Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:35:26 -0400 (Mon, 16 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 949/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.6.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.6.0 |
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings HPiP_1.6.0.tar.gz |
StartedAt: 2023-10-15 22:03:13 -0400 (Sun, 15 Oct 2023) |
EndedAt: 2023-10-15 22:16:36 -0400 (Sun, 15 Oct 2023) |
EllapsedTime: 803.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings HPiP_1.6.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: x86_64-pc-linux-gnu (64-bit) * R was compiled by gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 * running under: Ubuntu 22.04.3 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.6.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.813 0.920 36.733 corr_plot 35.919 0.664 36.592 FSmethod 34.050 0.691 34.743 pred_ensembel 13.873 0.527 10.672 enrichfindP 0.432 0.048 8.956 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... ‘HPiP_tutorial.Rmd’ using ‘UTF-8’... OK NONE * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.819779 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.100721 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 107.094499 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 110.843729 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.292572 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.499909 iter 10 value 89.831880 iter 20 value 78.167159 iter 30 value 78.139306 iter 40 value 78.131670 final value 78.131421 converged Fitting Repeat 2 # weights: 305 initial value 100.453213 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 94.892826 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 98.551378 iter 10 value 92.945356 iter 10 value 92.945356 iter 10 value 92.945356 final value 92.945356 converged Fitting Repeat 5 # weights: 305 initial value 103.268258 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 102.472941 iter 10 value 93.765896 iter 10 value 93.765896 iter 10 value 93.765896 final value 93.765896 converged Fitting Repeat 2 # weights: 507 initial value 117.213184 iter 10 value 89.711698 iter 20 value 81.443464 iter 30 value 81.232287 final value 81.232284 converged Fitting Repeat 3 # weights: 507 initial value 110.896984 iter 10 value 92.945405 final value 92.945356 converged Fitting Repeat 4 # weights: 507 initial value 107.945315 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 101.241363 iter 10 value 92.945381 final value 92.945355 converged Fitting Repeat 1 # weights: 103 initial value 97.038178 iter 10 value 94.177113 iter 20 value 93.976646 iter 30 value 93.647011 iter 40 value 93.095101 iter 50 value 93.009297 iter 60 value 92.906509 iter 70 value 92.858999 iter 80 value 83.900268 iter 90 value 81.000323 iter 100 value 80.277158 final value 80.277158 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.967822 iter 10 value 93.568225 iter 20 value 88.425536 iter 30 value 87.639615 iter 40 value 84.195805 iter 50 value 82.583138 iter 60 value 81.754226 iter 70 value 81.238414 iter 80 value 81.161261 final value 81.160723 converged Fitting Repeat 3 # weights: 103 initial value 104.256749 iter 10 value 94.180887 iter 20 value 94.055561 iter 30 value 93.438717 iter 40 value 93.201520 iter 50 value 92.902703 iter 60 value 92.469592 iter 70 value 88.782694 iter 80 value 88.385225 iter 90 value 83.071871 iter 100 value 82.124008 final value 82.124008 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.936300 iter 10 value 94.057357 iter 20 value 93.563938 iter 30 value 93.231500 iter 40 value 91.982234 iter 50 value 86.334219 iter 60 value 83.299938 iter 70 value 81.813738 iter 80 value 81.810490 iter 80 value 81.810489 iter 80 value 81.810489 final value 81.810489 converged Fitting Repeat 5 # weights: 103 initial value 96.990573 iter 10 value 93.860953 iter 20 value 92.952938 iter 30 value 92.893473 iter 40 value 92.888636 iter 50 value 92.885836 iter 60 value 92.818932 iter 70 value 89.090560 iter 80 value 88.384788 iter 90 value 83.127371 iter 100 value 80.391694 final value 80.391694 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.320289 iter 10 value 87.603672 iter 20 value 84.950140 iter 30 value 84.242605 iter 40 value 83.655528 iter 50 value 82.147645 iter 60 value 79.761255 iter 70 value 78.172697 iter 80 value 77.156498 iter 90 value 76.880758 iter 100 value 76.561544 final value 76.561544 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 122.151650 iter 10 value 94.248713 iter 20 value 86.133982 iter 30 value 82.703609 iter 40 value 78.793950 iter 50 value 78.192246 iter 60 value 77.887296 iter 70 value 77.541569 iter 80 value 76.802276 iter 90 value 76.309038 iter 100 value 76.257245 final value 76.257245 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.947514 iter 10 value 91.676054 iter 20 value 84.216785 iter 30 value 82.424594 iter 40 value 81.877544 iter 50 value 80.206686 iter 60 value 79.612631 iter 70 value 79.259166 iter 80 value 79.155876 iter 90 value 78.834686 iter 100 value 78.412191 final value 78.412191 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.879336 iter 10 value 94.032216 iter 20 value 93.154015 iter 30 value 87.666263 iter 40 value 83.219675 iter 50 value 82.557376 iter 60 value 82.337299 iter 70 value 82.078412 iter 80 value 80.394625 iter 90 value 79.396976 iter 100 value 77.065132 final value 77.065132 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 129.405013 iter 10 value 93.367595 iter 20 value 81.637507 iter 30 value 80.691256 iter 40 value 80.378051 iter 50 value 78.519130 iter 60 value 77.606444 iter 70 value 77.470173 iter 80 value 77.053426 iter 90 value 76.819554 iter 100 value 76.387609 final value 76.387609 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.561525 iter 10 value 93.155684 iter 20 value 88.056600 iter 30 value 83.760198 iter 40 value 83.482267 iter 50 value 83.095779 iter 60 value 79.732885 iter 70 value 78.406341 iter 80 value 78.158315 iter 90 value 78.029513 iter 100 value 78.017053 final value 78.017053 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.152994 iter 10 value 94.275224 iter 20 value 92.417460 iter 30 value 83.434109 iter 40 value 82.899665 iter 50 value 82.140729 iter 60 value 81.542941 iter 70 value 81.025990 iter 80 value 79.702922 iter 90 value 