956962 
iter  10 value 94.417742
iter  20 value 89.661485
iter  30 value 85.867941
iter  40 value 83.053528
iter  50 value 82.420394
iter  60 value 82.353929
iter  70 value 82.347971
iter  80 value 82.334414
iter  90 value 82.237605
iter 100 value 82.196658
final  value 82.196658 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 98.502779 
iter  10 value 94.452764
iter  20 value 93.852244
iter  30 value 91.605758
iter  40 value 88.596907
iter  50 value 86.554618
iter  60 value 83.536639
iter  70 value 82.679915
iter  80 value 81.292365
iter  90 value 81.224353
iter 100 value 81.214088
final  value 81.214088 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 109.768685 
iter  10 value 94.353525
iter  20 value 90.314333
iter  30 value 86.931519
iter  40 value 84.663307
iter  50 value 82.959748
iter  60 value 82.772454
iter  70 value 82.742824
iter  80 value 82.595460
final  value 82.594914 
converged
Fitting Repeat 1 

# weights:  305
initial  value 133.232299 
iter  10 value 93.193536
iter  20 value 86.768013
iter  30 value 86.149252
iter  40 value 83.512464
iter  50 value 83.000665
iter  60 value 82.956777
iter  70 value 82.847765
iter  80 value 81.975398
iter  90 value 81.146345
iter 100 value 80.582653
final  value 80.582653 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 111.695489 
iter  10 value 93.945323
iter  20 value 87.282671
iter  30 value 86.970814
iter  40 value 86.754894
iter  50 value 85.837579
iter  60 value 85.635520
iter  70 value 85.480627
iter  80 value 85.179888
iter  90 value 83.562271
iter 100 value 81.330442
final  value 81.330442 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.111461 
iter  10 value 94.477947
iter  20 value 93.723382
iter  30 value 89.809833
iter  40 value 88.083366
iter  50 value 84.235597
iter  60 value 82.045073
iter  70 value 81.356400
iter  80 value 81.057759
iter  90 value 80.917545
iter 100 value 80.435004
final  value 80.435004 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.553325 
iter  10 value 94.409021
iter  20 value 86.542648
iter  30 value 84.998129
iter  40 value 82.854376
iter  50 value 81.185967
iter  60 value 80.696293
iter  70 value 80.491024
iter  80 value 80.233952
iter  90 value 80.177441
iter 100 value 80.148084
final  value 80.148084 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.704897 
iter  10 value 94.918867
iter  20 value 89.458467
iter  30 value 87.737620
iter  40 value 86.575941
iter  50 value 84.677646
iter  60 value 84.266479
iter  70 value 82.184129
iter  80 value 81.390273
iter  90 value 80.763415
iter 100 value 80.504033
final  value 80.504033 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 126.665860 
iter  10 value 94.313345
iter  20 value 87.610766
iter  30 value 86.579609
iter  40 value 85.050005
iter  50 value 83.675268
iter  60 value 82.372425
iter  70 value 82.158286
iter  80 value 81.909787
iter  90 value 81.010164
iter 100 value 80.538717
final  value 80.538717 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.213648 
iter  10 value 93.004367
iter  20 value 92.267161
iter  30 value 91.221564
iter  40 value 90.802041
iter  50 value 90.394879
iter  60 value 88.284978
iter  70 value 84.336093
iter  80 value 81.648787
iter  90 value 81.028858
iter 100 value 80.547062
final  value 80.547062 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.301701 
iter  10 value 94.072501
iter  20 value 84.323089
iter  30 value 83.466848
iter  40 value 82.579200
iter  50 value 81.949125
iter  60 value 81.351585
iter  70 value 80.965180
iter  80 value 80.374813
iter  90 value 80.157663
iter 100 value 80.145821
final  value 80.145821 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.151476 
iter  10 value 94.512339
iter  20 value 94.204070
iter  30 value 93.246799
iter  40 value 89.752850
iter  50 value 84.359279
iter  60 value 81.700953
iter  70 value 80.856965
iter  80 value 80.770853
iter  90 value 80.645951
iter 100 value 80.589812
final  value 80.589812 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.316446 
iter  10 value 95.946378
iter  20 value 94.475183
iter  30 value 88.583865
iter  40 value 86.637530
iter  50 value 86.081030
iter  60 value 83.946091
iter  70 value 83.164507
iter  80 value 82.338563
iter  90 value 81.081002
iter 100 value 80.885319
final  value 80.885319 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.294144 
final  value 94.495512 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.064182 
final  value 94.485654 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.253594 
final  value 94.485860 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.862166 
final  value 94.485999 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.067812 
final  value 94.485744 
converged
Fitting Repeat 1 

# weights:  305
initial  value 131.674123 
iter  10 value 94.489499
iter  20 value 94.484302
iter  30 value 90.290258
iter  40 value 87.801608
iter  50 value 85.299975
iter  60 value 83.793256
iter  70 value 83.792401
iter  80 value 83.618828
iter  90 value 83.559129
iter 100 value 83.550138
final  value 83.550138 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 95.317582 
iter  10 value 94.485420
iter  20 value 94.166892
iter  30 value 85.660118
iter  40 value 84.693130
iter  50 value 83.581159
iter  60 value 83.576706
iter  70 value 82.874178
iter  80 value 82.865126
iter  90 value 82.289483
iter 100 value 80.809734
final  value 80.809734 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.919194 
iter  10 value 94.488754
final  value 94.484223 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.949802 
iter  10 value 86.454047
iter  20 value 86.335216
iter  30 value 86.003086
iter  40 value 85.869443
iter  50 value 85.866548
iter  60 value 85.862650
iter  70 value 82.051691
iter  80 value 81.650818
iter  90 value 79.874799
iter 100 value 79.123610
final  value 79.123610 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.107007 
iter  10 value 91.430551
iter  20 value 90.684023
iter  30 value 87.303425
iter  40 value 86.231912
iter  50 value 86.231287
iter  60 value 85.855388
iter  70 value 84.458210
iter  80 value 79.377300
iter  90 value 78.676577
iter 100 value 78.418960
final  value 78.418960 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.310332 
iter  10 value 82.872710
iter  20 value 82.294104
iter  30 value 82.274394
iter  40 value 82.273079
iter  50 value 82.061833
iter  60 value 81.596116
iter  70 value 81.574776
iter  80 value 81.573239
iter  90 value 81.546185
iter 100 value 80.311009
final  value 80.311009 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.833525 
iter  10 value 94.488843
iter  20 value 94.219459
iter  30 value 94.143022
final  value 94.142989 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.198886 
iter  10 value 94.483002
iter  20 value 94.419380
iter  30 value 88.634130
iter  40 value 88.381459
iter  50 value 88.380213
iter  60 value 88.093463
iter  70 value 85.380300
iter  80 value 84.956239
iter  90 value 84.955464
final  value 84.955104 
converged
Fitting Repeat 4 

