Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:37:08 -0400 (Mon, 16 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 949/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.6.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.6.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.6.0.tar.gz |
StartedAt: 2023-10-16 02:43:52 -0400 (Mon, 16 Oct 2023) |
EndedAt: 2023-10-16 02:53:31 -0400 (Mon, 16 Oct 2023) |
EllapsedTime: 578.0 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.6.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: x86_64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.3 (clang-1403.0.22.14.1) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.6.4 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.6.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 50.830 1.738 68.541 corr_plot 50.637 1.589 68.614 var_imp 50.269 1.653 69.862 pred_ensembel 23.644 0.468 25.050 calculateTC 4.687 0.473 6.602 enrichfindP 0.867 0.081 14.493 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 104.595654 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.461644 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.036434 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 106.426271 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.078408 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.983686 final value 94.443243 converged Fitting Repeat 2 # weights: 305 initial value 112.713350 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 94.237998 iter 10 value 86.778671 iter 20 value 85.559330 iter 30 value 85.318967 iter 40 value 85.310408 iter 50 value 85.310352 final value 85.310349 converged Fitting Repeat 4 # weights: 305 initial value 105.119902 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.418677 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 132.429085 final value 94.443243 converged Fitting Repeat 2 # weights: 507 initial value 95.329838 iter 10 value 88.626012 iter 20 value 86.717754 iter 30 value 86.708097 iter 40 value 86.707724 final value 86.707692 converged Fitting Repeat 3 # weights: 507 initial value 95.879915 iter 10 value 93.431365 iter 20 value 91.613939 iter 30 value 91.566985 final value 91.566666 converged Fitting Repeat 4 # weights: 507 initial value 101.504926 final value 94.443244 converged Fitting Repeat 5 # weights: 507 initial value 101.699749 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 112.817256 iter 10 value 94.429577 iter 20 value 88.785844 iter 30 value 84.716722 iter 40 value 84.326499 iter 50 value 83.889249 iter 60 value 83.736720 iter 70 value 83.684012 iter 80 value 83.667386 iter 90 value 83.664537 final value 83.663969 converged Fitting Repeat 2 # weights: 103 initial value 101.206471 iter 10 value 93.397541 iter 20 value 87.340733 iter 30 value 86.703972 iter 40 value 83.456138 iter 50 value 82.675999 iter 60 value 82.418324 iter 70 value 82.388606 final value 82.388430 converged Fitting Repeat 3 # weights: 103 initial value 105.528308 iter 10 value 94.441542 iter 20 value 90.222232 iter 30 value 87.082104 iter 40 value 86.806506 iter 50 value 86.546686 iter 60 value 85.439266 iter 70 value 84.658179 iter 80 value 84.639089 final value 84.637891 converged Fitting Repeat 4 # weights: 103 initial value 104.100095 iter 10 value 94.101203 iter 20 value 87.220047 iter 30 value 84.824218 iter 40 value 84.142255 iter 50 value 84.123719 iter 60 value 83.964024 iter 70 value 83.807143 iter 80 value 83.701718 iter 90 value 83.663348 iter 100 value 83.656333 final value 83.656333 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.139961 iter 10 value 92.481586 iter 20 value 88.586029 iter 30 value 87.605451 iter 40 value 86.673783 iter 50 value 85.275273 iter 60 value 84.655518 iter 70 value 84.558421 final value 84.558364 converged Fitting Repeat 1 # weights: 305 initial value 100.096712 iter 10 value 94.631399 iter 20 value 92.611650 iter 30 value 86.322716 iter 40 value 85.415014 iter 50 value 85.039573 iter 60 value 83.254689 iter 70 value 82.508654 iter 80 value 82.315739 iter 90 value 82.105833 iter 100 value 82.039699 final value 82.039699 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.375052 iter 10 value 94.163943 iter 20 value 90.000401 iter 30 value 87.989455 iter 40 value 85.134888 iter 50 value 83.876805 iter 60 value 83.666768 iter 70 value 83.347833 iter 80 value 82.495070 iter 90 value 81.889054 iter 100 value 81.377816 final value 81.377816 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.906305 iter 10 value 94.351176 iter 20 value 88.706838 iter 30 value 85.412818 iter 40 value 84.975169 iter 50 value 84.421342 iter 60 value 83.205613 iter 70 value 82.426106 iter 80 value 82.221371 iter 90 value 81.549200 iter 100 value 81.267152 final value 81.267152 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.399765 iter 10 value 91.921087 iter 20 value 88.388687 iter 30 value 86.790717 iter 40 value 86.686425 iter 50 value 85.865726 iter 60 value 85.088812 iter 70 value 84.636570 iter 80 value 82.294424 iter 90 value 81.507902 iter 100 value 81.120384 final value 81.120384 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.185992 iter 10 value 94.487257 iter 20 value 93.157584 iter 30 value 90.438395 iter 40 value 87.486647 iter 50 value 86.669574 iter 60 value 85.839833 iter 70 value 84.616016 iter 80 value 82.752504 iter 90 value 82.515846 iter 100 value 82.418140 final value 82.418140 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.041458 iter 10 value 94.783841 iter 20 value 94.530969 iter 30 value 88.998715 iter 40 value 86.448836 iter 50 value 83.490313 iter 60 value 82.722337 iter 70 value 81.701396 iter 80 value 81.344368 iter 90 value 81.232580 iter 100 value 81.186746 final value 81.186746 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 141.105114 iter 10 value 95.805837 iter 20 value 90.222237 iter 30 value 87.675312 iter 40 value 85.067012 iter 50 value 83.035915 iter 60 value 82.589162 iter 70 value 82.352381 iter 80 value 82.191930 