78.328472 iter 100 value 77.499211 final value 77.499211 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.944264 iter 10 value 93.988999 iter 20 value 86.624196 iter 30 value 80.124255 iter 40 value 78.983185 iter 50 value 77.885483 iter 60 value 76.682501 iter 70 value 76.553418 iter 80 value 76.479970 iter 90 value 76.140385 iter 100 value 76.007394 final value 76.007394 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 136.866656 iter 10 value 95.064084 iter 20 value 93.834680 iter 30 value 93.094994 iter 40 value 91.281172 iter 50 value 87.663237 iter 60 value 83.436244 iter 70 value 80.004240 iter 80 value 77.757100 iter 90 value 77.354939 iter 100 value 77.222492 final value 77.222492 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.832538 iter 10 value 95.322410 iter 20 value 90.550130 iter 30 value 85.610534 iter 40 value 82.486895 iter 50 value 80.157287 iter 60 value 79.027230 iter 70 value 78.196754 iter 80 value 77.696497 iter 90 value 77.578254 iter 100 value 77.542779 final value 77.542779 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.971473 final value 94.054641 converged Fitting Repeat 2 # weights: 103 initial value 96.810185 final value 94.054478 converged Fitting Repeat 3 # weights: 103 initial value 97.418065 final value 94.054398 converged Fitting Repeat 4 # weights: 103 initial value 93.884965 final value 92.955986 converged Fitting Repeat 5 # weights: 103 initial value 94.354219 final value 94.054611 converged Fitting Repeat 1 # weights: 305 initial value 98.550260 iter 10 value 92.955614 iter 20 value 92.950754 iter 30 value 92.945963 iter 40 value 92.768479 iter 50 value 91.467061 iter 60 value 82.606411 iter 70 value 80.812817 iter 80 value 80.803955 iter 90 value 77.994514 iter 100 value 77.936204 final value 77.936204 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.834805 iter 10 value 92.305595 iter 20 value 92.116030 iter 30 value 90.908161 iter 40 value 80.455671 iter 50 value 79.871299 iter 60 value 79.754171 iter 70 value 79.587537 iter 80 value 79.579009 iter 90 value 79.575735 iter 100 value 79.574586 final value 79.574586 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.653638 iter 10 value 94.057462 iter 20 value 93.888817 iter 30 value 93.224845 iter 40 value 92.946598 final value 92.946204 converged Fitting Repeat 4 # weights: 305 initial value 112.761063 iter 10 value 94.058525 iter 20 value 94.053481 final value 94.053212 converged Fitting Repeat 5 # weights: 305 initial value 98.542662 iter 10 value 94.059981 final value 94.055863 converged Fitting Repeat 1 # weights: 507 initial value 105.168736 iter 10 value 92.953669 iter 20 value 92.947483 final value 92.946378 converged Fitting Repeat 2 # weights: 507 initial value 107.433285 iter 10 value 92.714032 iter 20 value 90.870237 iter 30 value 90.820170 iter 40 value 90.813027 iter 50 value 90.811517 iter 60 value 90.779007 iter 70 value 90.293619 iter 80 value 89.052615 iter 90 value 88.989143 iter 100 value 88.986188 final value 88.986188 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.062630 iter 10 value 92.953551 iter 20 value 92.835708 iter 30 value 89.072318 iter 40 value 89.065581 iter 50 value 89.063215 iter 60 value 89.062249 iter 70 value 89.062020 iter 80 value 87.598574 iter 90 value 79.293896 final value 79.293688 converged Fitting Repeat 4 # weights: 507 initial value 98.230915 iter 10 value 92.954637 iter 20 value 92.901055 iter 30 value 90.250011 iter 40 value 81.279711 iter 50 value 78.746800 iter 60 value 78.524564 iter 70 value 78.518644 iter 80 value 78.492071 iter 90 value 78.488957 iter 100 value 78.488926 final value 78.488926 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.899958 iter 10 value 92.954056 iter 20 value 92.949105 iter 30 value 92.948908 iter 40 value 92.947635 iter 50 value 85.227930 iter 60 value 82.586646 iter 70 value 82.369234 final value 82.369189 converged Fitting Repeat 1 # weights: 103 initial value 96.679929 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.453635 iter 10 value 93.309465 iter 20 value 88.822332 iter 30 value 83.350659 iter 40 value 83.239170 final value 83.239160 converged Fitting Repeat 3 # weights: 103 initial value 99.038938 final value 94.395061 converged Fitting Repeat 4 # weights: 103 initial value 101.520127 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 107.091167 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 113.096379 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.314792 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.193008 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.786701 final value 93.682857 converged Fitting Repeat 5 # weights: 305 initial value 119.930993 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 94.698204 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 95.915857 iter 10 value 94.174538 iter 20 value 86.356372 iter 30 value 85.868010 final value 85.868007 converged Fitting Repeat 3 # weights: 507 initial value 108.521411 final value 94.315790 converged Fitting Repeat 4 # weights: 507 initial value 102.253513 iter 10 value 94.232864 final value 94.232773 converged Fitting Repeat 5 # weights: 507 initial value 94.841479 final value 94.354396 converged Fitting Repeat 1 # weights: 103 initial value 99.104265 iter 10 value 93.892567 iter 20 value 86.783418 iter 30 value 84.406761 iter 40 value 83.921829 iter 50 value 83.576542 iter 60 value 83.339746 iter 70 value 83.014536 iter 80 value 82.928009 iter 90 value 82.923420 final value 82.923412 converged Fitting Repeat 2 # weights: 103 initial value 102.396742 iter 10 value 94.488578 iter 20 value 94.486702 iter 30 value 94.476486 iter 40 value 86.583916 iter 50 value 86.149551 iter 60 value 85.811416 iter 70 value 85.668507 iter 80 value 84.618633 iter 90 value 83.857353 iter 100 value 83.479122 final value 83.479122 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 105.558266 iter 10 value 94.382026 iter 20 value 85.269056 iter 30 value 84.121193 iter 40 value 82.674950 iter 50 value 81.705130 iter 60 value 81.587282 final value 81.581739 converged Fitting Repeat 4 # weights: 103 initial value 96.628718 iter 10 value 94.319445 iter 20 value 90.472688 iter 30 value 87.599714 iter 40 value 86.454463 iter 50 value 84.415001 iter 60 value 84.020224 iter 70 value 83.622426 iter 80 value 83.420582 iter 90 