# weights:  507
initial  value 107.161015 
iter  10 value 92.284824
iter  20 value 91.962046
iter  30 value 86.195131
iter  40 value 84.718268
iter  50 value 83.818653
iter  60 value 83.797439
iter  70 value 83.755974
iter  80 value 83.745882
iter  90 value 83.735109
iter 100 value 83.707040
final  value 83.707040 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.078568 
iter  10 value 94.492449
iter  20 value 94.484597
iter  30 value 94.273487
final  value 94.263488 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.932021 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.040801 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.132874 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.593930 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.537988 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 111.265455 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.798280 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.431856 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.665493 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.915658 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.025365 
final  value 93.915746 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.243613 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.566033 
final  value 93.915746 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.337343 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.447772 
iter  10 value 93.954865
final  value 93.954846 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.320452 
iter  10 value 94.025020
iter  20 value 93.736471
iter  30 value 92.487468
iter  40 value 90.045142
iter  50 value 89.269186
iter  60 value 88.898083
iter  70 value 86.297738
iter  80 value 86.110970
iter  90 value 86.073341
iter 100 value 86.034828
final  value 86.034828 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 102.944187 
iter  10 value 93.993243
iter  20 value 87.085388
iter  30 value 86.552043
iter  40 value 86.017934
iter  50 value 85.839289
iter  60 value 84.933848
iter  70 value 84.534984
iter  80 value 84.320159
final  value 84.320030 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.960805 
iter  10 value 93.925385
iter  20 value 93.803450
iter  30 value 93.791183
iter  40 value 93.761773
iter  50 value 93.730506
iter  60 value 89.988934
iter  70 value 87.140203
iter  80 value 86.231344
iter  90 value 86.115943
iter 100 value 86.043539
final  value 86.043539 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.230342 
iter  10 value 93.360772
iter  20 value 86.259143
iter  30 value 84.985000
iter  40 value 84.654316
iter  50 value 84.538165
final  value 84.536517 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.660332 
iter  10 value 93.863184
iter  20 value 93.161308
iter  30 value 89.734542
iter  40 value 88.280625
iter  50 value 87.852297
iter  60 value 86.654605
iter  70 value 84.739506
iter  80 value 84.537432
final  value 84.536517 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.380955 
iter  10 value 95.677846
iter  20 value 93.665975
iter  30 value 88.675357
iter  40 value 86.856239
iter  50 value 86.465373
iter  60 value 85.368540
iter  70 value 84.553869
iter  80 value 84.402944
iter  90 value 83.986157
iter 100 value 83.522164
final  value 83.522164 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.560816 
iter  10 value 94.121443
iter  20 value 89.813878
iter  30 value 87.762886
iter  40 value 86.619583
iter  50 value 84.945351
iter  60 value 84.036593
iter  70 value 83.856476
iter  80 value 83.695574
iter  90 value 83.512590
iter 100 value 83.344826
final  value 83.344826 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.975903 
iter  10 value 94.117337
iter  20 value 87.379660
iter  30 value 86.718844
iter  40 value 86.654048
iter  50 value 86.570647
iter  60 value 85.846397
iter  70 value 84.598325
iter  80 value 84.006859
iter  90 value 83.425753
iter 100 value 82.867231
final  value 82.867231 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.323970 
iter  10 value 94.010653
iter  20 value 91.941352
iter  30 value 90.588074
iter  40 value 87.512563
iter  50 value 85.540736
iter  60 value 83.897831
iter  70 value 83.331297
iter  80 value 83.140395
iter  90 value 82.998566
iter 100 value 82.797236
final  value 82.797236 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.988465 
iter  10 value 93.964069
iter  20 value 88.334901
iter  30 value 87.426720
iter  40 value 86.989630
iter  50 value 84.497548
iter  60 value 83.718065
iter  70 value 83.369661
iter  80 value 83.075968
iter  90 value 83.066788
iter 100 value 82.760860
final  value 82.760860 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.940723 
iter  10 value 94.220660
iter  20 value 90.182734
iter  30 value 86.635863
iter  40 value 85.989732
iter  50 value 84.397721
iter  60 value 84.153456
iter  70 value 83.393349
iter  80 value 83.226666
iter  90 value 82.801332
iter 100 value 82.693331
final  value 82.693331 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 122.027626 
iter  10 value 93.990608
iter  20 value 86.000065
iter  30 value 84.274202
iter  40 value 83.586916
iter  50 value 83.050952
iter  60 value 82.643613
iter  70 value 82.605351
iter  80 value 82.589360
iter  90 value 82.578189
iter 100 value 82.529539
final  value 82.529539 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 131.133262 
iter  10 value 94.374933
iter  20 value 88.789666
iter  30 value 86.948834
iter  40 value 86.057188
iter  50 value 84.053321
iter  60 value 83.620422
iter  70 value 83.396084
iter  80 value 82.844545
iter  90 value 82.539970
iter 100 value 82.504424
final  value 82.504424 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 108.059692 
iter  10 value 94.008560
iter  20 value 93.060266
iter  30 value 90.689855
iter  40 value 84.602092
iter  50 value 84.054024
iter  60 value 83.792582
iter  70 value 83.429974
iter  80 value 82.943025
iter  90 value 82.617378
iter 100 value 82.534583
final  value 82.534583 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 114.277144 
iter  10 value 96.084491
iter  20 value 87.173882
iter  30 value 86.374307
iter  40 value 85.956187
iter  50 value 85.854297
iter  60 value 85.207777
iter  70 value 84.523013
iter  80 value 83.982557
iter  90 value 83.339653
iter 100 value 83.320946
final  value 83.320946 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.416125 
final  value 93.914436 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.530109 
final  value 94.054619 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.157253 
final  value 94.054542 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.051776 
final  value 93.765407 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.084821 
final  value 93.917520 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.833722 
iter  10 value 94.057519
iter  20 value 94.052944
iter  30 value 93.715339
iter  40 value 88.700030
iter  50 value 85.647793
iter  60 value 84.779572
iter  70 value 84.577577
iter  80 value 84.545327
iter  80 value 84.545326
iter  90 value 84.543605
iter 100 value 84.543400
final  value 84.543400 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 110.731636 
iter  10 value 91.803883
iter  20 value 91.739900
iter  30 value 91.739352
iter  40 value 91.738493
iter  50 value 91.737185
iter  60 value 91.735917
iter  70 value 91.735410
iter  80 value 91.735218
final  value 91.735143 
converged
Fitting Repeat 3 

# weights:  305
initial  value 134.800501 
iter  10 value 94.057994
final  value 94.053406 
converged
Fitting Repeat 4 

# weights:  305
initial  value 120.390464 
iter  10 value 93.768629
iter  20 value 93.766282
iter  30 value 93.760347
iter  40 value 93.757355
iter  50 value 90.256911
iter  60 value 86.195123
iter  70 value 86.182347
final  value 86.181716 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.791238 
iter  10 value 94.057904
iter  20 value 93.735047
iter  30 value 86.935174
iter  40 value 86.934837
iter  40 value 86.934837
iter  50 value 86.543640
iter  60 value 86.543435
iter  60 value 86.543434
iter  60 value 86.543434
final  value 86.543434 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.455567 
iter  10 value 94.064563
iter  20 value 94.053112
iter  30 value 93.752457
final  value 93.705080 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.045856 
iter  10 value 94.060386
iter  20 value 93.148940
iter  30 value 86.952204
iter  40 value 86.936908
iter  50 value 86.936058
iter  60 value 86.935544
iter  70 value 86.935089
iter  80 value 86.283227
iter  90 value 83.864511
iter 100 value 82.194101
final  value 82.194101 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.581768 
iter  10 value 93.615057
iter  20 value 93.575530
iter  30 value 89.192834
iter  40 value 86.991309
iter  50 value 86.921645
final  value 86.920395 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.463398 
iter  10 value 93.772604
iter  20 value 93.765517
iter  30 value 91.638889
iter  40 value 91.247262
iter  50 value 91.175946
iter  60 value 91.171992
final  value 91.171935 
converged
Fitting Repeat 5 

# weights:  507
initial  value 116.777141 
iter  10 value 93.924009
iter  20 value 93.798048
iter  30 value 89.076233
iter  40 value 88.706331
final  value 88.706167 
converged
Fitting Repeat 1 