iter 90 value 82.082976 iter 100 value 81.567253 final value 81.567253 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.101287 iter 10 value 96.515706 iter 20 value 88.112248 iter 30 value 87.134812 iter 40 value 85.395482 iter 50 value 84.929424 iter 60 value 82.539328 iter 70 value 82.240138 iter 80 value 82.183499 iter 90 value 82.157759 iter 100 value 81.879143 final value 81.879143 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.714023 iter 10 value 95.272581 iter 20 value 88.445081 iter 30 value 87.052393 iter 40 value 82.678422 iter 50 value 82.114311 iter 60 value 81.825328 iter 70 value 81.606837 iter 80 value 81.515156 iter 90 value 81.370499 iter 100 value 81.177702 final value 81.177702 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 134.878058 iter 10 value 94.700383 iter 20 value 91.397022 iter 30 value 89.985839 iter 40 value 87.967038 iter 50 value 87.060487 iter 60 value 86.791185 iter 70 value 86.319885 iter 80 value 84.685168 iter 90 value 84.270063 iter 100 value 84.111219 final value 84.111219 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.384152 final value 94.485833 converged Fitting Repeat 2 # weights: 103 initial value 94.742136 final value 94.485991 converged Fitting Repeat 3 # weights: 103 initial value 107.235818 final value 94.485771 converged Fitting Repeat 4 # weights: 103 initial value 96.724845 iter 10 value 94.485628 iter 20 value 94.484248 final value 94.484217 converged Fitting Repeat 5 # weights: 103 initial value 95.157446 final value 94.485772 converged Fitting Repeat 1 # weights: 305 initial value 118.202667 iter 10 value 94.457945 iter 20 value 94.428448 final value 94.400728 converged Fitting Repeat 2 # weights: 305 initial value 95.957942 iter 10 value 94.488984 iter 20 value 94.450568 iter 30 value 88.895214 iter 40 value 88.395681 iter 50 value 88.362131 iter 60 value 87.420069 iter 70 value 86.687650 iter 80 value 86.666561 iter 90 value 86.655540 iter 100 value 86.485290 final value 86.485290 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.256547 iter 10 value 94.486098 iter 20 value 94.314554 iter 30 value 87.652412 final value 87.652019 converged Fitting Repeat 4 # weights: 305 initial value 101.706456 iter 10 value 94.487366 iter 20 value 93.570242 iter 30 value 86.994202 iter 40 value 83.215415 iter 50 value 82.997954 iter 60 value 82.989945 final value 82.989217 converged Fitting Repeat 5 # weights: 305 initial value 95.979309 iter 10 value 94.489121 iter 20 value 94.351326 iter 30 value 92.872283 iter 40 value 92.872147 iter 50 value 91.854780 iter 60 value 91.317981 iter 70 value 91.260148 iter 80 value 91.259061 final value 91.259037 converged Fitting Repeat 1 # weights: 507 initial value 98.928719 iter 10 value 94.491837 iter 20 value 94.470453 iter 30 value 92.400877 iter 40 value 87.183420 iter 50 value 87.180803 final value 87.180776 converged Fitting Repeat 2 # weights: 507 initial value 107.071915 iter 10 value 94.491699 iter 20 value 90.012073 iter 30 value 85.833930 iter 40 value 85.825686 iter 50 value 85.724097 iter 60 value 85.601001 final value 85.600980 converged Fitting Repeat 3 # weights: 507 initial value 99.383585 iter 10 value 94.451895 iter 20 value 94.443416 iter 30 value 94.377377 iter 40 value 90.859748 iter 50 value 86.497141 iter 60 value 85.880487 iter 70 value 85.877816 iter 80 value 85.875964 iter 90 value 85.875508 iter 100 value 83.575018 final value 83.575018 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.394319 iter 10 value 94.492000 final value 94.491139 converged Fitting Repeat 5 # weights: 507 initial value 118.099321 iter 10 value 94.451092 iter 20 value 94.447116 iter 20 value 94.447116 iter 20 value 94.447116 final value 94.447116 converged Fitting Repeat 1 # weights: 103 initial value 104.758145 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 98.207245 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.407316 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.681330 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.430443 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.241156 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.890368 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.274431 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 96.083902 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 123.444820 final value 93.582418 converged Fitting Repeat 1 # weights: 507 initial value 118.161835 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 103.872388 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 111.121679 final value 93.582418 converged Fitting Repeat 4 # weights: 507 initial value 111.669534 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 100.970936 iter 10 value 93.553443 iter 20 value 93.322977 iter 30 value 92.969949 final value 92.969862 converged Fitting Repeat 1 # weights: 103 initial value 96.240245 iter 10 value 94.037275 iter 20 value 93.128115 iter 30 value 93.114821 iter 40 value 93.083859 iter 50 value 92.957055 iter 60 value 89.395841 iter 70 value 86.540688 iter 80 value 86.467125 iter 90 value 86.348734 iter 100 value 85.060811 final value 85.060811 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.031861 iter 10 value 94.044969 iter 20 value 93.631035 iter 30 value 93.510496 iter 40 value 93.461645 iter 50 value 92.510585 iter 60 value 85.427620 iter 70 value 85.148698 iter 80 value 84.966739 iter 90 value 84.911856 iter 100 value 84.901792 final value 84.901792 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.210810 iter 10 value 94.058872 iter 20 value 94.055355 iter 30 value 93.305243 iter 40 value 93.121548 iter 50 value 93.072828 final value 93.067792 converged Fitting Repeat 4 # weights: 103 initial value 95.883993 iter 10 value 94.065123 iter 20 value 93.520306 iter 30 value 93.234494 iter 40 value 92.680313 iter 50 value 87.064958 iter 60 value 86.459061 iter 70 value 86.449909 iter 80 value 86.326234 iter 90 value 85.716512 iter 100 value 85.221761 final value 