value 83.363167 iter 100 value 83.351396 final value 83.351396 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.660765 iter 10 value 94.516472 iter 20 value 94.476150 iter 30 value 92.896400 iter 40 value 84.704836 iter 50 value 83.941827 iter 60 value 83.233310 iter 70 value 82.956562 iter 80 value 82.127796 iter 90 value 81.741449 iter 100 value 81.586113 final value 81.586113 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 112.692843 iter 10 value 94.408760 iter 20 value 89.007266 iter 30 value 87.291436 iter 40 value 85.166114 iter 50 value 83.758610 iter 60 value 83.410878 iter 70 value 82.339125 iter 80 value 82.051665 iter 90 value 81.398638 iter 100 value 80.869736 final value 80.869736 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.997759 iter 10 value 91.585336 iter 20 value 84.364428 iter 30 value 84.266068 iter 40 value 83.966423 iter 50 value 82.616288 iter 60 value 81.915385 iter 70 value 80.872458 iter 80 value 80.714933 iter 90 value 80.379377 iter 100 value 80.124885 final value 80.124885 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.324464 iter 10 value 94.608337 iter 20 value 93.162799 iter 30 value 87.882129 iter 40 value 86.179401 iter 50 value 85.537346 iter 60 value 83.316708 iter 70 value 82.162041 iter 80 value 81.904898 iter 90 value 81.588030 iter 100 value 81.095296 final value 81.095296 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.308472 iter 10 value 93.588798 iter 20 value 85.435043 iter 30 value 84.729317 iter 40 value 84.115264 iter 50 value 82.042489 iter 60 value 81.687324 iter 70 value 81.588529 iter 80 value 81.538448 iter 90 value 81.327579 iter 100 value 80.691225 final value 80.691225 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.238835 iter 10 value 94.890965 iter 20 value 88.750531 iter 30 value 84.309958 iter 40 value 82.685953 iter 50 value 81.753531 iter 60 value 81.276951 iter 70 value 80.951029 iter 80 value 80.730619 iter 90 value 80.484112 iter 100 value 80.056014 final value 80.056014 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 134.629104 iter 10 value 94.507768 iter 20 value 89.517797 iter 30 value 85.425582 iter 40 value 84.497176 iter 50 value 83.941920 iter 60 value 82.898948 iter 70 value 82.208483 iter 80 value 80.816361 iter 90 value 80.346729 iter 100 value 80.277797 final value 80.277797 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.801028 iter 10 value 94.484846 iter 20 value 92.002371 iter 30 value 85.634683 iter 40 value 84.467899 iter 50 value 83.289679 iter 60 value 83.194479 iter 70 value 83.062545 iter 80 value 82.902150 iter 90 value 82.862398 iter 100 value 82.821430 final value 82.821430 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.157819 iter 10 value 95.504204 iter 20 value 93.455698 iter 30 value 92.415961 iter 40 value 90.794586 iter 50 value 86.539088 iter 60 value 86.393686 iter 70 value 85.519514 iter 80 value 85.236319 iter 90 value 84.496114 iter 100 value 81.766770 final value 81.766770 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.028139 iter 10 value 94.548149 iter 20 value 94.498155 iter 30 value 94.151992 iter 40 value 91.231590 iter 50 value 85.798664 iter 60 value 84.677170 iter 70 value 83.413241 iter 80 value 83.027755 iter 90 value 82.807969 iter 100 value 81.927134 final value 81.927134 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.987752 iter 10 value 94.988344 iter 20 value 91.310504 iter 30 value 84.302752 iter 40 value 83.672746 iter 50 value 82.051249 iter 60 value 81.832183 iter 70 value 81.730769 iter 80 value 81.530817 iter 90 value 81.221025 iter 100 value 80.929402 final value 80.929402 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.001406 iter 10 value 94.485887 iter 20 value 94.484234 iter 30 value 94.311804 iter 40 value 94.308260 final value 94.308255 converged Fitting Repeat 2 # weights: 103 initial value 104.860557 final value 94.485898 converged Fitting Repeat 3 # weights: 103 initial value 98.049504 final value 94.485757 converged Fitting Repeat 4 # weights: 103 initial value 101.228068 final value 94.485679 converged Fitting Repeat 5 # weights: 103 initial value 99.717332 final value 94.485671 converged Fitting Repeat 1 # weights: 305 initial value 94.596701 iter 10 value 94.485053 iter 20 value 93.516663 iter 30 value 87.916184 iter 40 value 87.765266 iter 50 value 85.021652 iter 60 value 84.179719 iter 70 value 84.144701 iter 80 value 81.237159 iter 90 value 79.481462 iter 100 value 79.448147 final value 79.448147 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.842723 iter 10 value 94.489110 iter 20 value 94.250360 iter 30 value 88.422527 final value 88.422233 converged Fitting Repeat 3 # weights: 305 initial value 126.435269 iter 10 value 94.491610 iter 20 value 94.485365 iter 30 value 89.694410 iter 40 value 85.541211 iter 50 value 85.392702 iter 60 value 85.374083 iter 70 value 85.372306 iter 80 value 85.099752 iter 90 value 84.974717 iter 100 value 84.905538 final value 84.905538 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.921256 iter 10 value 94.411218 iter 20 value 94.408204 iter 30 value 94.260359 iter 40 value 86.326835 iter 50 value 86.276271 iter 60 value 86.256709 iter 70 value 86.254202 iter 80 value 85.996527 iter 90 value 85.837477 iter 100 value 85.763042 final value 85.763042 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.177409 iter 10 value 94.358857 iter 20 value 94.354454 iter 30 value 85.629754 iter 40 value 85.441137 iter 50 value 85.415519 iter 60 value 85.405344 iter 70 value 85.393235 iter 80 value 85.393099 final value 85.393079 converged Fitting Repeat 1 # weights: 507 initial value 111.583863 iter 10 value 94.491435 iter 20 value 94.187175 iter 30 value 93.176867 iter 40 value 92.510894 iter 50 value 88.957699 iter 60 value 88.816340 iter 70 value 87.843064 iter 80 value 87.391182 iter 90 value 87.389237 final value 87.389127 converged Fitting Repeat 2 # weights: 507 initial value 96.196149 iter 10 value 94.054525 iter 20 value 93.499407 iter 30 value 83.650839 iter 40 value 83.615696 iter 50 value 83.614397 final value 83.614204 converged Fitting Repeat 3 # weights: 507 initial value 107.750778 iter 10 value 92.519924 iter 20 value 87.544618 iter 30 value 87.025265 iter 40 value 87.023701 iter 50 value 86.995674 iter 60 value 86.987369 iter 70 value 86.911790 iter 80 