# weights:  507
initial  value 135.012263 
iter  10 value 118.756487
iter  20 value 107.316003
iter  30 value 105.930962
iter  40 value 105.421463
iter  50 value 105.162071
iter  60 value 104.809406
iter  70 value 104.748291
iter  80 value 104.696245
iter  90 value 103.935796
iter 100 value 103.346886
final  value 103.346886 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 135.037525 
iter  10 value 117.846235
iter  20 value 117.606335
iter  30 value 116.323995
iter  40 value 109.266489
iter  50 value 106.714496
iter  60 value 105.242196
iter  70 value 104.380415
iter  80 value 104.245683
iter  90 value 103.195108
iter 100 value 102.918942
final  value 102.918942 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 150.060395 
iter  10 value 117.311345
iter  20 value 107.772899
iter  30 value 106.682926
iter  40 value 106.537130
iter  50 value 102.830456
iter  60 value 101.210719
iter  70 value 100.988949
iter  80 value 100.947281
iter  90 value 100.717034
iter 100 value 100.551067
final  value 100.551067 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 130.951953 
iter  10 value 117.810905
iter  20 value 108.352514
iter  30 value 106.243194
iter  40 value 103.646806
iter  50 value 103.076980
iter  60 value 102.346206
iter  70 value 101.946898
iter  80 value 101.871858
iter  90 value 101.851859
iter 100 value 101.808664
final  value 101.808664 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 149.693655 
iter  10 value 115.285543
iter  20 value 111.575863
iter  30 value 111.012650
iter  40 value 108.133764
iter  50 value 105.688059
iter  60 value 104.873774
iter  70 value 103.662146
iter  80 value 103.253480
iter  90 value 102.809083
iter 100 value 102.309617
final  value 102.309617 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Tue Apr 12 21:20:50 2022 
*********************************************** 
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0.
Use `.name_repair = "minimal"`.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 
2: `repeats` has no meaning for this resampling method. 
3: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  73.78    1.67   48.59 

HPiP.Rcheck/tests_x64/runTests.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 95.981120 
iter  10 value 88.631249
iter  20 value 85.356059
iter  30 value 85.146555
iter  40 value 85.145639
iter  40 value 85.145638
iter  40 value 85.145638
final  value 85.145638 
converged
Fitting Repeat 2 

# weights:  103
initial  value 114.581580 
iter  10 value 93.493988
iter  20 value 93.262930
final  value 92.945355 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.839945 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.121816 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.108027 
iter  10 value 92.893450
final  value 92.878839 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.017330 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.026434 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 104.540318 
iter  10 value 94.052915
iter  10 value 94.052914
iter  10 value 94.052914
final  value 94.052914 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.831762 
final  value 94.052911 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.129835 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.151299 
iter  10 value 92.945355
iter  10 value 92.945355
iter  10 value 92.945355
final  value 92.945355 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.570657 
iter  10 value 93.347629
iter  20 value 92.855550
final  value 92.814053 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.289108 
iter  10 value 92.944705
iter  20 value 92.878841
iter  20 value 92.878841
iter  20 value 92.878841
final  value 92.878841 
converged
Fitting Repeat 4 

# weights:  507
initial  value 106.116381 
iter  10 value 94.052911
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.692610 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 111.753088 
iter  10 value 94.054839
iter  20 value 93.613412
iter  30 value 93.456488
iter  40 value 93.186798
iter  50 value 92.623828
iter  60 value 87.100771
iter  70 value 86.397094
iter  80 value 86.067026
iter  90 value 85.321336
iter 100 value 84.322413
final  value 84.322413 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 96.175055 
iter  10 value 91.794247
iter  20 value 85.209203
iter  30 value 84.730246
iter  40 value 84.319044
iter  50 value 83.402117
iter  60 value 83.054881
iter  70 value 82.358094
iter  80 value 81.931799
iter  90 value 81.809691
final  value 81.809433 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.862880 
iter  10 value 94.056241
iter  20 value 93.304763
iter  30 value 93.268627
iter  40 value 93.246570
iter  50 value 89.533919
iter  60 value 83.846129
iter  70 value 83.227149
iter  80 value 82.686719
iter  90 value 82.512767
iter 100 value 82.198267
final  value 82.198267 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 109.621015 
iter  10 value 93.323479
iter  20 value 85.792530
iter  30 value 85.122905
iter  40 value 84.794652
iter  50 value 84.127498
iter  60 value 83.926653
iter  70 value 83.917206
final  value 83.917205 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.832890 
iter  10 value 94.056489
iter  20 value 86.852276
iter  30 value 83.056306
iter  40 value 82.342820
iter  50 value 82.254773
iter  60 value 82.199720
iter  70 value 82.128215
iter  80 value 82.119815
iter  90 value 82.107950
iter 100 value 82.102944
final  value 82.102944 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 120.032434 
iter  10 value 94.884228
iter  20 value 93.715500
iter  30 value 93.019567
iter  40 value 90.856053
iter  50 value 87.555257
iter  60 value 87.270041
iter  70 value 87.187554
iter  80 value 84.388490
iter  90 value 82.543476
iter 100 value 81.249412
final  value 81.249412 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.165486 
iter  10 value 94.130757
iter  20 value 92.809409
iter  30 value 89.863747
iter  40 value 86.634467
iter  50 value 83.537972
iter  60 value 82.942916
iter  70 value 82.660400
iter  80 value 81.719626
iter  90 value 81.391080
iter 100 value 81.224907
final  value 81.224907 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 116.762088 
iter  10 value 93.990843
iter  20 value 84.378799
iter  30 value 83.559726
iter  40 value 83.314497
iter  50 value 83.165597
iter  60 value 82.704977
iter  70 value 82.428180
iter  80 value 82.131727
iter  90 value 82.029531
iter 100 value 81.931886
final  value 81.931886 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.184629 
iter  10 value 94.169540
iter  20 value 93.489693
iter  30 value 93.198094
iter  40 value 84.014682
iter  50 value 83.425311
iter  60 value 83.043987
iter  70 value 82.635083
iter  80 value 82.512481
iter  90 value 82.319513
iter 100 value 82.017642
final  value 82.017642 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.740215 
iter  10 value 93.241495
iter  20 value 89.416982
iter  30 value 88.572630
iter  40 value 88.057735
iter  50 value 83.815033
iter  60 value 82.935381
iter  70 value 82.743634
iter  80 value 81.212271
iter  90 value 81.053992
iter 100 value 80.914589
final  value 80.914589 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.857384 
iter  10 value 94.951493
iter  20 value 93.624417
iter  30 value 92.868423
iter  40 value 87.908973
iter  50 value 86.212103
iter  60 value 83.600750
iter  70 value 82.195853
iter  80 value 81.918786
iter  90 value 81.420898
iter 100 value 81.233274
final  value 81.233274 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 137.558764 
iter  10 value 98.099519
iter  20 value 94.366685
iter  30 value 93.083363
iter  40 value 93.020614
iter  50 value 90.646431
iter  60 value 83.951625
iter  70 value 83.585661
iter  80 value 83.018132
iter  90 value 82.258271
iter 100 value 81.716560
final  value 81.716560 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.745553 
iter  10 value 98.357329
iter  20 value 92.845101
iter  30 value 86.797640
iter  40 value 86.339941
iter  50 value 85.861620
iter  60 value 82.688205
iter  70 value 81.851136
iter  80 value 80.987741
iter  90 value 80.905818
iter 100 value 80.750977
final  value 80.750977 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.339456 
iter  10 value 95.463155
iter  20 value 92.475503
iter  30 value 88.857001
iter  40 value 86.766705
iter  50 value 83.261576
iter  60 value 81.516167
iter  70 value 80.658561
iter  80 value 80.462553
iter  90 value 80.453412
iter 100 value 80.428519
final  value 80.428519 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 124.338282 
iter  10 value 94.010411
iter  20 value 91.979695
iter  30 value 89.685730
iter  40 value 87.365840
iter  50 value 85.120159
iter  60 value 83.455325
iter  70 value 82.419027
iter  80 value 81.922646
iter  90 value 81.625969
iter 100 value 81.157221
final  value 81.157221 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.329325 
final  value 94.054481 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.482421 
final  value 94.054697 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.237441 
final  value 94.054717 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.200775 
final  value 94.054488 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.580705 
iter  10 value 92.947382
iter  20 value 92.946105
iter  30 value 92.816314
iter  40 value 92.812532
iter  50 value 92.534340
iter  60 value 91.186058
iter  70 value 86.431604
iter  80 value 83.093309
iter  90 value 83.019114
iter 100 value 83.018237
final  value 83.018237 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 97.641948 
iter  10 value 92.887973
iter  20 value 92.884486
iter  30 value 92.817528
iter  40 value 92.816849
iter  50 value 92.814988
iter  60 value 92.442164
iter  70 value 86.209203
iter  80 value 86.203556
iter  90 value 86.144505
iter 100 value 86.142958
final  value 86.142958 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.815872 
iter  10 value 92.258697
iter  20 value 91.692938
iter  30 value 89.158589
iter  40 value 87.790377
iter  50 value 82.329245
iter  60 value 81.586836
iter  70 value 80.796320
iter  80 value 80.467908
iter  90 value 80.343819
iter 100 value 80.108908
final  value 80.108908 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 98.029024 
iter  10 value 93.742524
iter  20 value 93.736282
iter  30 value 91.103017
iter  40 value 91.074087
iter  50 value 91.073687
iter  60 value 91.070007
iter  70 value 90.997371
iter  80 value 90.824500
iter  80 value 90.824500
iter  80 value 90.824500
final  value 90.824500 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.688753 
iter  10 value 94.057692
iter  20 value 94.052932
iter  30 value 92.946049
final  value 92.946048 
converged
Fitting Repeat 5 