85.221761 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.064747 iter 10 value 94.053214 iter 20 value 93.516200 iter 30 value 86.805346 iter 40 value 86.314415 iter 50 value 83.705033 iter 60 value 83.354936 iter 70 value 83.235337 iter 80 value 82.763038 iter 90 value 82.484221 iter 100 value 82.436868 final value 82.436868 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.249311 iter 10 value 94.017820 iter 20 value 93.727675 iter 30 value 93.043545 iter 40 value 87.624088 iter 50 value 86.674079 iter 60 value 86.144082 iter 70 value 83.701939 iter 80 value 82.701227 iter 90 value 82.061799 iter 100 value 81.708507 final value 81.708507 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 128.466006 iter 10 value 94.577748 iter 20 value 93.768829 iter 30 value 85.160586 iter 40 value 83.826491 iter 50 value 83.417665 iter 60 value 82.924472 iter 70 value 82.661497 iter 80 value 82.495849 iter 90 value 82.177147 iter 100 value 81.776472 final value 81.776472 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.898552 iter 10 value 93.869131 iter 20 value 91.874671 iter 30 value 85.990605 iter 40 value 84.783122 iter 50 value 83.814625 iter 60 value 83.155097 iter 70 value 82.424822 iter 80 value 82.058374 iter 90 value 82.038705 iter 100 value 82.020549 final value 82.020549 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.857206 iter 10 value 94.152556 iter 20 value 94.056549 iter 30 value 93.981578 iter 40 value 89.583687 iter 50 value 84.671504 iter 60 value 83.884434 iter 70 value 83.426437 iter 80 value 82.695363 iter 90 value 81.999160 iter 100 value 81.751190 final value 81.751190 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.507352 iter 10 value 94.112401 iter 20 value 93.178645 iter 30 value 86.412829 iter 40 value 85.130907 iter 50 value 84.787267 iter 60 value 84.371578 iter 70 value 83.112679 iter 80 value 82.725478 iter 90 value 82.072748 iter 100 value 81.523677 final value 81.523677 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.339070 iter 10 value 94.848653 iter 20 value 91.470566 iter 30 value 86.082004 iter 40 value 85.227044 iter 50 value 85.051583 iter 60 value 84.709864 iter 70 value 83.219082 iter 80 value 81.568620 iter 90 value 80.922430 iter 100 value 80.641638 final value 80.641638 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.118646 iter 10 value 93.742217 iter 20 value 91.926362 iter 30 value 87.606424 iter 40 value 85.835404 iter 50 value 84.830244 iter 60 value 82.797456 iter 70 value 82.014230 iter 80 value 81.891966 iter 90 value 81.643706 iter 100 value 81.590648 final value 81.590648 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.387811 iter 10 value 94.853273 iter 20 value 94.048922 iter 30 value 92.640204 iter 40 value 85.824384 iter 50 value 85.483619 iter 60 value 85.263753 iter 70 value 85.180969 iter 80 value 85.014738 iter 90 value 83.642830 iter 100 value 82.527795 final value 82.527795 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 121.162840 iter 10 value 94.006495 iter 20 value 90.830975 iter 30 value 87.037503 iter 40 value 85.710727 iter 50 value 84.337998 iter 60 value 82.727732 iter 70 value 82.223151 iter 80 value 81.913209 iter 90 value 81.575859 iter 100 value 81.341847 final value 81.341847 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.488913 iter 10 value 92.987040 iter 20 value 86.210068 iter 30 value 85.673095 iter 40 value 85.061714 iter 50 value 84.268698 iter 60 value 83.350859 iter 70 value 81.732383 iter 80 value 81.230002 iter 90 value 80.964953 iter 100 value 80.781915 final value 80.781915 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.507225 final value 94.054434 converged Fitting Repeat 2 # weights: 103 initial value 95.990907 final value 94.054709 converged Fitting Repeat 3 # weights: 103 initial value 98.737848 iter 10 value 94.054614 iter 20 value 94.052928 final value 94.052912 converged Fitting Repeat 4 # weights: 103 initial value 97.148359 final value 94.056259 converged Fitting Repeat 5 # weights: 103 initial value 99.937323 iter 10 value 94.054607 iter 20 value 94.025293 final value 93.583041 converged Fitting Repeat 1 # weights: 305 initial value 106.936891 iter 10 value 94.056849 iter 20 value 93.479349 iter 30 value 93.125719 iter 40 value 93.124343 iter 50 value 93.123118 iter 60 value 93.122992 iter 70 value 93.122802 iter 70 value 93.122802 iter 70 value 93.122801 final value 93.122801 converged Fitting Repeat 2 # weights: 305 initial value 101.642256 iter 10 value 93.123536 iter 20 value 93.106045 iter 30 value 93.047027 iter 40 value 88.495524 iter 50 value 88.213498 final value 88.201841 converged Fitting Repeat 3 # weights: 305 initial value 94.972290 iter 10 value 93.376904 iter 20 value 93.375725 iter 30 value 93.375036 iter 40 value 93.374797 final value 93.374593 converged Fitting Repeat 4 # weights: 305 initial value 101.537193 iter 10 value 92.169270 iter 20 value 92.081952 iter 30 value 92.040329 iter 40 value 91.900380 final value 91.900352 converged Fitting Repeat 5 # weights: 305 initial value 101.932599 iter 10 value 93.587963 iter 20 value 93.063186 iter 30 value 92.954664 iter 40 value 85.160036 iter 50 value 84.433682 iter 60 value 84.428219 final value 84.427634 converged Fitting Repeat 1 # weights: 507 initial value 94.827444 iter 10 value 93.590960 iter 20 value 93.041771 iter 30 value 90.295726 iter 40 value 86.291792 iter 50 value 86.120513 iter 60 value 85.214847 iter 70 value 85.175152 iter 80 value 84.851688 iter 90 value 83.888542 iter 100 value 83.828235 final value 83.828235 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.494206 iter 10 value 94.061208 iter 20 value 93.955019 iter 30 value 89.531352 iter 40 value 89.373581 iter 50 value 86.799374 iter 60 value 84.475037 iter 70 value 84.420311 iter 80 value 84.417621 iter 90 value 84.417471 iter 100 value 84.407263 final value 84.407263 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.269690 iter 10 value 94.059621 iter 20 value 93.667959 iter 