value 85.989049 iter 90 value 83.022493 iter 100 value 82.243481 final value 82.243481 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 132.606071 iter 10 value 86.554592 iter 20 value 86.377730 iter 30 value 84.137151 iter 40 value 84.045470 iter 50 value 83.653878 iter 60 value 83.377028 iter 70 value 83.334249 iter 80 value 83.333558 iter 90 value 83.145517 iter 100 value 82.789414 final value 82.789414 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.852380 iter 10 value 92.700899 iter 20 value 92.535345 iter 30 value 92.411461 iter 40 value 92.041211 iter 50 value 92.039737 iter 60 value 92.034887 iter 70 value 86.160804 iter 80 value 84.508423 iter 90 value 81.649972 iter 100 value 80.991689 final value 80.991689 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.887144 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.023925 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.468821 iter 10 value 84.389448 iter 20 value 84.213430 iter 30 value 84.206372 iter 40 value 84.204940 final value 84.204907 converged Fitting Repeat 4 # weights: 103 initial value 97.131728 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.936586 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.550103 final value 94.288571 converged Fitting Repeat 2 # weights: 305 initial value 97.709724 final value 94.442072 converged Fitting Repeat 3 # weights: 305 initial value 94.766298 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.030616 final value 94.483810 converged Fitting Repeat 5 # weights: 305 initial value 110.556042 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 106.323125 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 111.582228 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 104.021124 iter 10 value 88.474537 iter 20 value 84.754592 final value 84.407432 converged Fitting Repeat 4 # weights: 507 initial value 101.072145 iter 10 value 93.075236 iter 20 value 91.195917 final value 91.195840 converged Fitting Repeat 5 # weights: 507 initial value 101.670082 iter 10 value 94.128092 final value 94.127374 converged Fitting Repeat 1 # weights: 103 initial value 101.500987 iter 10 value 94.461444 iter 20 value 94.073769 iter 30 value 93.994624 iter 40 value 91.511746 iter 50 value 87.635416 iter 60 value 86.854940 iter 70 value 85.462257 iter 80 value 83.879280 iter 90 value 83.857998 iter 100 value 83.715500 final value 83.715500 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.371206 iter 10 value 93.708945 iter 20 value 92.806276 iter 30 value 89.847302 iter 40 value 86.823957 iter 50 value 86.157945 iter 60 value 85.938575 iter 70 value 85.691122 iter 80 value 85.330498 iter 90 value 85.289514 iter 100 value 85.274418 final value 85.274418 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.521693 iter 10 value 93.816709 iter 20 value 86.942587 iter 30 value 85.180634 iter 40 value 84.589458 iter 50 value 83.969126 iter 60 value 83.730108 iter 70 value 83.603079 final value 83.602797 converged Fitting Repeat 4 # weights: 103 initial value 106.240180 iter 10 value 94.488982 iter 20 value 88.454246 iter 30 value 85.524999 iter 40 value 84.989721 iter 50 value 84.763461 iter 60 value 84.724276 final value 84.724166 converged Fitting Repeat 5 # weights: 103 initial value 108.184590 iter 10 value 94.393259 iter 20 value 93.850847 iter 30 value 92.190498 iter 40 value 87.903123 iter 50 value 86.849114 iter 60 value 86.638222 iter 70 value 84.981171 iter 80 value 84.036570 iter 90 value 83.705768 iter 100 value 83.602699 final value 83.602699 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 125.850912 iter 10 value 94.520702 iter 20 value 93.547083 iter 30 value 86.032896 iter 40 value 84.779704 iter 50 value 84.276368 iter 60 value 84.116990 iter 70 value 84.047000 iter 80 value 83.881411 iter 90 value 83.817582 iter 100 value 83.736101 final value 83.736101 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.815985 iter 10 value 94.509017 iter 20 value 86.708801 iter 30 value 86.296742 iter 40 value 85.314005 iter 50 value 83.611470 iter 60 value 83.168885 iter 70 value 82.534727 iter 80 value 82.394111 iter 90 value 82.162280 iter 100 value 82.095638 final value 82.095638 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.812365 iter 10 value 94.458897 iter 20 value 92.377893 iter 30 value 91.510347 iter 40 value 91.425711 iter 50 value 91.386927 iter 60 value 91.046034 iter 70 value 90.891262 iter 80 value 88.412295 iter 90 value 86.060555 iter 100 value 83.838373 final value 83.838373 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.974967 iter 10 value 93.809924 iter 20 value 86.589723 iter 30 value 84.511896 iter 40 value 83.403823 iter 50 value 83.208980 iter 60 value 83.046707 iter 70 value 82.709805 iter 80 value 82.622692 iter 90 value 82.618611 iter 100 value 82.618085 final value 82.618085 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 119.920731 iter 10 value 94.443232 iter 20 value 91.845332 iter 30 value 91.149384 iter 40 value 88.831255 iter 50 value 86.881051 iter 60 value 86.269935 iter 70 value 85.334283 iter 80 value 84.621759 iter 90 value 83.925187 iter 100 value 83.852478 final value 83.852478 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.978138 iter 10 value 94.345329 iter 20 value 93.107615 iter 30 value 89.797283 iter 40 value 88.108902 iter 50 value 87.361749 iter 60 value 85.379680 iter 70 value 84.447414 iter 80 value 83.663092 iter 90 value 83.387665 iter 100 value 83.273932 final value 83.273932 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.694942 iter 10 value 94.541106 iter 20 value 93.473669 iter 30 value 89.938367 iter 40 value 87.206972 iter 50 value 84.544438 iter 60 value 83.951770 iter 70 value 83.520504 iter 80 value 83.069259 iter 90 value 82.666592 iter 100 value 82.548599 final value 82.548599 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.717662 iter 10 value 94.413740 iter 20 value 91.218961 iter 30 value 85.857006 iter 40 value 85.386439 iter 50 value 84.114777 iter 60 value 83.582789 iter 70 value 82.862353 iter 80 value 82.717861 iter 90 value 82.565898 iter 100 value 82.367744 final value 82.367744 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.830842 iter 10 value 94.666116 iter 20 value 92.342284 iter 30 value 85.286478 iter 40 value 84.294845 iter 50 value 83.991270 iter 60 value 