# weights:  305
initial  value 109.702347 
iter  10 value 94.057830
iter  20 value 94.052920
iter  30 value 93.965232
final  value 92.891527 
converged
Fitting Repeat 1 

# weights:  507
initial  value 94.256579 
iter  10 value 90.963935
iter  20 value 90.929620
iter  30 value 90.926379
iter  40 value 90.923359
iter  50 value 85.564789
iter  60 value 83.458578
iter  70 value 83.422960
final  value 83.422529 
converged
Fitting Repeat 2 

# weights:  507
initial  value 111.828969 
iter  10 value 93.196731
iter  20 value 87.005096
iter  30 value 86.396823
iter  40 value 86.390137
iter  50 value 85.751332
iter  60 value 85.545842
iter  70 value 85.544228
iter  80 value 85.539392
final  value 85.537334 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.815937 
iter  10 value 94.099763
iter  20 value 94.088333
iter  30 value 88.820927
iter  40 value 88.171095
iter  50 value 82.531638
iter  60 value 82.349690
iter  70 value 82.331368
iter  80 value 82.228602
iter  90 value 82.225175
iter 100 value 82.167165
final  value 82.167165 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 96.504708 
iter  10 value 92.955936
iter  20 value 92.952737
iter  30 value 92.881762
iter  40 value 92.880923
iter  50 value 91.680490
iter  60 value 87.284807
iter  70 value 80.516771
iter  80 value 80.397525
iter  90 value 80.382749
final  value 80.382569 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.136308 
iter  10 value 92.954168
iter  20 value 92.930855
iter  30 value 92.888660
iter  40 value 92.862519
iter  50 value 87.714562
iter  60 value 84.531226
iter  70 value 84.367453
iter  80 value 84.004943
iter  90 value 82.457173
iter 100 value 81.412555
final  value 81.412555 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.642972 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.549244 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.865050 
final  value 94.409357 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.827064 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.168967 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.456742 
iter  10 value 85.793547
final  value 85.647280 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.549478 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.879583 
iter  10 value 94.052440
final  value 94.052435 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.387093 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.633899 
iter  10 value 94.026544
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.182573 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.395409 
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.457152 
final  value 94.409356 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.871258 
iter  10 value 90.427640
iter  20 value 88.464016
iter  30 value 88.339496
iter  40 value 88.338172
final  value 88.338164 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.328937 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.804812 
iter  10 value 93.953372
iter  20 value 90.112879
iter  30 value 87.615581
iter  40 value 87.189628
iter  50 value 84.109264
iter  60 value 81.612777
iter  70 value 80.561498
iter  80 value 80.146791
iter  90 value 80.135556
iter 100 value 80.121120
final  value 80.121120 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 98.467618 
iter  10 value 91.561218
iter  20 value 83.595044
iter  30 value 82.864135
iter  40 value 82.591575
iter  50 value 81.855281
iter  60 value 81.517829
iter  70 value 81.493171
iter  80 value 81.486354
final  value 81.486146 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.711685 
iter  10 value 94.429765
iter  20 value 92.874381
iter  30 value 83.616222
iter  40 value 82.919347
iter  50 value 82.215947
iter  60 value 81.849841
iter  70 value 81.825868
iter  80 value 81.702020
iter  90 value 81.605563
final  value 81.604873 
converged
Fitting Repeat 4 