30 value 85.979303 iter 40 value 85.978134 iter 50 value 85.393453 iter 60 value 84.610512 final value 84.610186 converged Fitting Repeat 4 # weights: 507 initial value 95.242125 iter 10 value 93.021522 iter 20 value 92.945182 iter 30 value 92.878943 iter 40 value 92.873690 iter 50 value 92.873310 iter 60 value 92.873166 iter 70 value 92.873115 final value 92.873076 converged Fitting Repeat 5 # weights: 507 initial value 101.814173 iter 10 value 94.060723 iter 20 value 94.041595 iter 30 value 85.216239 iter 40 value 83.437215 iter 50 value 82.843137 final value 82.813967 converged Fitting Repeat 1 # weights: 103 initial value 99.941251 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.752835 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 105.699085 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.931959 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.501938 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.708692 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 100.658185 final value 94.467391 converged Fitting Repeat 3 # weights: 305 initial value 99.771007 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.646550 final value 92.786232 converged Fitting Repeat 5 # weights: 305 initial value 113.226889 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 98.845839 final value 94.467392 converged Fitting Repeat 2 # weights: 507 initial value 102.379341 final value 94.428840 converged Fitting Repeat 3 # weights: 507 initial value 121.492044 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 101.016249 iter 10 value 93.955965 iter 20 value 93.936869 iter 30 value 93.422007 final value 93.413497 converged Fitting Repeat 5 # weights: 507 initial value 109.704732 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 114.886027 iter 10 value 94.486564 iter 20 value 94.482832 iter 30 value 91.018926 iter 40 value 86.928693 iter 50 value 86.258682 iter 60 value 84.093099 iter 70 value 82.975787 iter 80 value 81.693241 iter 90 value 80.976804 iter 100 value 80.949654 final value 80.949654 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.498274 iter 10 value 93.937875 iter 20 value 87.417869 iter 30 value 85.257450 iter 40 value 85.013581 iter 50 value 84.833600 iter 60 value 84.542809 iter 70 value 81.705211 iter 80 value 81.008301 iter 90 value 80.960306 iter 100 value 80.959357 final value 80.959357 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.494035 iter 10 value 93.985221 iter 20 value 93.392472 iter 30 value 92.003637 iter 40 value 88.884140 iter 50 value 82.656084 iter 60 value 82.253875 iter 70 value 81.258964 iter 80 value 81.221235 iter 80 value 81.221234 final value 81.221234 converged Fitting Repeat 4 # weights: 103 initial value 102.304202 iter 10 value 94.487410 iter 20 value 84.513796 iter 30 value 82.756699 iter 40 value 81.276871 iter 50 value 81.131397 iter 60 value 81.084682 iter 70 value 80.786412 final value 80.784735 converged Fitting Repeat 5 # weights: 103 initial value 99.549559 iter 10 value 94.484701 iter 20 value 88.399699 iter 30 value 84.313312 iter 40 value 81.906990 iter 50 value 81.299212 iter 60 value 81.200426 final value 81.200239 converged Fitting Repeat 1 # weights: 305 initial value 101.876176 iter 10 value 94.648470 iter 20 value 85.905112 iter 30 value 83.121598 iter 40 value 80.239253 iter 50 value 77.813466 iter 60 value 77.543630 iter 70 value 77.270856 iter 80 value 77.204178 iter 90 value 77.180403 iter 100 value 77.169858 final value 77.169858 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.735991 iter 10 value 94.322051 iter 20 value 85.214690 iter 30 value 83.985811 iter 40 value 81.148939 iter 50 value 80.360884 iter 60 value 79.224408 iter 70 value 77.974705 iter 80 value 77.414862 iter 90 value 77.372492 iter 100 value 77.092447 final value 77.092447 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.532095 iter 10 value 94.508318 iter 20 value 94.433355 iter 30 value 84.539187 iter 40 value 82.716969 iter 50 value 81.251249 iter 60 value 80.790221 iter 70 value 80.726438 iter 80 value 80.618549 iter 90 value 80.274093 iter 100 value 79.775354 final value 79.775354 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.222756 iter 10 value 94.595824 iter 20 value 85.000162 iter 30 value 82.562742 iter 40 value 81.307801 iter 50 value 81.201512 iter 60 value 80.645211 iter 70 value 78.952139 iter 80 value 77.850152 iter 90 value 77.620091 iter 100 value 77.490456 final value 77.490456 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.908171 iter 10 value 94.434646 iter 20 value 85.039469 iter 30 value 82.664276 iter 40 value 81.188037 iter 50 value 78.477128 iter 60 value 78.074939 iter 70 value 77.797155 iter 80 value 77.086984 iter 90 value 76.589351 iter 100 value 76.339925 final value 76.339925 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.032366 iter 10 value 95.942921 iter 20 value 92.871909 iter 30 value 92.084606 iter 40 value 91.887283 iter 50 value 91.737684 iter 60 value 84.576512 iter 70 value 80.539029 iter 80 value 79.228835 iter 90 value 78.847217 iter 100 value 78.188181 final value 78.188181 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 129.566602 iter 10 value 95.535323 iter 20 value 84.668581 iter 30 value 82.272977 iter 40 value 81.446550 iter 50 value 81.249366 iter 60 value 80.856511 iter 70 value 80.220555 iter 80 value 79.243408 iter 90 value 78.124294 iter 100 value 77.538271 final value 77.538271 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.402748 iter 10 value 94.697702 iter 20 value 90.032238 iter 30 value 84.317159 iter 40 value 80.306478 iter 50 value 79.218915 iter 60 value 78.010776 iter 70 value 77.682848 iter 80 value 77.307260 iter 90 value 76.930624 iter 100 value 76.900193 final value 76.900193 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.208350 iter 10 value 94.670541 iter 20 value 88.984846 iter 30 value 86.841883 iter 40 value 82.258278 iter 50 value 80.500982 iter 60 value 79.878029 iter 70 value 79.748769 