83.956456 iter 70 value 83.453116 iter 80 value 82.749626 iter 90 value 82.459460 iter 100 value 82.303426 final value 82.303426 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.935285 iter 10 value 94.669057 iter 20 value 94.448739 iter 30 value 94.001540 iter 40 value 92.699895 iter 50 value 89.411329 iter 60 value 86.260014 iter 70 value 84.280028 iter 80 value 83.856900 iter 90 value 83.592178 iter 100 value 83.427396 final value 83.427396 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.811157 iter 10 value 94.485880 iter 20 value 94.484229 iter 30 value 94.290178 iter 40 value 93.349734 iter 50 value 93.222159 iter 60 value 89.872392 iter 70 value 88.290606 iter 80 value 88.228456 iter 90 value 88.227935 iter 100 value 88.208596 final value 88.208596 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.713101 final value 94.485916 converged Fitting Repeat 3 # weights: 103 initial value 102.383139 final value 94.485629 converged Fitting Repeat 4 # weights: 103 initial value 107.983855 final value 94.485786 converged Fitting Repeat 5 # weights: 103 initial value 98.539809 final value 94.485890 converged Fitting Repeat 1 # weights: 305 initial value 95.323726 iter 10 value 94.488919 iter 20 value 94.322493 iter 30 value 92.926953 iter 40 value 92.830118 iter 50 value 92.303166 iter 60 value 92.170264 iter 70 value 92.169296 iter 80 value 92.083510 iter 80 value 92.083510 iter 80 value 92.083510 final value 92.083510 converged Fitting Repeat 2 # weights: 305 initial value 101.401678 iter 10 value 94.359744 iter 20 value 94.354681 final value 94.354615 converged Fitting Repeat 3 # weights: 305 initial value 111.007288 iter 10 value 94.324996 iter 20 value 94.321691 iter 30 value 94.318634 iter 40 value 89.380302 iter 50 value 86.604916 iter 60 value 86.587145 iter 70 value 86.573554 iter 80 value 86.506694 iter 90 value 86.405870 iter 100 value 85.749376 final value 85.749376 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.931902 iter 10 value 93.706969 iter 20 value 93.705371 iter 30 value 93.698435 iter 40 value 93.581741 iter 50 value 87.596586 iter 60 value 84.414778 iter 70 value 84.409051 final value 84.408998 converged Fitting Repeat 5 # weights: 305 initial value 94.799561 iter 10 value 94.359112 iter 20 value 94.354971 iter 30 value 94.227582 iter 40 value 85.516750 iter 50 value 85.514959 final value 85.513328 converged Fitting Repeat 1 # weights: 507 initial value 97.428353 iter 10 value 94.362345 iter 20 value 94.354673 iter 30 value 94.251297 iter 40 value 87.126474 iter 50 value 87.116243 iter 60 value 87.070856 final value 87.070798 converged Fitting Repeat 2 # weights: 507 initial value 127.785164 iter 10 value 94.350547 iter 20 value 94.341994 iter 30 value 93.298726 iter 40 value 91.833736 iter 50 value 91.800672 iter 60 value 91.767037 iter 70 value 91.764910 iter 80 value 91.755930 iter 90 value 91.276963 iter 100 value 87.775398 final value 87.775398 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.861719 iter 10 value 94.300223 iter 20 value 94.053733 iter 30 value 94.027884 iter 40 value 93.944535 iter 50 value 93.940681 iter 60 value 93.938793 iter 70 value 92.584297 iter 80 value 86.411156 iter 90 value 85.899002 iter 100 value 84.018731 final value 84.018731 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.887493 iter 10 value 94.504722 iter 20 value 94.495093 iter 30 value 94.087440 iter 40 value 87.175334 iter 50 value 84.642031 iter 60 value 84.113602 iter 70 value 83.954040 iter 80 value 83.908046 iter 90 value 83.907552 iter 100 value 83.901595 final value 83.901595 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.572725 iter 10 value 89.584400 iter 20 value 89.060541 iter 30 value 89.049318 iter 40 value 86.050847 iter 50 value 83.978784 iter 60 value 83.977540 iter 70 value 83.977212 iter 80 value 83.963456 iter 90 value 83.956651 iter 100 value 83.872580 final value 83.872580 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 111.553291 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.303208 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.027911 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.248523 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.224804 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 125.882652 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.294563 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 113.115498 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.169949 iter 10 value 94.484432 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.167541 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 118.431619 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 99.297952 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 96.526402 iter 10 value 94.473119 iter 10 value 94.473118 iter 10 value 94.473118 final value 94.473118 converged Fitting Repeat 4 # weights: 507 initial value 108.357283 final value 94.473118 converged Fitting Repeat 5 # weights: 507 initial value 117.337309 final value 94.484210 converged Fitting Repeat 1 # weights: 103 initial value 101.421381 iter 10 value 94.423199 iter 20 value 93.980960 iter 30 value 92.328303 iter 40 value 92.078565 iter 50 value 92.030075 iter 60 value 86.635695 iter 70 value 84.560693 iter 80 value 84.447460 iter 90 value 84.294652 iter 100 value 83.245907 final value 83.245907 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.079612 iter 10 value 94.490046 iter 20 value 94.423750 iter 30 value 94.068315 iter 40 value 93.987307 iter 50 value 93.963090 iter 60 value 93.835632 iter 70 value 92.229428 iter 80 value 91.929536 iter 90 value 91.863413 iter 100 value 91.361003 final value 91.361003 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.158789 iter 10 value 94.498304 iter 20 value 93.947083 iter 30 value 87.594353 iter 40 value 87.046943 iter 50 value 86.989252 iter 60 value 86.827720 iter 70 value 86.599162 final value 86.599146 converged Fitting Repeat 4 # weights: 103 initial value 97.967459 iter 10 value 93.954285 iter 20 value 92.129330 iter 30 value 92.068191 iter 40 value 91.773273 iter 50 value 90.774971 iter 60 value 90.741173 iter 70 value 90.739459 iter 80 value 90.733650 iter 90 value 90.726020 iter 100 value 90.679750 final value 90.679750 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.268882 iter 10 value 94.473626 