# weights:  103
initial  value 105.198970 
iter  10 value 93.240134
iter  20 value 89.769126
iter  30 value 89.362173
iter  40 value 85.283568
iter  50 value 84.915833
iter  60 value 84.297771
iter  70 value 83.876655
iter  80 value 83.817456
final  value 83.817454 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.563357 
iter  10 value 94.485908
iter  20 value 88.923275
iter  30 value 84.151480
iter  40 value 81.743815
iter  50 value 80.313455
iter  60 value 80.261556
iter  70 value 80.138562
iter  80 value 80.121277
final  value 80.121112 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.915959 
iter  10 value 94.557020
iter  20 value 93.979501
iter  30 value 87.310413
iter  40 value 84.268696
iter  50 value 81.510748
iter  60 value 80.216412
iter  70 value 79.718306
iter  80 value 79.224370
iter  90 value 78.774622
iter 100 value 78.663738
final  value 78.663738 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.725478 
iter  10 value 95.312630
iter  20 value 93.800865
iter  30 value 87.364904
iter  40 value 86.877679
iter  50 value 84.792379
iter  60 value 82.766751
iter  70 value 81.435925
iter  80 value 80.485085
iter  90 value 80.297402
iter 100 value 80.140702
final  value 80.140702 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.399523 
iter  10 value 92.094955
iter  20 value 85.818004
iter  30 value 82.665141
iter  40 value 82.541741
iter  50 value 82.090197
iter  60 value 79.870040
iter  70 value 79.104855
iter  80 value 78.970074
iter  90 value 78.559496
iter 100 value 78.369865
final  value 78.369865 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 111.261977 
iter  10 value 94.510948
iter  20 value 93.630187
iter  30 value 83.896774
iter  40 value 83.000670
iter  50 value 82.455193
iter  60 value 81.880955
iter  70 value 81.738695
iter  80 value 81.272491
iter  90 value 80.884425
iter 100 value 80.518385
final  value 80.518385 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.408234 
iter  10 value 93.611385
iter  20 value 92.259526
iter  30 value 91.658307
iter  40 value 88.829235
iter  50 value 86.723564
iter  60 value 85.221789
iter  70 value 82.636172
iter  80 value 80.545009
iter  90 value 79.970679
iter 100 value 79.745593
final  value 79.745593 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.667559 
iter  10 value 95.129167
iter  20 value 91.132134
iter  30 value 86.296416
iter  40 value 80.573193
iter  50 value 79.653783
iter  60 value 79.082149
iter  70 value 78.939057
iter  80 value 78.629873
iter  90 value 78.550894
iter 100 value 78.464899
final  value 78.464899 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.485382 
iter  10 value 98.672106
iter  20 value 89.469273
iter  30 value 82.094527
iter  40 value 80.465403
iter  50 value 79.242732
iter  60 value 78.986897
iter  70 value 78.908420
iter  80 value 78.798076
iter  90 value 78.781067
iter 100 value 78.749563
final  value 78.749563 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.847933 
iter  10 value 94.499827
iter  20 value 89.228908
iter  30 value 85.703810
iter  40 value 83.607119
iter  50 value 81.905658
iter  60 value 79.513321
iter  70 value 79.213103
iter  80 value 79.088422
iter  90 value 79.052760
iter 100 value 78.813278
final  value 78.813278 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 110.799503 
iter  10 value 95.883843
iter  20 value 92.849921
iter  30 value 88.392457
iter  40 value 85.566442
iter  50 value 83.671067
iter  60 value 82.195345
iter  70 value 81.370721
iter  80 value 80.240503
iter  90 value 79.252035
iter 100 value 78.614425
final  value 78.614425 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.730804 
iter  10 value 95.339122
iter  20 value 92.916164
iter  30 value 92.449951
iter  40 value 89.788765
iter  50 value 83.787635
iter  60 value 82.006028
iter  70 value 81.102701
iter  80 value 80.580748
iter  90 value 80.424294
iter 100 value 80.171445
final  value 80.171445 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.497944 
final  value 94.485868 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.285894 
final  value 94.485710 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.539073 
final  value 94.485676 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.358600 
iter  10 value 94.028348
iter  20 value 94.027371
iter  30 value 89.699939
iter  40 value 86.568193
iter  50 value 86.261246
iter  50 value 86.261245
iter  50 value 86.261245
final  value 86.261245 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.808574 
final  value 94.485855 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.442044 
iter  10 value 94.490426
iter  20 value 94.485343
iter  30 value 94.027856
iter  40 value 94.026917
iter  50 value 94.026735
iter  50 value 94.026735
final  value 94.026735 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.379098 
iter  10 value 94.488860
iter  20 value 94.484580
iter  20 value 94.484580
iter  20 value 94.484580
final  value 94.484580 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.233020 
iter  10 value 94.031819
iter  20 value 93.982442
final  value 93.976840 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.607195 
iter  10 value 94.489110
iter  20 value 94.314644
iter  30 value 82.576797
iter  40 value 82.278488
iter  50 value 82.278030
iter  60 value 82.277072
iter  60 value 82.277072
final  value 82.277072 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.246976 
iter  10 value 94.486676
iter  20 value 89.455195
iter  30 value 82.796630
iter  40 value 82.179004
iter  50 value 82.168568
final  value 82.166198 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.984822 
iter  10 value 94.492269
iter  20 value 94.298162
iter  30 value 91.070381
iter  40 value 87.291131
iter  50 value 87.204560
iter  60 value 86.096549
iter  70 value 86.092742
iter  80 value 85.112585
iter  90 value 84.692354
iter 100 value 84.641639
final  value 84.641639 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 99.963433 
iter  10 value 94.034423
iter  20 value 94.029413
final  value 94.027936 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.701197 
iter  10 value 94.035477
iter  20 value 94.027320
iter  30 value 92.987728
iter  40 value 87.246768
iter  50 value 81.980777
iter  60 value 81.937082
final  value 81.935615 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.507805 
iter  10 value 94.418366
iter  20 value 94.034410
iter  30 value 94.030434
iter  40 value 94.007549
iter  50 value 94.005122
iter  60 value 84.757062
iter  70 value 82.907824
iter  80 value 80.316578
iter  90 value 79.177804
iter 100 value 78.749104
final  value 78.749104 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 95.836860 
iter  10 value 94.491348
iter  20 value 89.225453
iter  30 value 84.627528
iter  40 value 84.511996
iter  50 value 84.218136
iter  60 value 84.140674
final  value 84.128638 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.985449 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.274998 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.994164 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.015751 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.179504 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.336216 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.163348 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.272731 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 114.573247 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.205258 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.639412 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.666689 
final  value 93.811828 
converged
Fitting Repeat 3 

# weights:  507
initial  value 118.276308 
final  value 93.811828 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.636534 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.700319 
iter  10 value 93.706293
final  value 93.705856 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.637271 
iter  10 value 93.987115
iter  20 value 89.562028
iter  30 value 88.593546
iter  40 value 87.672360
iter  50 value 85.434745
iter  60 value 84.535973
iter  70 value 84.398180
final  value 84.397772 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.996173 
iter  10 value 94.451726
iter  20 value 91.230342
iter  30 value 90.715141
iter  40 value 86.973581
iter  50 value 85.931573
iter  60 value 85.737219
iter  70 value 85.720505
final  value 85.715548 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.585282 
iter  10 value 94.477022
iter  20 value 92.729376
iter  30 value 92.098707
iter  40 value 89.657759
iter  50 value 88.285504
iter  60 value 87.202629
iter  70 value 86.562220
iter  80 value 85.874692
iter  90 value 84.770759
iter 100 value 84.764153
final  value 84.764153 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.661132 
iter  10 value 94.567072
iter  20 value 87.418665
iter  30 value 86.984180
iter  40 value 86.572383
iter  50 value 85.412731
iter  60 value 85.355152
iter  70 value 85.325878
iter  80 value 85.310922
final  value 85.310910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.730162 
iter  10 value 94.376519
iter  20 value 91.393306
iter  30 value 90.458544
iter  40 value 88.390498
iter  50 value 86.217548
iter  60 value 85.701927
iter  70 value 85.455658
iter  80 value 85.350442
iter  90 value 85.193770
iter 100 value 85.088054
final  value 85.088054 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.968108 
iter  10 value 94.724622
iter  20 value 92.715081
iter  30 value 89.016921
iter  40 value 87.560069
iter  50 value 87.089105
iter  60 value 85.342252
iter  70 value 83.748810
iter  80 value 82.768874
iter  90 value 82.124409
iter 100 value 81.993669
final  value 81.993669 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 114.302512 
iter  10 value 94.023852
iter  20 value 93.839617
iter  30 value 91.951187
iter  40 value 87.707506
iter  50 value 86.834130
iter  60 value 86.038990
iter  70 value 84.243223
iter  80 value 82.965522
iter  90 value 82.606815
iter 100 value 82.214041
final  value 82.214041 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.615653 
iter  10 value 94.490254
iter  20 value 87.371544
iter  30 value 83.912497
iter  40 value 83.399146
iter  50 value 83.067594
iter  60 value 82.537980
iter  70 value 82.438481
iter  80 value 81.933246
iter  90 value 80.992216
iter 100 value 80.861343
final  value 80.861343 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 117.997592 
iter  10 value 94.693713
iter  20 value 94.113615
iter  30 value 94.044231
iter  40 value 90.919993
iter  50 value 88.531031
iter  60 value 87.909956
iter  70 value 87.408568
iter  80 value 86.317964
iter  90 value 82.755182
iter 100 value 82.321372
final  value 82.321372 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.975273 
iter  10 value 94.523901
iter  20 value 94.482193
iter  30 value 94.272004
iter  40 value 93.491005
iter  50 value 92.099596
iter  60 value 86.270722
iter  70 value 84.273122
iter  80 value 83.124367
iter  90 value 82.480731
iter 100 value 82.276351
final  value 82.276351 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.796052 
iter  10 value 95.751754
iter  20 value 92.322429
iter  30 value 90.432853
iter  40 value 85.274132
iter  50 value 84.738600
iter  60 value 82.797777
iter  70 value 81.730164
iter  80 value 81.265987
iter  90 value 80.955376
iter 100 value 80.878861
final  value 80.878861 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.312242 
iter  10 value 93.951871
iter  20 value 87.770466
iter  30 value 85.907364
iter  40 value 84.824288
iter  50 value 84.668691
iter  60 value 84.480205
iter  70 value 84.192599
iter  80 value 83.293931
iter  90 value 82.263679
iter 100 value 81.411751
final  value 81.411751 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 123.712419 
iter  10 value 94.585116
iter  20 value 92.349295
iter  30 value 89.650940
iter  40 value 87.033104
iter  50 value 83.454346
iter  60 value 81.491019
iter  70 value 80.921663
iter  80 value 80.704584
iter  90 value 80.529690
iter 100 value 80.325697
final  value 80.325697 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.467795 
iter  10 value 94.281489
iter  20 value 90.379002
iter  30 value 88.365297
iter  40 value 87.926968
iter  50 value 86.478115
iter  60 value 83.157785
iter  70 value 82.353927
iter  80 value 81.868816
iter  90 value 81.587425
iter 100 value 81.036804
final  value 81.036804 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 120.579520 
iter  10 value 94.992288
iter  20 value 89.562570
iter  30 value 88.151622
iter  40 value 85.038193
iter  50 value 84.136326
iter  60 value 82.591006
iter  70 value 81.369474
iter  80 value 81.155470
iter  90 value 80.726944
iter 100 value 80.628878
final  value 80.628878 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.486104 
final  value 94.485703 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.047594 
final  value 94.486029 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.630659 
iter  10 value 90.559963
iter  20 value 85.845778
iter  30 value 85.605217
iter  40 value 85.582576
final  value 85.582109 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.357622 
iter  10 value 94.485902
iter  20 value 94.484057
iter  30 value 89.092001
iter  40 value 87.859754
iter  50 value 86.788519
iter  60 value 86.172077
iter  70 value 86.166276
iter  80 value 86.090494
final  value 86.090466 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.778994 
iter  10 value 93.848114
iter  20 value 93.814348
iter  30 value 93.813845
iter  40 value 93.812219
final  value 93.812183 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.347342 
iter  10 value 94.488972
iter  20 value 94.444946
iter  30 value 94.032737
iter  40 value 93.540289
final  value 93.540184 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.745375 
iter  10 value 94.485734
iter  20 value 94.319391
iter  30 value 88.762696
iter  40 value 85.357036
iter  50 value 84.665804
iter  60 value 84.660054
final  value 84.659896 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.693652 
iter  10 value 92.292068
iter  20 value 92.254791
iter  30 value 92.238765
iter  40 value 92.236255
iter  50 value 92.236090
iter  60 value 92.234424
final  value 92.234194 
converged
Fitting Repeat 4 