iter 80 value 79.486434 iter 90 value 78.647888 iter 100 value 78.534162 final value 78.534162 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.958153 iter 10 value 87.967600 iter 20 value 83.375617 iter 30 value 80.234954 iter 40 value 77.727516 iter 50 value 77.469975 iter 60 value 77.352072 iter 70 value 77.045725 iter 80 value 76.845842 iter 90 value 76.503814 iter 100 value 76.371333 final value 76.371333 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.313943 final value 94.485827 converged Fitting Repeat 2 # weights: 103 initial value 95.994315 final value 94.485728 converged Fitting Repeat 3 # weights: 103 initial value 107.991981 final value 94.485718 converged Fitting Repeat 4 # weights: 103 initial value 115.039708 final value 94.485711 converged Fitting Repeat 5 # weights: 103 initial value 106.650123 iter 10 value 94.485745 iter 20 value 94.484024 iter 30 value 92.287035 iter 40 value 91.973535 final value 91.476556 converged Fitting Repeat 1 # weights: 305 initial value 100.189786 iter 10 value 94.472284 iter 20 value 93.526425 iter 30 value 89.346079 iter 40 value 78.825709 iter 50 value 78.761055 iter 60 value 78.741583 iter 70 value 78.722056 iter 80 value 78.715252 iter 90 value 78.696683 iter 100 value 78.664138 final value 78.664138 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.677939 iter 10 value 94.488887 iter 20 value 86.051317 iter 30 value 81.206432 iter 40 value 81.185366 final value 81.183214 converged Fitting Repeat 3 # weights: 305 initial value 107.534522 iter 10 value 94.488617 iter 20 value 86.776159 iter 30 value 80.437489 iter 40 value 80.437085 final value 80.435744 converged Fitting Repeat 4 # weights: 305 initial value 101.367176 final value 94.489288 converged Fitting Repeat 5 # weights: 305 initial value 108.854729 iter 10 value 94.488372 iter 20 value 94.406466 iter 30 value 82.714727 iter 40 value 80.883616 iter 50 value 80.164428 iter 60 value 80.077772 iter 70 value 78.771734 iter 80 value 78.349578 iter 90 value 78.341094 iter 100 value 78.340031 final value 78.340031 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.813675 iter 10 value 94.338705 iter 20 value 93.925931 iter 30 value 93.510077 iter 40 value 93.505149 iter 50 value 93.504548 iter 60 value 93.499082 iter 70 value 93.498226 final value 93.498211 converged Fitting Repeat 2 # weights: 507 initial value 97.677556 iter 10 value 88.174315 iter 20 value 82.752588 iter 30 value 82.722909 iter 40 value 82.692368 iter 50 value 80.906330 iter 60 value 79.820110 iter 70 value 79.655544 iter 80 value 79.583311 iter 80 value 79.583311 iter 80 value 79.583311 final value 79.583311 converged Fitting Repeat 3 # weights: 507 initial value 98.583141 iter 10 value 87.938297 iter 20 value 86.329625 iter 30 value 86.018689 iter 40 value 83.055436 iter 50 value 82.677475 iter 60 value 80.864883 iter 70 value 80.700621 iter 80 value 80.698562 iter 90 value 80.685062 iter 100 value 80.576238 final value 80.576238 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.793554 iter 10 value 92.794979 iter 20 value 92.791263 iter 30 value 86.172849 iter 40 value 82.977795 iter 50 value 82.925542 iter 60 value 82.908781 iter 70 value 82.903572 final value 82.903422 converged Fitting Repeat 5 # weights: 507 initial value 100.022561 iter 10 value 94.437067 iter 20 value 92.285720 iter 30 value 80.509820 iter 40 value 79.681485 iter 50 value 79.679997 iter 60 value 79.667131 iter 70 value 79.515393 iter 80 value 79.512758 iter 90 value 79.484715 iter 100 value 79.002632 final value 79.002632 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.080204 iter 10 value 90.033718 iter 20 value 84.042462 iter 30 value 83.707324 iter 40 value 83.529487 final value 83.528083 converged Fitting Repeat 2 # weights: 103 initial value 100.464701 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 108.085796 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.869633 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.303825 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 123.781018 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 99.580499 iter 10 value 94.106994 iter 20 value 88.622401 final value 88.621431 converged Fitting Repeat 3 # weights: 305 initial value 99.950763 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 97.172182 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 107.613404 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.535028 final value 94.112903 converged Fitting Repeat 2 # weights: 507 initial value 97.850262 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.025450 iter 10 value 89.624165 iter 20 value 88.757582 iter 30 value 87.837044 iter 40 value 86.871320 iter 50 value 86.835086 final value 86.834591 converged Fitting Repeat 4 # weights: 507 initial value 112.865643 iter 10 value 94.090586 final value 94.090584 converged Fitting Repeat 5 # weights: 507 initial value 99.932378 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 106.556630 iter 10 value 94.475219 iter 20 value 93.646112 iter 30 value 87.770555 iter 40 value 87.117141 iter 50 value 86.741529 iter 60 value 86.073714 iter 70 value 84.043606 iter 80 value 82.722435 iter 90 value 82.677626 iter 100 value 82.672921 final value 82.672921 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.884298 iter 10 value 94.489039 iter 20 value 89.977719 iter 30 value 86.731391 iter 40 value 85.215145 iter 50 value 84.125617 iter 60 value 83.716734 iter 70 value 83.453921 iter 80 value 83.033059 final value 83.008491 converged Fitting Repeat 3 # weights: 103 initial value 100.353423 iter 10 value 94.488296 iter 20 value 94.090070 iter 30 value 87.301349 iter 40 value 87.216113 iter 50 value 85.238685 iter 60 value 84.565663 iter 70 value 83.875728 iter 80 value 83.515520 iter 90 value 82.966249 iter 100 value 82.933464 final value 82.933464 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.817915 iter 10 value 94.445133 iter 20 value 88.589477 iter 30 value 84.329696 iter 40 value 