iter 20 value 90.664355 iter 30 value 90.250966 iter 40 value 89.076815 iter 50 value 88.433725 iter 60 value 85.974047 iter 70 value 85.849477 iter 80 value 85.797505 iter 90 value 85.283406 iter 100 value 84.907662 final value 84.907662 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.295749 iter 10 value 93.155135 iter 20 value 87.846584 iter 30 value 86.289005 iter 40 value 85.591552 iter 50 value 84.999484 iter 60 value 83.915911 iter 70 value 83.506969 iter 80 value 83.197355 iter 90 value 83.007004 iter 100 value 82.849939 final value 82.849939 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.796906 iter 10 value 94.352452 iter 20 value 92.863006 iter 30 value 90.361806 iter 40 value 86.896897 iter 50 value 83.025656 iter 60 value 82.663451 iter 70 value 82.195462 iter 80 value 81.953216 iter 90 value 81.764275 iter 100 value 81.756881 final value 81.756881 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.320787 iter 10 value 99.971178 iter 20 value 94.495798 iter 30 value 91.620270 iter 40 value 89.407675 iter 50 value 89.221792 iter 60 value 89.018546 iter 70 value 88.793774 iter 80 value 85.868360 iter 90 value 84.820916 iter 100 value 83.874484 final value 83.874484 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.280539 iter 10 value 94.504741 iter 20 value 91.695254 iter 30 value 87.716365 iter 40 value 85.716022 iter 50 value 85.016906 iter 60 value 84.301969 iter 70 value 83.884874 iter 80 value 82.832004 iter 90 value 82.081989 iter 100 value 81.765981 final value 81.765981 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.987020 iter 10 value 94.416852 iter 20 value 89.806156 iter 30 value 87.968694 iter 40 value 86.051693 iter 50 value 84.446319 iter 60 value 84.331387 iter 70 value 82.644424 iter 80 value 81.906664 iter 90 value 81.674652 iter 100 value 81.643409 final value 81.643409 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.680370 iter 10 value 94.628390 iter 20 value 94.409519 iter 30 value 92.670149 iter 40 value 83.481395 iter 50 value 82.028542 iter 60 value 81.859073 iter 70 value 81.676019 iter 80 value 81.248675 iter 90 value 81.083741 iter 100 value 80.857479 final value 80.857479 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.474648 iter 10 value 90.360889 iter 20 value 88.400034 iter 30 value 84.657162 iter 40 value 83.497282 iter 50 value 82.760342 iter 60 value 82.474260 iter 70 value 82.113960 iter 80 value 81.395070 iter 90 value 81.233973 iter 100 value 81.118905 final value 81.118905 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.086182 iter 10 value 94.964974 iter 20 value 94.431935 iter 30 value 91.887793 iter 40 value 89.378643 iter 50 value 89.179662 iter 60 value 87.876042 iter 70 value 86.183271 iter 80 value 85.352300 iter 90 value 83.541904 iter 100 value 82.468475 final value 82.468475 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.419376 iter 10 value 93.978410 iter 20 value 93.379378 iter 30 value 89.614291 iter 40 value 86.767360 iter 50 value 83.418533 iter 60 value 82.006332 iter 70 value 81.449501 iter 80 value 81.374570 iter 90 value 81.271051 iter 100 value 81.243653 final value 81.243653 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.927999 iter 10 value 96.573312 iter 20 value 94.534909 iter 30 value 94.207771 iter 40 value 90.885824 iter 50 value 89.491492 iter 60 value 86.514300 iter 70 value 83.743309 iter 80 value 82.914174 iter 90 value 82.508155 iter 100 value 81.506994 final value 81.506994 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.931573 final value 94.486156 converged Fitting Repeat 2 # weights: 103 initial value 95.394364 final value 94.485984 converged Fitting Repeat 3 # weights: 103 initial value 94.846521 final value 94.486043 converged Fitting Repeat 4 # weights: 103 initial value 105.616375 final value 94.485947 converged Fitting Repeat 5 # weights: 103 initial value 99.286560 final value 94.486228 converged Fitting Repeat 1 # weights: 305 initial value 99.793775 iter 10 value 94.488742 iter 20 value 94.323646 iter 30 value 93.947134 iter 40 value 92.913578 iter 50 value 86.102202 iter 60 value 86.025000 iter 70 value 85.977135 iter 80 value 85.972276 final value 85.972230 converged Fitting Repeat 2 # weights: 305 initial value 98.080265 iter 10 value 94.489246 iter 20 value 94.436737 iter 30 value 94.094032 final value 94.093881 converged Fitting Repeat 3 # weights: 305 initial value 119.314764 iter 10 value 93.459898 iter 20 value 93.404518 iter 30 value 93.388218 iter 40 value 93.042550 iter 50 value 91.397507 iter 60 value 90.399720 iter 70 value 90.389144 iter 80 value 90.387570 iter 90 value 90.387415 iter 100 value 89.508261 final value 89.508261 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.084731 iter 10 value 94.489198 iter 20 value 94.466917 iter 30 value 94.166397 iter 40 value 91.919700 iter 50 value 86.372158 iter 60 value 83.779195 iter 70 value 83.742423 iter 80 value 83.732925 iter 90 value 82.910042 iter 100 value 82.860227 final value 82.860227 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 96.119560 iter 10 value 92.940012 iter 20 value 92.843507 iter 30 value 91.845529 iter 40 value 91.833595 iter 50 value 91.831030 iter 60 value 91.802268 iter 70 value 91.778424 final value 91.778127 converged Fitting Repeat 1 # weights: 507 initial value 94.802461 iter 10 value 94.431726 iter 20 value 94.427720 iter 30 value 94.355059 iter 40 value 91.703076 iter 50 value 89.610818 iter 60 value 85.762657 iter 70 value 83.489237 iter 80 value 82.573091 iter 90 value 81.083735 iter 100 value 80.164796 final value 80.164796 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 134.554149 iter 10 value 94.492871 iter 20 value 94.484801 iter 30 value 94.319277 iter 40 value 88.250599 iter 50 value 86.604355 iter 60 value 86.593769 iter 70 value 86.589162 iter 80 value 86.505999 iter 90 value 84.959530 iter 100 value 84.055139 final value 84.055139 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.810266 iter 10 value 92.976163 iter 20 value 87.881980 iter 30 value 87.879749 final value 87.878985 converged Fitting Repeat 4 # weights: 507 initial value 109.552077 iter 10 value 94.491421 iter 20 value 94.378957 iter 30 value 93.948063 iter 40 value 86.140974 iter 50 value 85.165097 iter 60 value 84.889112 iter 70 value 84.766085 iter 80 value 82.167947 