# weights:  305
initial  value 111.022461 
iter  10 value 94.489106
iter  20 value 94.483915
iter  30 value 90.933152
iter  40 value 87.942801
iter  50 value 87.732241
iter  60 value 87.731377
iter  60 value 87.731377
final  value 87.731377 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.939578 
iter  10 value 94.489030
iter  20 value 93.821560
final  value 93.812314 
converged
Fitting Repeat 1 

# weights:  507
initial  value 107.384016 
iter  10 value 94.475833
iter  20 value 94.471380
iter  30 value 93.812939
final  value 93.812897 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.193315 
iter  10 value 94.493052
iter  20 value 94.409868
iter  30 value 91.917681
final  value 91.474114 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.757271 
iter  10 value 93.372741
iter  20 value 93.234498
iter  30 value 93.184300
iter  40 value 93.166751
iter  50 value 91.044518
iter  60 value 90.648868
iter  70 value 90.527369
iter  80 value 90.503587
final  value 90.485960 
converged
Fitting Repeat 4 

# weights:  507
initial  value 108.762154 
iter  10 value 93.820580
iter  20 value 93.815312
iter  30 value 93.801265
iter  40 value 93.797310
final  value 93.797282 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.726348 
iter  10 value 94.491497
iter  20 value 94.484335
iter  30 value 94.010284
iter  40 value 89.651853
iter  50 value 84.502929
iter  60 value 82.992498
iter  70 value 80.793262
iter  80 value 80.738211
iter  90 value 80.736932
iter 100 value 80.378953
final  value 80.378953 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.810158 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.141446 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.440562 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.267191 
final  value 94.354396 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.998292 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 129.754735 
iter  10 value 94.354402
final  value 94.354396 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.001280 
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  305
initial  value 139.977802 
final  value 94.057229 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.734642 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.686822 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.441018 
iter  10 value 93.147768
iter  20 value 91.568977
final  value 91.568966 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.033458 
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  507
initial  value 94.724066 
iter  10 value 94.484212
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.558423 
iter  10 value 94.387501
iter  10 value 94.387501
iter  10 value 94.387501
final  value 94.387501 
converged
Fitting Repeat 5 

# weights:  507
initial  value 118.865811 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 105.628128 
iter  10 value 94.576947
iter  20 value 94.488523
iter  30 value 93.705568
iter  40 value 93.488370
iter  50 value 84.859079
iter  60 value 82.526299
iter  70 value 81.874380
iter  80 value 81.804434
iter  90 value 81.793358
final  value 81.792648 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.984762 
iter  10 value 93.994256
iter  20 value 85.347005
iter  30 value 83.288389
iter  40 value 82.536828
iter  50 value 82.100695
iter  60 value 82.034961
final  value 82.032250 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.523311 
iter  10 value 94.246913
iter  20 value 93.526413
iter  30 value 93.240801
iter  40 value 88.241911
iter  50 value 81.997630
iter  60 value 81.358749
iter  70 value 80.405185
iter  80 value 80.256410
iter  90 value 79.962315
iter 100 value 79.487443
final  value 79.487443 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 97.973264 
iter  10 value 94.498924
iter  20 value 92.157282
iter  30 value 88.152063
iter  40 value 82.402531
iter  50 value 81.925727
iter  60 value 81.310690
iter  70 value 80.683380
iter  80 value 80.135833
iter  90 value 79.513052
iter 100 value 79.412494
final  value 79.412494 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 108.202442 
iter  10 value 94.412989
iter  20 value 92.379111
iter  30 value 91.647107
iter  40 value 91.612061
iter  50 value 91.611362
iter  60 value 91.610233
final  value 91.609364 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.462129 
iter  10 value 94.475727
iter  20 value 93.008989
iter  30 value 82.921694
iter  40 value 82.739758
iter  50 value 82.613092
iter  60 value 82.522976
iter  70 value 82.009592
iter  80 value 80.523801
iter  90 value 79.212914
iter 100 value 78.213174
final  value 78.213174 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.385247 
iter  10 value 94.410969
iter  20 value 94.172290
iter  30 value 92.695080
iter  40 value 85.470458
iter  50 value 79.667375
iter  60 value 78.782270
iter  70 value 78.638057
iter  80 value 78.255915
iter  90 value 77.800894
iter 100 value 77.540752
final  value 77.540752 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.732030 
iter  10 value 94.683063
iter  20 value 86.224504
iter  30 value 85.496363
iter  40 value 83.109335
iter  50 value 82.632545
iter  60 value 81.646226
iter  70 value 79.926207
iter  80 value 78.583267
iter  90 value 77.997020
iter 100 value 77.877786
final  value 77.877786 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.573000 
iter  10 value 94.564251
iter  20 value 94.437722
iter  30 value 89.143840
iter  40 value 82.616224
iter  50 value 82.163082
iter  60 value 81.434992
iter  70 value 79.777468
iter  80 value 78.274540
iter  90 value 77.866264
iter 100 value 77.839767
final  value 77.839767 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.897784 
iter  10 value 94.555520
iter  20 value 94.475704
iter  30 value 93.810854
iter  40 value 86.546683
iter  50 value 85.937665
iter  60 value 83.822093
iter  70 value 82.449687
iter  80 value 81.953075
iter  90 value 81.704585
iter 100 value 80.937344
final  value 80.937344 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.980969 
iter  10 value 91.138035
iter  20 value 81.972393
iter  30 value 81.436139
iter  40 value 81.061380
iter  50 value 80.603893
iter  60 value 79.488245
iter  70 value 78.355653
iter  80 value 77.955283
iter  90 value 77.750842
iter 100 value 77.493434
final  value 77.493434 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.824204 
iter  10 value 93.598682
iter  20 value 87.514843
iter  30 value 84.028801
iter  40 value 82.518627
iter  50 value 80.568294
iter  60 value 80.408580
iter  70 value 79.823710
iter  80 value 79.521471
iter  90 value 79.158775
iter 100 value 78.900566
final  value 78.900566 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.625379 
iter  10 value 94.209838
iter  20 value 93.252515
iter  30 value 92.768186
iter  40 value 90.900320
iter  50 value 87.950807
iter  60 value 86.319408
iter  70 value 84.328911
iter  80 value 81.161342
iter  90 value 79.237355
iter 100 value 77.998113
final  value 77.998113 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 117.938013 
iter  10 value 95.346822
iter  20 value 92.765757
iter  30 value 86.444356
iter  40 value 82.803534
iter  50 value 81.334879
iter  60 value 80.333125
iter  70 value 78.261701
iter  80 value 77.996068
iter  90 value 77.820473
iter 100 value 77.784611
final  value 77.784611 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 137.157110 
iter  10 value 92.849691
iter  20 value 86.964691
iter  30 value 86.032205
iter  40 value 81.725611
iter  50 value 80.158984
iter  60 value 78.186599
iter  70 value 77.910151
iter  80 value 77.793634
iter  90 value 77.682369
iter 100 value 77.491641
final  value 77.491641 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.207864 
iter  10 value 94.317488
iter  20 value 92.574619
iter  30 value 92.550236
iter  40 value 92.434690
iter  50 value 92.431080
final  value 92.431030 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.314920 
final  value 93.321999 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.638662 
final  value 94.485836 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.797894 
final  value 94.486078 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.432861 
final  value 94.485864 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.425133 
iter  10 value 94.358974
final  value 94.356226 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.632893 
iter  10 value 94.488677
iter  20 value 94.478833
final  value 94.354552 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.126810 
iter  10 value 94.489321
iter  20 value 94.484235
iter  30 value 94.419738
iter  40 value 93.868596
iter  50 value 93.660915
iter  60 value 93.185088
final  value 91.810055 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.413917 
iter  10 value 94.489434
iter  20 value 94.402505
final  value 94.354599 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.508731 
iter  10 value 94.488860
iter  20 value 94.456025
iter  30 value 83.938511
iter  40 value 82.413196
iter  50 value 82.411822
final  value 82.411820 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.045758 
iter  10 value 94.362628
iter  20 value 93.784719
iter  30 value 93.321404
final  value 93.321367 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.797989 
iter  10 value 94.492676
iter  20 value 94.484428
iter  30 value 94.479076
iter  40 value 87.882860
iter  50 value 87.776267
final  value 87.775270 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.343283 
iter  10 value 94.362660
iter  20 value 94.280352
iter  30 value 85.706608
iter  40 value 80.039486
iter  50 value 80.038135
iter  60 value 79.943221
iter  70 value 79.938416
iter  80 value 79.589712
iter  90 value 79.479899
iter 100 value 79.476898
final  value 79.476898 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 113.733580 
iter  10 value 94.492849
iter  20 value 94.483550
iter  30 value 85.301872
iter  40 value 84.552050
iter  50 value 84.488162
iter  50 value 84.488161
iter  50 value 84.488161
final  value 84.488161 
converged
Fitting Repeat 5 