83.800984 iter 50 value 83.033691 iter 60 value 83.020353 iter 70 value 83.012670 final value 83.008491 converged Fitting Repeat 5 # weights: 103 initial value 96.825606 iter 10 value 93.524967 iter 20 value 88.814222 iter 30 value 84.125200 iter 40 value 83.646744 iter 50 value 83.246363 iter 60 value 82.928684 iter 70 value 82.714453 iter 80 value 82.449683 iter 90 value 82.236318 final value 82.236012 converged Fitting Repeat 1 # weights: 305 initial value 102.633051 iter 10 value 94.456466 iter 20 value 91.971925 iter 30 value 89.838002 iter 40 value 89.595354 iter 50 value 84.705898 iter 60 value 84.367150 iter 70 value 82.730682 iter 80 value 81.617669 iter 90 value 81.375848 iter 100 value 81.176612 final value 81.176612 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.585356 iter 10 value 94.521545 iter 20 value 94.340033 iter 30 value 91.823827 iter 40 value 90.801788 iter 50 value 90.110233 iter 60 value 84.891754 iter 70 value 82.558683 iter 80 value 81.838264 iter 90 value 81.477292 iter 100 value 81.289598 final value 81.289598 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 128.026381 iter 10 value 93.979207 iter 20 value 90.041824 iter 30 value 89.791149 iter 40 value 88.867064 iter 50 value 85.174719 iter 60 value 83.475486 iter 70 value 81.933969 iter 80 value 81.463299 iter 90 value 81.409420 iter 100 value 81.353392 final value 81.353392 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.868833 iter 10 value 94.568878 iter 20 value 87.563617 iter 30 value 86.790186 iter 40 value 85.484126 iter 50 value 83.857737 iter 60 value 83.178555 iter 70 value 82.980812 iter 80 value 82.522504 iter 90 value 81.527806 iter 100 value 81.312850 final value 81.312850 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 119.510331 iter 10 value 94.442952 iter 20 value 94.002330 iter 30 value 92.500893 iter 40 value 91.548230 iter 50 value 90.133117 iter 60 value 89.951188 iter 70 value 89.635080 iter 80 value 89.304092 iter 90 value 86.592379 iter 100 value 84.144116 final value 84.144116 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.956995 iter 10 value 94.845585 iter 20 value 87.634983 iter 30 value 85.824573 iter 40 value 83.886232 iter 50 value 83.410087 iter 60 value 82.918927 iter 70 value 81.978072 iter 80 value 81.658044 iter 90 value 81.524691 iter 100 value 81.116364 final value 81.116364 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.839058 iter 10 value 94.075258 iter 20 value 84.181555 iter 30 value 83.435234 iter 40 value 82.654420 iter 50 value 81.649783 iter 60 value 80.922580 iter 70 value 80.753524 iter 80 value 80.655203 iter 90 value 80.582538 iter 100 value 80.562836 final value 80.562836 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.114442 iter 10 value 94.932093 iter 20 value 91.103716 iter 30 value 87.035604 iter 40 value 86.244544 iter 50 value 85.716652 iter 60 value 81.811870 iter 70 value 81.204162 iter 80 value 81.026614 iter 90 value 80.963924 iter 100 value 80.808455 final value 80.808455 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.407704 iter 10 value 94.494825 iter 20 value 86.284995 iter 30 value 84.151055 iter 40 value 83.825221 iter 50 value 83.318364 iter 60 value 82.713965 iter 70 value 82.568069 iter 80 value 82.095178 iter 90 value 81.709178 iter 100 value 81.624787 final value 81.624787 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.447864 iter 10 value 91.471784 iter 20 value 84.397383 iter 30 value 84.046217 iter 40 value 83.763138 iter 50 value 83.627651 iter 60 value 82.861130 iter 70 value 82.358393 iter 80 value 81.880765 iter 90 value 81.425746 iter 100 value 81.178964 final value 81.178964 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.489428 final value 94.486086 converged Fitting Repeat 2 # weights: 103 initial value 106.947322 final value 94.485977 converged Fitting Repeat 3 # weights: 103 initial value 100.117670 final value 94.486037 converged Fitting Repeat 4 # weights: 103 initial value 102.907476 final value 94.485766 converged Fitting Repeat 5 # weights: 103 initial value 100.554037 final value 94.485999 converged Fitting Repeat 1 # weights: 305 initial value 105.725838 iter 10 value 94.489027 iter 20 value 90.568716 iter 30 value 87.037385 iter 40 value 86.780169 iter 50 value 84.612764 iter 60 value 84.611017 iter 70 value 84.209046 iter 80 value 84.058337 final value 84.055917 converged Fitting Repeat 2 # weights: 305 initial value 106.280095 iter 10 value 94.496505 iter 20 value 94.466230 iter 30 value 94.389433 iter 40 value 94.333884 iter 50 value 94.324522 iter 60 value 94.323384 iter 60 value 94.323384 iter 60 value 94.323383 final value 94.323383 converged Fitting Repeat 3 # weights: 305 initial value 94.812542 iter 10 value 94.489161 iter 20 value 94.243529 iter 30 value 91.791514 iter 40 value 91.790723 final value 91.790657 converged Fitting Repeat 4 # weights: 305 initial value 97.294230 iter 10 value 94.471884 iter 20 value 94.466449 iter 30 value 94.270235 iter 40 value 92.923107 final value 92.923099 converged Fitting Repeat 5 # weights: 305 initial value 98.620259 iter 10 value 94.488996 iter 20 value 94.369203 iter 30 value 91.783147 iter 40 value 91.707828 final value 91.707254 converged Fitting Repeat 1 # weights: 507 initial value 95.554450 iter 10 value 91.512889 iter 20 value 91.383432 iter 30 value 91.380377 iter 40 value 90.257928 iter 50 value 89.514275 iter 60 value 89.022857 iter 70 value 88.678349 iter 80 value 88.673479 final value 88.671497 converged Fitting Repeat 2 # weights: 507 initial value 122.207585 iter 10 value 94.492316 iter 20 value 94.458379 iter 30 value 87.118249 iter 40 value 82.807224 iter 50 value 82.792042 iter 60 value 82.791613 final value 82.791534 converged Fitting Repeat 3 # weights: 507 initial value 99.520876 iter 10 value 94.492614 iter 20 value 91.834380 iter 30 value 87.434012 iter 40 value 85.469339 iter 50 value 84.196930 iter 60 value 83.999270 iter 70 value 82.622950 iter 80 value 82.558002 iter 90 value 