iter 90 value 82.142933 final value 82.142482 converged Fitting Repeat 5 # weights: 507 initial value 111.997600 iter 10 value 93.709434 iter 20 value 93.143640 iter 30 value 91.189146 iter 40 value 90.242778 iter 50 value 89.957185 iter 60 value 89.915077 iter 70 value 89.896202 iter 80 value 89.896160 iter 90 value 89.896069 iter 100 value 89.895988 final value 89.895988 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.708624 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 104.450781 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.341639 final value 94.038251 converged Fitting Repeat 4 # weights: 103 initial value 102.086551 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.642399 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.180960 final value 94.038251 converged Fitting Repeat 2 # weights: 305 initial value 103.399481 iter 10 value 92.779088 iter 20 value 91.360087 final value 91.360074 converged Fitting Repeat 3 # weights: 305 initial value 95.274587 iter 10 value 93.732893 iter 10 value 93.732893 iter 10 value 93.732893 final value 93.732893 converged Fitting Repeat 4 # weights: 305 initial value 104.842460 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 97.296988 final value 94.008696 converged Fitting Repeat 1 # weights: 507 initial value 102.223502 iter 10 value 93.545562 final value 93.097211 converged Fitting Repeat 2 # weights: 507 initial value 97.881474 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 117.504516 iter 10 value 94.052911 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 98.193016 final value 94.052908 converged Fitting Repeat 5 # weights: 507 initial value 102.210238 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.946037 iter 10 value 93.994910 iter 20 value 89.270254 iter 30 value 86.692258 iter 40 value 84.112739 iter 50 value 83.735864 iter 60 value 83.105582 iter 70 value 81.376371 iter 80 value 81.124827 iter 90 value 81.120605 iter 100 value 81.098612 final value 81.098612 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 113.282732 iter 10 value 93.749104 iter 20 value 85.216160 iter 30 value 83.976937 iter 40 value 83.703946 iter 50 value 83.502873 iter 60 value 82.277063 iter 70 value 81.986464 iter 80 value 81.700432 iter 90 value 81.568912 iter 100 value 81.522250 final value 81.522250 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.525757 iter 10 value 94.063748 iter 20 value 93.963249 iter 30 value 91.521735 iter 40 value 90.868300 iter 50 value 90.799224 iter 60 value 90.760933 iter 70 value 90.756502 iter 70 value 90.756501 iter 70 value 90.756501 final value 90.756501 converged Fitting Repeat 4 # weights: 103 initial value 96.233574 iter 10 value 94.067905 iter 20 value 93.785827 iter 30 value 87.544810 iter 40 value 85.308486 iter 50 value 85.098515 iter 60 value 84.660895 iter 70 value 84.122744 iter 80 value 83.992325 iter 90 value 83.944508 iter 100 value 83.868357 final value 83.868357 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.352426 iter 10 value 92.837179 iter 20 value 85.101565 iter 30 value 84.856646 iter 40 value 84.708853 iter 50 value 84.559438 iter 60 value 82.684854 iter 70 value 82.363054 iter 80 value 82.271918 iter 90 value 82.254895 iter 100 value 81.103030 final value 81.103030 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.812789 iter 10 value 94.190951 iter 20 value 88.659492 iter 30 value 85.445707 iter 40 value 84.765509 iter 50 value 84.518480 iter 60 value 84.347195 iter 70 value 82.714258 iter 80 value 82.172057 iter 90 value 81.587818 iter 100 value 81.418923 final value 81.418923 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.541617 iter 10 value 93.815837 iter 20 value 86.960715 iter 30 value 83.681476 iter 40 value 82.341860 iter 50 value 81.609010 iter 60 value 81.471512 iter 70 value 81.156293 iter 80 value 80.996609 iter 90 value 80.866694 iter 100 value 80.514286 final value 80.514286 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.046324 iter 10 value 94.042147 iter 20 value 87.367512 iter 30 value 84.844811 iter 40 value 83.119308 iter 50 value 82.416485 iter 60 value 81.360194 iter 70 value 80.846709 iter 80 value 80.454117 iter 90 value 80.015312 iter 100 value 79.890446 final value 79.890446 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.418917 iter 10 value 94.384188 iter 20 value 94.012989 iter 30 value 89.038636 iter 40 value 86.707473 iter 50 value 85.811688 iter 60 value 85.303181 iter 70 value 85.125529 iter 80 value 83.677532 iter 90 value 83.345574 iter 100 value 82.761345 final value 82.761345 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.113319 iter 10 value 94.062697 iter 20 value 92.134241 iter 30 value 84.577119 iter 40 value 84.304617 iter 50 value 84.116573 iter 60 value 83.927471 iter 70 value 83.795897 iter 80 value 83.587566 iter 90 value 83.484600 iter 100 value 83.325093 final value 83.325093 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.707009 iter 10 value 95.241400 iter 20 value 94.201886 iter 30 value 89.384002 iter 40 value 84.186567 iter 50 value 83.727704 iter 60 value 83.532066 iter 70 value 83.380264 iter 80 value 81.594772 iter 90 value 81.503793 iter 100 value 81.194240 final value 81.194240 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.348389 iter 10 value 90.474553 iter 20 value 82.939799 iter 30 value 82.275359 iter 40 value 81.804461 iter 50 value 80.969212 iter 60 value 80.734835 iter 70 value 80.652095 iter 80 value 80.568935 iter 90 value 80.353883 iter 100 value 80.187509 final value 80.187509 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.505322 iter 10 value 91.068989 iter 20 value 86.828828 iter 30 value 86.373233 iter 40 value 84.923027 iter 50 value 83.028481 iter 60 value 81.755505 iter 70 value 81.393117 iter 80 value 81.248422 iter 90 value 80.816502 iter 100 value 80.466638 final value 80.466638 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.106772 iter 10 value 96.513946 iter 20 value 94.251316 iter 30 value 93.515938 iter 40 value 86.496826 iter 50 value 86.243460 iter 60 value 84.801436 iter 70 value 81.591014 iter 80 value 80.993561 iter 90 value 80.814288 iter 100 value 80.673215 final value 80.673215 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.989753 iter 10 value 94.127985 iter 20 value 91.046720 iter 30 value 86.945998 iter 40 value 