# weights:  507
initial  value 110.396067 
iter  10 value 94.466504
iter  20 value 87.278077
iter  30 value 83.554665
iter  40 value 83.550815
iter  50 value 83.491357
iter  60 value 83.269335
iter  70 value 80.751267
iter  80 value 80.255051
iter  90 value 80.249277
iter 100 value 80.180250
final  value 80.180250 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.480021 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.428529 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 110.939362 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 112.824373 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.837967 
final  value 94.032967 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.685803 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.931658 
final  value 94.032967 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.604379 
iter  10 value 93.994675
final  value 93.869755 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.550043 
final  value 94.032967 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.258812 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.667010 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.983602 
iter  10 value 84.001631
iter  20 value 82.988338
iter  30 value 82.942895
final  value 82.942859 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.130956 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.834473 
final  value 94.032967 
converged
Fitting Repeat 5 

# weights:  507
initial  value 113.843079 
final  value 94.032967 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.776968 
iter  10 value 92.553220
iter  20 value 86.831130
iter  30 value 84.930745
iter  40 value 83.592635
iter  50 value 82.882322
iter  60 value 81.675505
iter  70 value 81.322887
iter  80 value 81.319729
final  value 81.319472 
converged
Fitting Repeat 2 

# weights:  103
initial  value 110.272342 
iter  10 value 94.117369
iter  20 value 94.048010
iter  30 value 90.473480
iter  40 value 83.358748
iter  50 value 82.746959
iter  60 value 82.255672
iter  70 value 82.082245
iter  80 value 82.017320
iter  90 value 81.986201
final  value 81.985724 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.366589 
iter  10 value 87.881014
iter  20 value 83.060860
iter  30 value 82.301186
iter  40 value 82.163785
iter  50 value 82.046535
final  value 82.045333 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.455758 
iter  10 value 94.046264
iter  20 value 91.324518
iter  30 value 91.051271
iter  40 value 90.174019
iter  50 value 84.364358
iter  60 value 83.041411
iter  70 value 82.161086
iter  80 value 82.061059
iter  90 value 82.045351
final  value 82.045332 
converged
Fitting Repeat 5 

# weights:  103
initial  value 106.863713 
iter  10 value 93.867262
iter  20 value 83.983152
iter  30 value 83.055499
iter  40 value 82.828646
iter  50 value 82.592777
iter  60 value 82.554228
iter  70 value 82.535644
final  value 82.535614 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.108495 
iter  10 value 94.190154
iter  20 value 90.223835
iter  30 value 84.535066
iter  40 value 84.080329
iter  50 value 83.054955
iter  60 value 81.912827
iter  70 value 81.271473
iter  80 value 81.004568
iter  90 value 80.657986
iter 100 value 80.579202
final  value 80.579202 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 111.101746 
iter  10 value 94.352913
iter  20 value 93.749360
iter  30 value 85.943985
iter  40 value 84.664499
iter  50 value 83.253619
iter  60 value 82.448113
iter  70 value 82.375647
iter  80 value 82.317081
iter  90 value 82.196973
iter 100 value 82.092766
final  value 82.092766 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 126.275515 
iter  10 value 94.095934
iter  20 value 90.923812
iter  30 value 83.757815
iter  40 value 82.240539
iter  50 value 82.059268
iter  60 value 81.981611
iter  70 value 81.954518
iter  80 value 81.778607
iter  90 value 81.379947
iter 100 value 80.905294
final  value 80.905294 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 111.879754 
iter  10 value 94.056871
iter  20 value 93.504074
iter  30 value 93.205696
iter  40 value 91.816042
iter  50 value 85.224834
iter  60 value 82.629701
iter  70 value 82.382050
iter  80 value 81.886620
iter  90 value 81.391871
iter 100 value 81.147057
final  value 81.147057 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.440714 
iter  10 value 94.715155
iter  20 value 90.196510
iter  30 value 88.595266
iter  40 value 87.930332
iter  50 value 86.284499
iter  60 value 85.331636
iter  70 value 83.064348
iter  80 value 82.645111
iter  90 value 81.343082
iter 100 value 81.207068
final  value 81.207068 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 122.487348 
iter  10 value 94.019385
iter  20 value 85.962846
iter  30 value 83.586535
iter  40 value 83.069024
iter  50 value 81.893135
iter  60 value 80.630409
iter  70 value 80.017700
iter  80 value 79.748724
iter  90 value 79.629510
iter 100 value 79.505531
final  value 79.505531 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 136.701407 
iter  10 value 93.809740
iter  20 value 86.688653
iter  30 value 84.210867
iter  40 value 82.936457
iter  50 value 81.881774
iter  60 value 80.345377
iter  70 value 80.118436
iter  80 value 80.085729
iter  90 value 80.010664
iter 100 value 79.720056
final  value 79.720056 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.526121 
iter  10 value 93.998646
iter  20 value 86.664172
iter  30 value 85.172586
iter  40 value 84.185464
iter  50 value 82.435111
iter  60 value 82.081371
iter  70 value 81.566290
iter  80 value 81.309666
iter  90 value 80.466554
iter 100 value 80.129870
final  value 80.129870 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.333405 
iter  10 value 94.966760
iter  20 value 94.005005
iter  30 value 87.417280
iter  40 value 84.832451
iter  50 value 83.988784
iter  60 value 83.409342
iter  70 value 82.990276
iter  80 value 82.889904
iter  90 value 82.379679
iter 100 value 82.198441
final  value 82.198441 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 115.713538 
iter  10 value 94.044504
iter  20 value 85.835547
iter  30 value 83.331796
iter  40 value 83.222704
iter  50 value 82.317075
iter  60 value 80.652432
iter  70 value 80.495523
iter  80 value 80.220132
iter  90 value 80.032478
iter 100 value 79.726757
final  value 79.726757 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.334727 
final  value 94.054446 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.371298 
final  value 94.054705 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.059470 
final  value 93.698712 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.222871 
final  value 94.054430 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.828976 
final  value 94.054585 
converged
Fitting Repeat 1 