82.556884 iter 100 value 82.556687 final value 82.556687 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 130.310584 iter 10 value 94.492384 iter 20 value 94.484331 iter 30 value 93.863625 iter 40 value 88.174897 iter 50 value 87.502278 final value 87.502076 converged Fitting Repeat 5 # weights: 507 initial value 96.333876 iter 10 value 94.475130 iter 20 value 94.455148 iter 30 value 94.452966 iter 40 value 94.450494 iter 50 value 94.450003 iter 60 value 87.712428 iter 70 value 87.034015 iter 80 value 86.595146 final value 86.578174 converged Fitting Repeat 1 # weights: 103 initial value 100.275926 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.688978 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.968533 final value 93.582418 converged Fitting Repeat 4 # weights: 103 initial value 94.836757 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.324413 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 112.382978 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.159357 iter 10 value 85.111633 iter 20 value 83.910201 iter 30 value 83.909751 iter 40 value 83.679304 final value 83.679291 converged Fitting Repeat 3 # weights: 305 initial value 97.834975 iter 10 value 93.541483 final value 93.473742 converged Fitting Repeat 4 # weights: 305 initial value 98.624090 final value 93.582418 converged Fitting Repeat 5 # weights: 305 initial value 112.494595 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.797530 final value 93.288889 converged Fitting Repeat 2 # weights: 507 initial value 114.539096 final value 93.084594 converged Fitting Repeat 3 # weights: 507 initial value 122.555951 iter 10 value 91.507340 iter 20 value 87.931561 final value 87.813230 converged Fitting Repeat 4 # weights: 507 initial value 94.703724 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 121.580339 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 120.410773 iter 10 value 92.246689 iter 20 value 86.074013 iter 30 value 84.511692 iter 40 value 82.947848 iter 50 value 82.648871 iter 60 value 82.183394 iter 70 value 81.679644 iter 80 value 80.631323 iter 90 value 80.628871 final value 80.628425 converged Fitting Repeat 2 # weights: 103 initial value 96.301142 iter 10 value 93.981598 iter 20 value 93.225320 iter 30 value 93.062567 iter 40 value 91.068983 iter 50 value 85.137338 iter 60 value 81.292626 iter 70 value 81.182552 iter 80 value 81.122484 iter 90 value 81.121951 iter 100 value 80.850281 final value 80.850281 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.678028 iter 10 value 93.743946 iter 20 value 93.081980 iter 30 value 93.065099 iter 40 value 93.060841 iter 50 value 92.577640 iter 60 value 89.590559 iter 70 value 88.856457 iter 80 value 87.959777 iter 90 value 85.166914 iter 100 value 83.729875 final value 83.729875 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.014281 iter 10 value 93.951546 iter 20 value 85.552723 iter 30 value 83.570865 iter 40 value 82.423294 iter 50 value 80.741521 iter 60 value 80.630062 iter 70 value 80.628452 final value 80.628425 converged Fitting Repeat 5 # weights: 103 initial value 98.115412 iter 10 value 94.064480 iter 20 value 93.890785 iter 30 value 93.684058 iter 40 value 90.820034 iter 50 value 88.147353 iter 60 value 83.395912 iter 70 value 83.179851 iter 80 value 83.164710 final value 83.164702 converged Fitting Repeat 1 # weights: 305 initial value 103.686279 iter 10 value 95.525725 iter 20 value 92.733172 iter 30 value 90.703157 iter 40 value 84.161662 iter 50 value 82.969302 iter 60 value 82.367485 iter 70 value 82.034529 iter 80 value 81.101509 iter 90 value 80.892060 iter 100 value 80.339739 final value 80.339739 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.078482 iter 10 value 93.979348 iter 20 value 91.807364 iter 30 value 88.024430 iter 40 value 84.201629 iter 50 value 82.664460 iter 60 value 81.971746 iter 70 value 81.796864 iter 80 value 81.531229 iter 90 value 81.008136 iter 100 value 80.844207 final value 80.844207 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.898579 iter 10 value 93.928401 iter 20 value 89.914504 iter 30 value 83.742229 iter 40 value 83.177746 iter 50 value 82.703702 iter 60 value 82.596533 iter 70 value 82.521532 iter 80 value 81.835825 iter 90 value 80.277549 iter 100 value 79.929288 final value 79.929288 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.234337 iter 10 value 92.930491 iter 20 value 84.203940 iter 30 value 83.382599 iter 40 value 83.275658 iter 50 value 82.995160 iter 60 value 81.269966 iter 70 value 80.213525 iter 80 value 79.821334 iter 90 value 79.783683 iter 100 value 79.703018 final value 79.703018 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.052388 iter 10 value 93.912244 iter 20 value 86.255275 iter 30 value 85.121607 iter 40 value 84.770831 iter 50 value 82.273484 iter 60 value 80.337519 iter 70 value 80.111178 iter 80 value 79.849643 iter 90 value 79.777277 iter 100 value 79.666744 final value 79.666744 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.877762 iter 10 value 93.274918 iter 20 value 89.522418 iter 30 value 87.865223 iter 40 value 84.250872 iter 50 value 81.827416 iter 60 value 80.158276 iter 70 value 80.077530 iter 80 value 79.941677 iter 90 value 79.735505 iter 100 value 79.656336 final value 79.656336 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.264335 iter 10 value 94.622324 iter 20 value 93.914740 iter 30 value 88.232784 iter 40 value 87.731937 iter 50 value 84.106624 iter 60 value 81.943765 iter 70 value 81.249965 iter 80 value 80.278803 iter 90 value 79.911842 iter 100 value 79.769479 final value 79.769479 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.551659 iter 10 value 95.724203 iter 20 value 85.388467 iter 30 value 83.493694 iter 40 value 82.597726 iter 50 value 81.543718 iter 60 value 80.616572 iter 70 value 79.555098 iter 80 value 79.116497 iter 90 value 79.033402 iter 100 value 78.994961 final value 78.994961 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.078793 iter 10 value 