86.159784 iter 50 value 85.888106 iter 60 value 84.481246 iter 70 value 82.259529 iter 80 value 82.036869 iter 90 value 81.453925 iter 100 value 80.975002 final value 80.975002 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.765514 final value 94.054673 converged Fitting Repeat 2 # weights: 103 initial value 96.631009 final value 93.290664 converged Fitting Repeat 3 # weights: 103 initial value 94.199179 final value 94.054373 converged Fitting Repeat 4 # weights: 103 initial value 96.088220 final value 94.054560 converged Fitting Repeat 5 # weights: 103 initial value 105.846812 final value 94.054629 converged Fitting Repeat 1 # weights: 305 initial value 100.873314 iter 10 value 94.135202 iter 20 value 93.805475 iter 30 value 86.144696 iter 40 value 86.019465 iter 50 value 85.511141 iter 60 value 85.472921 iter 70 value 85.470038 iter 80 value 85.438007 iter 90 value 83.454373 iter 100 value 83.436324 final value 83.436324 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.679209 iter 10 value 94.057742 iter 20 value 94.052550 iter 30 value 94.050505 final value 94.050483 converged Fitting Repeat 3 # weights: 305 initial value 98.189899 iter 10 value 94.057012 iter 20 value 91.339046 iter 30 value 86.378594 iter 40 value 86.378277 iter 50 value 85.210473 iter 60 value 85.210118 final value 85.210108 converged Fitting Repeat 4 # weights: 305 initial value 104.801315 iter 10 value 92.832080 iter 20 value 91.951015 iter 30 value 91.949056 iter 40 value 91.413484 iter 50 value 91.413313 iter 60 value 91.411159 iter 70 value 91.331661 iter 80 value 91.283620 final value 91.283584 converged Fitting Repeat 5 # weights: 305 initial value 96.082564 iter 10 value 94.057091 iter 20 value 86.300857 iter 30 value 82.840703 iter 40 value 80.292547 iter 50 value 79.919312 iter 60 value 79.916818 iter 70 value 79.911334 iter 80 value 79.760259 iter 90 value 79.753002 iter 100 value 79.751968 final value 79.751968 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.281119 iter 10 value 92.156545 iter 20 value 91.988831 iter 30 value 91.983281 iter 40 value 91.981700 iter 50 value 91.963669 iter 60 value 91.961213 iter 70 value 91.931850 iter 80 value 87.761605 iter 90 value 86.314278 iter 100 value 86.311008 final value 86.311008 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.809228 iter 10 value 94.060716 iter 20 value 93.823333 iter 30 value 83.871381 iter 40 value 83.323901 iter 50 value 83.305365 iter 60 value 82.284003 iter 70 value 81.581532 iter 80 value 81.371898 iter 90 value 81.342199 iter 100 value 81.308749 final value 81.308749 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.127295 iter 10 value 94.059558 iter 20 value 93.316181 iter 30 value 92.893850 iter 40 value 91.949121 iter 50 value 91.357290 iter 60 value 91.357178 iter 70 value 91.357132 iter 80 value 91.357040 final value 91.357022 converged Fitting Repeat 4 # weights: 507 initial value 100.057863 iter 10 value 94.061149 iter 20 value 93.816121 iter 30 value 86.791191 iter 40 value 81.758318 iter 50 value 80.788169 final value 80.783287 converged Fitting Repeat 5 # weights: 507 initial value 97.846653 iter 10 value 86.391752 iter 20 value 85.385680 iter 30 value 85.322181 iter 40 value 85.320752 iter 50 value 83.285337 iter 60 value 83.147992 iter 70 value 83.037914 iter 80 value 83.037405 iter 90 value 83.036661 final value 83.036146 converged Fitting Repeat 1 # weights: 507 initial value 125.996879 iter 10 value 118.046730 iter 20 value 117.418331 iter 30 value 108.901297 iter 40 value 106.639773 iter 50 value 104.910275 iter 60 value 102.583462 iter 70 value 102.288810 iter 80 value 101.557680 iter 90 value 100.486068 iter 100 value 100.163930 final value 100.163930 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 138.054771 iter 10 value 112.678992 iter 20 value 109.415264 iter 30 value 105.939792 iter 40 value 104.964846 iter 50 value 103.929211 iter 60 value 103.623273 iter 70 value 103.450250 iter 80 value 103.372083 iter 90 value 103.175911 iter 100 value 102.863482 final value 102.863482 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 153.281074 iter 10 value 118.056790 iter 20 value 117.822596 iter 30 value 107.956990 iter 40 value 107.758445 iter 50 value 107.386188 iter 60 value 104.959114 iter 70 value 102.166326 iter 80 value 101.830362 iter 90 value 101.706892 iter 100 value 101.504612 final value 101.504612 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 128.892737 iter 10 value 117.586915 iter 20 value 107.779410 iter 30 value 102.531780 iter 40 value 101.963533 iter 50 value 101.694439 iter 60 value 101.544394 iter 70 value 100.985025 iter 80 value 100.546975 iter 90 value 100.459589 iter 100 value 100.375251 final value 100.375251 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 162.896574 iter 10 value 115.760380 iter 20 value 107.604838 iter 30 value 106.033409 iter 40 value 104.478886 iter 50 value 103.853949 iter 60 value 103.702165 iter 70 value 102.878515 iter 80 value 102.188588 iter 90 value 101.934497 iter 100 value 101.152563 final value 101.152563 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sun Oct 15 22:07:34 2023 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 44.141 1.710 42.906
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.050 | 0.691 | 34.743 | |
FreqInteractors | 0.224 | 0.011 | 0.237 | |
calculateAAC | 0.034 | 0.007 | 0.043 | |
calculateAutocor | 0.525 | 0.025 | 0.550 | |
calculateCTDC | 0.079 | 0.000 | 0.079 | |
calculateCTDD | 0.585 | 0.027 | 0.613 | |
calculateCTDT | 0.232 | 0.016 | 0.249 | |
calculateCTriad | 0.345 | 0.009 | 0.354 | |
calculateDC | 0.087 | 0.008 | 0.095 | |
calculateF | 0.292 | 0.007 | 0.300 | |
calculateKSAAP | 0.090 | 0.009 | 0.098 | |
calculateQD_Sm | 1.448 | 0.067 | 1.516 | |
calculateTC | 1.488 | 0.132 | 1.620 | |
calculateTC_Sm | 0.230 | 0.004 | 0.234 | |
corr_plot | 35.919 | 0.664 | 36.592 | |
enrichfindP | 0.432 | 0.048 | 8.956 | |
enrichfind_hp | 0.074 | 0.012 | 1.094 | |
enrichplot | 0.235 | 0.012 | 0.248 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.546 | 0.025 | 4.934 | |
getHPI | 0.000 | 0.001 | 0.001 | |
get_negativePPI | 0.000 | 0.002 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.002 | 0.002 | |
plotPPI | 0.066 | 0.009 | 0.074 | |
pred_ensembel | 13.873 | 0.527 | 10.672 | |
var_imp | 35.813 | 0.920 | 36.733 | |