# weights:  305
initial  value 111.797417 
iter  10 value 93.884266
iter  20 value 93.873252
iter  30 value 93.142189
iter  40 value 89.120160
iter  50 value 89.092767
iter  60 value 89.091051
iter  70 value 89.090502
iter  80 value 84.089729
iter  90 value 81.516735
iter 100 value 81.516073
final  value 81.516073 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 110.030670 
iter  10 value 94.056496
iter  20 value 93.922409
iter  30 value 93.455887
iter  40 value 93.416139
iter  50 value 93.412815
iter  50 value 93.412815
final  value 93.412815 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.330821 
iter  10 value 94.057675
final  value 94.053235 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.690844 
iter  10 value 94.057804
iter  20 value 94.025368
iter  30 value 91.081683
iter  40 value 91.074296
iter  50 value 91.072447
iter  60 value 91.072103
iter  70 value 90.679637
final  value 90.502493 
converged
Fitting Repeat 5 

# weights:  305
initial  value 115.222426 
iter  10 value 94.057746
iter  20 value 94.004465
iter  30 value 93.402703
final  value 93.377451 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.793570 
iter  10 value 94.062209
iter  20 value 93.804710
iter  30 value 90.056954
iter  40 value 89.552431
iter  50 value 89.543256
iter  60 value 85.969815
iter  70 value 82.393370
iter  80 value 82.117604
iter  90 value 80.791886
iter 100 value 80.780077
final  value 80.780077 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 105.957183 
iter  10 value 94.041725
iter  20 value 94.035654
iter  30 value 85.841436
iter  40 value 85.515394
iter  50 value 84.432871
iter  60 value 84.299578
iter  70 value 84.299292
iter  80 value 84.296443
iter  90 value 84.291988
iter 100 value 80.648390
final  value 80.648390 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 94.915973 
iter  10 value 94.042603
iter  20 value 94.001047
iter  30 value 90.817503
iter  40 value 90.671976
final  value 90.671974 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.541760 
iter  10 value 94.060516
iter  20 value 88.579377
iter  30 value 86.822168
iter  40 value 83.873719
iter  50 value 82.913243
iter  60 value 82.749769
iter  70 value 82.748496
final  value 82.748440 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.214758 
iter  10 value 93.659190
iter  20 value 93.376204
iter  30 value 93.374874
iter  40 value 87.527447
iter  50 value 82.889743
iter  60 value 82.013107
iter  70 value 81.774574
iter  80 value 81.744692
iter  90 value 81.547911
iter 100 value 81.051816
final  value 81.051816 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 127.119755 
iter  10 value 111.285631
iter  20 value 108.019526
iter  30 value 104.448156
iter  40 value 101.863498
iter  50 value 101.391508
iter  60 value 100.690436
iter  70 value 100.527352
iter  80 value 100.408242
iter  90 value 100.174702
iter 100 value 100.024760
final  value 100.024760 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 139.966614 
iter  10 value 118.282450
iter  20 value 111.238495
iter  30 value 108.165943
iter  40 value 106.139088
iter  50 value 105.139206
iter  60 value 104.908833
iter  70 value 104.863698
iter  80 value 104.780708
iter  90 value 103.954194
iter 100 value 103.229163
final  value 103.229163 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 145.701976 
iter  10 value 117.902540
iter  20 value 115.359987
iter  30 value 114.611336
iter  40 value 112.200656
iter  50 value 109.585556
iter  60 value 104.822243
iter  70 value 102.694258
iter  80 value 102.431252
iter  90 value 101.717349
iter 100 value 101.298668
final  value 101.298668 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 143.770937 
iter  10 value 118.013026
iter  20 value 117.925020
iter  30 value 117.648280
iter  40 value 117.506490
iter  50 value 109.922682
iter  60 value 104.481558
iter  70 value 104.020888
iter  80 value 102.832335
iter  90 value 101.501926
iter 100 value 101.036077
final  value 101.036077 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 135.073723 
iter  10 value 117.926747
iter  20 value 116.340125
iter  30 value 114.045700
iter  40 value 108.684599
iter  50 value 104.084102
iter  60 value 103.081978
iter  70 value 101.933933
iter  80 value 101.571185
iter  90 value 100.808389
iter 100 value 100.429793
final  value 100.429793 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Tue Apr 12 21:21:39 2022 
*********************************************** 
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0.
Use `.name_repair = "minimal"`.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 
2: `repeats` has no meaning for this resampling method. 
3: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  60.39    1.34   48.09 

Example timings

HPiP.Rcheck/examples_i386/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.44 2.4236.86
FreqInteractors0.190.000.18
calculateAAC0.130.001.84
calculateAutocor0.730.000.74
calculateBE0.090.000.10
calculateCTDC0.110.000.11
calculateCTDD0.860.050.90
calculateCTDT0.260.010.28
calculateCTriad0.250.050.30
calculateDC0.080.010.09
calculateF0.550.000.55
calculateKSAAP0.140.000.14
calculateQD_Sm1.440.031.47
calculateTC2.750.042.78
calculateTC_Sm0.190.010.20
corr_plot37.29 1.0839.25
enrichfindP0.500.038.40
enrichplot0.390.000.39
filter_missing_values000
getFASTA0.070.020.82
getHPI0.010.000.02
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.140.000.14
pred_ensembel21.00 0.4313.47
var_imp35.70 2.0537.75

HPiP.Rcheck/examples_x64/HPiP-Ex.timings

nameusersystemelapsed
FSmethod31.45 2.2733.76
FreqInteractors0.390.000.39
calculateAAC0.080.010.09
calculateAutocor0.410.000.41
calculateBE0.080.020.09
calculateCTDC0.090.010.11
calculateCTDD1.20.01.2
calculateCTDT0.310.020.33
calculateCTriad0.400.000.39
calculateDC0.200.030.24
calculateF0.510.020.54
calculateKSAAP0.140.010.16
calculateQD_Sm1.660.061.72
calculateTC3.240.074.11
calculateTC_Sm0.390.000.39
corr_plot34.53 1.1735.73
enrichfindP0.470.038.31
enrichplot0.390.020.41
filter_missing_values000
getFASTA0.060.030.78
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.140.000.14
pred_ensembel18.45 0.2713.83
var_imp33.42 2.3435.81