94.079984 iter 20 value 92.488070 iter 30 value 84.369923 iter 40 value 83.989996 iter 50 value 83.371217 iter 60 value 82.823202 iter 70 value 82.300701 iter 80 value 80.792736 iter 90 value 80.314280 iter 100 value 79.965511 final value 79.965511 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 139.561845 iter 10 value 92.673335 iter 20 value 88.216110 iter 30 value 83.534661 iter 40 value 82.471209 iter 50 value 82.083803 iter 60 value 81.557128 iter 70 value 81.451991 iter 80 value 81.383336 iter 90 value 81.354579 iter 100 value 81.297776 final value 81.297776 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.127774 final value 94.054681 converged Fitting Repeat 2 # weights: 103 initial value 98.326970 iter 10 value 94.054430 final value 94.053201 converged Fitting Repeat 3 # weights: 103 initial value 101.219791 iter 10 value 93.584170 iter 20 value 93.209600 iter 30 value 84.003851 iter 40 value 83.723612 iter 50 value 83.721306 iter 50 value 83.721306 iter 50 value 83.721306 final value 83.721306 converged Fitting Repeat 4 # weights: 103 initial value 99.665624 iter 10 value 94.054659 final value 94.053034 converged Fitting Repeat 5 # weights: 103 initial value 97.866511 final value 94.054592 converged Fitting Repeat 1 # weights: 305 initial value 128.435705 iter 10 value 94.057942 iter 20 value 94.053008 iter 30 value 93.604777 iter 40 value 92.978534 iter 50 value 92.970800 iter 60 value 92.963584 iter 70 value 87.416087 final value 86.934506 converged Fitting Repeat 2 # weights: 305 initial value 104.126422 iter 10 value 93.587903 iter 20 value 93.552525 iter 30 value 89.112228 iter 40 value 89.110016 iter 50 value 87.254289 iter 60 value 86.639901 iter 70 value 82.466827 iter 80 value 79.521273 iter 90 value 79.126185 iter 100 value 79.032820 final value 79.032820 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.115915 iter 10 value 94.057740 iter 20 value 94.052894 iter 30 value 93.921500 iter 40 value 90.027192 iter 50 value 83.181141 iter 60 value 83.043282 iter 70 value 83.042759 iter 80 value 82.816552 iter 90 value 82.457665 iter 100 value 82.436795 final value 82.436795 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.671723 iter 10 value 93.478736 iter 20 value 93.237432 final value 93.105021 converged Fitting Repeat 5 # weights: 305 initial value 109.917749 iter 10 value 94.057351 final value 94.052933 converged Fitting Repeat 1 # weights: 507 initial value 109.295847 iter 10 value 89.479354 iter 20 value 85.556002 iter 30 value 85.549161 iter 40 value 85.535661 iter 50 value 84.059472 iter 60 value 81.884803 iter 70 value 81.812982 iter 80 value 81.812565 iter 90 value 81.584921 iter 100 value 81.113602 final value 81.113602 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.419477 iter 10 value 94.061372 iter 20 value 93.961604 iter 30 value 93.155030 iter 40 value 92.997084 iter 50 value 92.976811 iter 60 value 92.950410 iter 70 value 87.560041 iter 80 value 82.667555 iter 90 value 82.454265 iter 100 value 82.413977 final value 82.413977 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.235742 iter 10 value 94.061457 iter 20 value 93.963876 final value 93.582663 converged Fitting Repeat 4 # weights: 507 initial value 105.137358 iter 10 value 94.059540 iter 20 value 93.816564 iter 30 value 92.949286 final value 92.949251 converged Fitting Repeat 5 # weights: 507 initial value 98.231544 iter 10 value 92.967461 iter 20 value 92.964945 iter 30 value 92.951110 iter 40 value 92.949628 final value 92.949480 converged Fitting Repeat 1 # weights: 305 initial value 119.654924 iter 10 value 117.894960 iter 20 value 117.836885 iter 30 value 117.512956 final value 117.512939 converged Fitting Repeat 2 # weights: 305 initial value 120.668219 iter 10 value 115.032344 iter 20 value 115.010919 final value 115.008250 converged Fitting Repeat 3 # weights: 305 initial value 131.131523 iter 10 value 117.764539 iter 20 value 108.368193 iter 30 value 107.252147 iter 40 value 107.108853 iter 50 value 106.315324 iter 60 value 106.223470 iter 70 value 106.221719 iter 80 value 105.691940 iter 90 value 105.689239 iter 100 value 105.481500 final value 105.481500 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.481526 iter 10 value 109.252300 iter 20 value 107.009787 iter 30 value 107.008689 iter 40 value 105.057603 final value 105.057453 converged Fitting Repeat 5 # weights: 305 initial value 128.041963 iter 10 value 117.763870 iter 20 value 117.759231 iter 30 value 117.190969 iter 40 value 108.257246 iter 50 value 108.250359 iter 60 value 108.208868 iter 70 value 103.450527 iter 80 value 102.609046 iter 90 value 102.607536 iter 100 value 102.598703 final value 102.598703 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Oct 16 02:53:13 2023 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 67.804 2.085 79.789
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.830 | 1.738 | 68.541 | |
FreqInteractors | 0.498 | 0.022 | 0.665 | |
calculateAAC | 0.077 | 0.015 | 0.121 | |
calculateAutocor | 0.813 | 0.109 | 1.181 | |
calculateCTDC | 0.165 | 0.007 | 0.219 | |
calculateCTDD | 1.420 | 0.067 | 1.913 | |
calculateCTDT | 0.449 | 0.018 | 0.585 | |
calculateCTriad | 0.755 | 0.041 | 1.078 | |
calculateDC | 0.240 | 0.026 | 0.372 | |
calculateF | 0.673 | 0.015 | 0.939 | |
calculateKSAAP | 0.271 | 0.024 | 0.399 | |
calculateQD_Sm | 3.605 | 0.178 | 4.803 | |
calculateTC | 4.687 | 0.473 | 6.602 | |
calculateTC_Sm | 0.483 | 0.027 | 0.683 | |
corr_plot | 50.637 | 1.589 | 68.614 | |
enrichfindP | 0.867 | 0.081 | 14.493 | |
enrichfind_hp | 0.125 | 0.022 | 1.107 | |
enrichplot | 0.517 | 0.009 | 0.630 | |
filter_missing_values | 0.002 | 0.000 | 0.003 | |
getFASTA | 0.121 | 0.015 | 3.068 | |
getHPI | 0.001 | 0.002 | 0.003 | |
get_negativePPI | 0.003 | 0.001 | 0.004 | |
get_positivePPI | 0.000 | 0.001 | 0.001 | |
impute_missing_data | 0.003 | 0.002 | 0.005 | |
plotPPI | 0.131 | 0.005 | 0.137 | |
pred_ensembel | 23.644 | 0.468 | 25.050 | |
var_imp | 50.269 | 1.653 | 69.862 | |